
Software Framework for REST Client Android
Applications: Canvas LMS Case Study

Milan Pandurov, Srđan Milaković, Nikola Lukić, Goran Savić, Milan Segedinac, Zora Konjović
Faculty of Technical Sciences, University of Novi Sad

milanpandurov@gmail.com, srki@outlook.com, luknik94@gmail.com, {savicg, milansegedinac, ftn_zora}@uns.ac.rs

Abstract – The paper presents a software framework for
developing Android applications. The framework has been
designed for mobile applications which mainly operate as a
thin client for accessing functionalities provided by RESTful
web services. The framework contains four layers. The first
layer provides network communication with RESTful
services. The second one is responsible for the storage and
processing of the data at the client side, while the third layer
handles interaction with a user. The fourth layer serves as a
mediator between data storage and user interface. The
proposed framework has been verified on the case study of
developing mobile Android application for Canvas LMS.
The application communicates with REST API of Canvas
LMS enabling users to use common Canvas features on a
mobile device.

INTRODUCTION
Modern software applications must deal with increasing

diversity of software and hardware platforms, as well as
with issues related to users’ mobility. This has led us to
current trends in developing internet-based applications
where a server provides core functionalities that are
accessed from (usually “thin”) client applications. A
traditional approach for accessing internet-based
applications included internet browser which was installed
on a personal computer. Wider use of mobile devices has
set a demand to access server functionalities using native
mobile applications. Such applications have been
specifically written for an operating system executing on a
mobile device. Currently, the most popular applications of
this type are those written for Android and iOS operating
systems. When it comes to internet-based applications,
beside platform-dependent differences, all client
applications access the same core functionalities which are
set on server computers. Client applications vary only in
the manner in which they communicate with the server
and handle user interaction. For this reason, there have
been developed platform agnostic mechanisms within
server-side applications that can be accessed from any
client platform.

Web services [1] are the standard solution for
cooperation between various client platforms. Lately, a
particularly popular implementation of web services is
RESTful [2], which is based on REST software
architecture [3].

RESTful services provide client with a uniform access
to system resources. In REST terminology, a resource
includes data or functionalities, where each resource is
identified by its uniform resource identified (URI). A
client interacts with RESTful services through very
limited set of operations with predefined semantics.

Typically supported operations are create (PUT), read
(GET), update (POST) and delete (DELETE). Operation
GET gets the current state of the resource. The purpose of
the POST operation is to change resource’s state.
Operation PUT creates a resource, while DELETE
operation removes it. Resources itself are separated from
their representation format. It means that the same
resource may be transferred in different formats, such as
HTML, XML, JSON, etc. Since REST architecture
proposes a stateless protocol for communication between
client and server, RESTful services are designed to use
HTTP protocol.

This paper presents the architecture of a software
framework for developing client Android applications that
access server functionalities which are exposed as
RESTful web services. Since this type of Android
applications is very common currently, the paper gives a
general development framework neutral to any specific
domain or application functionalities.

The proposed framework has been verified on
developing an Android application for Canvas LMS [4].
The application access RESTful web services of Canvas
LMS enabling students to access common information
about courses they are enrolled.

RELATED WORK
Our paper is focused on client applications that meet

following requirements:
 They receive/send data through network from/to

RESTful web services contained within the server-
side application

 They have its local data storage that cache data
received from server

 They implement their own UI logic
Dobjanschi in [5] proposed software patterns for

communication with RESTful services from Android
application. The proposed patterns send/receive data using
Android Service API or Android Content Provided API.
The web page [6] contains a source code of sample
implementation of this pattern.

Most solutions for communication between Android
application and RESTful services are based on
Dobjanschi’s work. His solution is primarily focused on
the communication with services, not considering other
components in the Android application that should
process, store and display data received from the network.

