
Model-based, client-side integration of

heterogeneous data from REST services

Milan Zdravković*, Nikola Vitković*, Miroslav Trajanović*, Milan Trifunović*, Nikola Korunović*
* Faculty of Mechanical Engineering in Niš, University of Niš, Niš, Serbia

{milan.zdravkovic, nikola.vitkovic, miroslav.trajanovic, milan.trifunovic, nikola.korunovic}@masfak.ni.ac.rs

Abstract— With the increasing implementation of Internet-

of-Things paradigm, the increase of data volume and

diversity threatens to diminish the potentially valuable

effects of their reuse in multiple circumstances. While

increasing number of datasets, coming from devices or

elsewhere is being exposed by using APIs, very few of them

is based on the standard dictionaries, data structures and

models. For that reason, it becomes very difficult to

integrate data of similar or identical semantics, coming from

different sources. In this paper, we propose the meta-model

for client-side application which aggregates semantically

identical or similar data from multiple REST APIs in a

single Angular-based widget. Main concepts of the proposed

meta-model are data objects, services with defined object

and property mappings, use cases and user interface

components. Model is implemented in the data integration

platform and it is validated in the case of searching data

about research projects from two sources. The search

widget is implemented on the EURAXESS portals.

I. INTRODUCTION

The world of computing has dramatically changed since
the introduction of the new devices that continuously
generate data, such as smart phones. According to IBM,
2.5 quintillion bytes of data are created every day [1].
However, only small portion of this data can be
effectively used in multiple contexts. In fact, our digital
environments are typically full of unwanted and unused
data, which are not usable for the purposes other than the
initial one, because of the use of proprietary, “closed”, or
simply unknown and unrecognizable (by machines)
formats. However, value of this data is potentially
significant, when considering their use in many different
contexts. For example, the personal location data from
smart phones is typically used to calculate health related
information, such as distance walked or run, calories
burned, etc; on the other side, this data can be also used to
produce higher value data, for example, to calculate risks
for viral infections spread in different regions [2].

On the positive side, there exists a trend of increasing
openness of data, mostly through representational state
transfer (REST) web interfaces. Although this trend does
not contribute to unification of data structures, it does help
to have data at least easily accessible.

When referring to the term of “structured data”, we
assume that such data can be used by machines. Thus, we
assume that this data is based on standard dictionaries or
agreements which are explicitly and formally described
(with underlying ontology).

The main research question we want to address in the
work behind this paper is: how to integrate data from

multiple REST endpoints to build a complex data
structure, based on the formal models. The problem above
is defined in the specific circumstances. Namely,
according to the project requirements, the integration
needs to take place on the client side (in browser), based
on the previously defined mappings. The motivation for
such an approach is rapid and easy implementation of the
corresponding solution on any web page.

The specific requirements make this research problem
unique. To the best of our knowledge, there exists no
framework or package for implementing its solution.

The solution is assumingly based on the application
model, which is built in the implementation phase by the
developer/knowledge engineer. Main goal of the
application model is to establish formal relationships
between the concepts of main data model and schema
elements of the existing data sources and thus, to build the
integrated data model. This data model needs to be
managed from a single web widget. That widget is a
generic client, which can be easily embedded in any web
page. Client accesses the integration platform to get the
application model and then makes the requests to the
defined web services, performs integration and makes the
instantiated model available for any kind of user
manipulation.

In the remainder of this paper, first we present the data
aggregator client as a solution to the above problem. Then,
an application model is presented as the main scientific
contribution of the paper. Finally, a short case study of
using the client for searching multiple REST sources of
project funding data is presented.

II. DATA AGGREGATOR CLIENT

Data aggregator client is a lightweight HTML client
which interprets the application model to: 1) generate
HTML UI elements for interacting (searching, adding)
with data coming from more than one, different API
sources; 2) enable integration of data coming from
different sources, based on the mappings defined in app
model; 3) display integrated data in a way, described by
application model.

Data aggregator client can be embedded in any HTML
page, by simply including its JavaScript source.

Data aggregator client is a part of the data aggregator
platform, which also includes server-side architecture for
instantiating an app model. This instantiation involves
(see Figure 1, below):

1. definition of relevant APIs and their endpoints
(services);

2. definition of a formal data model (ontology)

Copyright 2018 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 278

3. definition of UI model, based on application model
schema

4. semi-automatic mapping, based on the pre-defined
formal data model (ontology);

Admin user is using data aggregator back end to

construct the application model. First, ontology
representing main data model is defined (URI). The
concepts are mapped to the UI model schema to
instantiate the layout of the application. Data sources are
defined, by indicating REST services endpoints and their
arguments. Based on the test arguments, the back end
reads data and builds corresponding RDF/RDFS models
which are then semi-automatically mapped to the concepts
of the main data model ontology.

The generic client is embedded in the web page which
is accessed by the visitor. Upon access, the client makes
the authenticated request to backend API, which returns
the application model. The model is delivered in the XML
format and it is a structured representation of the main

data schema, application (client UI) layout, as well as the
descriptions of the REST services which deliver actual
data. Finally, the model includes defined mappings
between the elements of the expected REST services
responses and main data model objects.

Based on the application model, the generic client
builds the user interface, which is then used by the web
page visitor to enter data (for example, search keywords).
Upon the user action, generic client makes the requests to
the REST services in the model and collects responses
which are then merged and integrated by using the main
data model. Finally the data is shown, according to the UI
model.

Overall architecture of the platform is illustrated on a
Figure 2, below.

At this moment, only app client widget development is

completed. It is functional and it is being used at the
existing website, as described in the case study below. For
the purpose of the case study, app.xml instantiation of the
application model schema is manually coded. The
development of data aggregator back-end is in progress.

A. Application model schema

Main classes of the application model schema are
Dataobject, Service and Objectmapping.

Dataobject represents a data entity that can be described
by basic (Dataproperty) or complex (Objectproperty)

Figure 3. Workflow for instantiating client app model and running app

Figure 1. Workflow for instantiating client app model and running app

279

properties. In the backend, Dataobject is represented by
the individual concept of the existing ontology, while its
properties are represented by the concept’s object and data
properties, as defined in RDF/RDFS/OWL file with a
given URI.

Service object is a representation of the REST API
endpoints. Each service can be invoked with a modelled
set of parameters (Parameter).

Mapping between the output of the REST API call and
existing data object is represented by Objectmapping
element, which establishes relation between a given data
object and element of the JSON or XML structure,
returned by the REST API call. That element is defined by
XPath expression in Objectmapping element.

1) User interface model schema
Main element of the user interface model schema is

user interface, represented by Ui object. One client
application has one Ui object and it is only a placeholder
for its parts. Main constitutive parts of the client

application or Ui object are data UI components,
represented by Datauicomponent objects. Those objects
are implemented at the user interface as individual tabs.

Each of the components uses one or more services and
this relationship is established by Usecase object. One
client application can have multiple use cases and each
Usecase object defines services which are used in it.

Tabs show one or more data panels of different types,
namely a form (represented by Dataform and child
Dataformelement schema elements), data list view
(represented by Datalist and child Datalistitem elements)
and individual data view (represented by Dataview and its
child Dataviewsection and Dataviewitem elements). Each
of the items in the data panels (namely, Dataformelement,
Datalistitem and Dataviewitem) can be bound to the
existing data properties, as defined in the main data
model.

Figure 3 below shows detailed view to application
model schema.

III. CASE STUDY IMPLEMENTATION

EURAXESS - Researchers in Motion is a unique pan-
European initiative delivering information and support

services to professional researchers. Backed by the
European Union and its Member States, it supports
researcher mobility and career development, while

Figure 4. Workflow for instantiating client app model and running app

280

enhancing scientific collaboration between Europe and the
world.

EURAXESS portal is a website which publishes
information and tools for mobile (incoming and outgoing)
researchers or resident researchers who are interested in
information and opportunities for career development. The
core online service provided by the portal is database of
jobs and grants for researchers and scientists, published by
thousands of R&D organizations in Europe.

The EURAXESS portal is Drupal based platform,
hosted by Amazon web services. It has national entry
points, named EURAXESS national portals. Each
EURAXESS national portal publishes content which is
managed by the national EURAXESS offices. This
content is static HTML. The problem is that often,
national portals have a need to publish structured
information from a database or from online service hosted
elsewhere. Given very strict security and performance
requirements by the web platforms maintained by
European Commission, it is not possible to implement a
back-end tool which would facilitate such integration.
This was exactly the motivation for developing data
aggregator platform, which can be hosted anywhere but
integrate, merge and deliver relevant data to application
client widget, easily embedded in existing web page.

A. Widget for searching data on EU-funded projects

The specific case of implementation involved integrated
search of data about EU-funded projects, coming from
two different sources:

 Datasets with information about FP5, FP6, FP7
and Horizon 2020 projects, funded by the
European Commission. Datasets are imported in
a database which data was then exposed by the
developed API (endpoint:
http://euraxess.eventiotic.com/euprojects/api/sear
chProjects)

 Data about research projects, published by
OpenAIRE API (endpoint:
http://api.openaire.eu/search/projects)

From the user point of view, the widget is used to
search existing data on EU-funded projects, by keyword.
Two consecutive REST API requests are made with a
given keyword to the service endpoints above. Data is
collected and merged, by using the approach described
above.

IV. CONCLUSION

The paper presents the unique solution to integration of
data from REST sources, implemented at the client side.
Client-side implementation makes it easy to use on web,
even in cases where administration access is not available.
The solution is illustrated by a case study of integrating
data from two different sources of project funding
information.

Future research and development involves development
of the backend platform framework and its components
for semantic matching.

ACKNOWLEDGMENT

Part of the research behind this paper was funded by the
European Commission, under project H2020-SEAC-2014-
1.665934, Making European research careers more
attractive by developing new services and enhancing the
current services of the EURAXESS network –
EURAXESS TOPIII.

Part of the research was funded by the Ministry of
education, science and technological development, under
project no III41017.

REFERENCES

[1] Jacobson, R. (2013) 2.5 quintillion bytes of data created every
day. How does CPG & Retail manage it? IBM Consumer Products
Industry Blog. https://www.ibm.com/blogs/insights-on-
business/consumer-products/2-5-quintillion-bytes-of-data-created-
every-day-how-does-cpg-retail-manage-it/

[2] Chunara, R., Smolinski, M.S., Brownstein, J.S. (2013) Why We
Need Crowdsourced Data in Infectious Disease Surveillance.
Current Infectious Disease Reports. 15(4) 316-319

281