When it comes to data management in a client
application, besides data fetching, the application must
store some of the received data locally on the mobile
device. This local cache may speed up the application and

ICIST 2015 5th International Conference on Information Society and Technology

Page 32 of 522

optimize network traffic, given that application fetches
data only when necessary. This implies data
synchronization between client and server. The paper [7]
proposes different synchronization patterns which can be
used for this purpose. Next chapter describes
synchronization methods used in the framework proposed
in this paper.

UI layer of Android application must provide various
visual controls for user interaction, while being at the
same time flexible enough to combine these controls on
the device display dynamically. A standard approach to
provide this feature is by using Android Fragments [8]. A
fragment [9] is a reusable UI component with UI controls
and its own UI logic. It is displayed within an Android
Activity element. A single fragment may contain its
subfragments, while an activity may be composed of
multiple fragments. A fragment can be dynamically
added, removed or replaced within an activity.

Aforementioned solutions give proposals for individual
requirements of REST-based Android applications. This
paper’s aim is to propose a comprehensive framework
which covers all layers of Android applications of this
type. The framework proposed in this paper implements
common functionalities for each layer, while covering the
connections between layers, too. The next chapter
proposes the framework architecture.

PATTERN COMPONENTS
For many years, de facto standard for developing

modular applications is a Model-View-Controller (MVC)
software pattern. This pattern distinguishes three general
application layers: data representation layer (Model), user
interaction layer (View), and a layer that links data with
displaying logic (Controller).

The framework proposed in this paper is also MVC-
based. Figure 1 shows the general architecture of the
framework and its place within REST-based Android
application. An android application accesses server’s
REST API by executing REST methods. The server sends
its response formatted as a JSON object. Android
application is set on a mobile device and organized in
conformance with our framework, which is MVC-based.

Figure 1. Framework global architecture

For each component in the framework, further text
describes its functionalities and subcomponents.
As mentioned, Model component provides data
management. Figure 2 shows its subcomponents. <Default

text>

Parser

<<access>>

<<use>>

<<use>>

<<access>>

<<use>>

<<instantiate>>

RestClient

GetRestClient

PutRestClient

PostRestClient DeleteRestClient

DataAccess RestDataAccess

DTO

LocalStorage

Figure 2. Model component

DataAccess is a proxy for data management. Other

global components (like Controller) communicate with
DataAccess to fetch/send data. Data is fetched from the
application’s local storage. For storing data on the mobile
device, the framework uses LocalStorage component.

The in-memory representation of the data is given
within DTO (Data Access Object) component. This
component contains an object-model of the application’s
data, where each domain entity should be represented with
an appropriate class holding entity’s data.

When the application starts there is no application’s
data on the mobile device. They should be obtained from
the server through its REST API. RestDataAccess
component provides this functionality. The network
communication with the server is performed within
RestClient component. For the communication with REST
services, the framework uses built-in Android classes that
execute REST methods through HTTP protocol. With
regard to the differences between REST methods, we
propose subcomponents for executing GET, PUT, POST
and UPDATE REST methods, respectively.

During the communication with the server, data will be
passed in JSON format. Parser component is responsible
for data conversion from JSON format to DTO in-memory
representation, which is used by application local storage.

UI layer rely on built-in Android UI components.
Figure 3 shows this layer architecture.

ICIST 2015 5th International Conference on Information Society and Technology

Page 33 of 522

<<include>>

<Default
text>

Activity

Fragment

DataAdapter

<<include>>

<<use>>
UIFragment

Figure 3. View component

The framework proposes just a single Activity element

within a whole application. This Activity will contain
different Fragment elements that provide interaction with
a user. Fragments are represented by UIFragment
component whose implementation relies on built-in
Android Fragment class. UIFragment may contain child
UIFragment elements. Fragment is populated with content
using DataAdapter component. For each UI control,
DataAdapter component will contain a separate class that
contains specific logic for setting control’s content. When
a user navigates within the application, only fragments
contained in the Activity element will be changed, while
the Activity remains the same. Fragment management is
responsibility of Controller layer, which is described
below.

Controller layer manages UI navigation and links UI
layer with data defined within Model layer. The
architecture of Controller layer is shown in Figure 4.

<Default
text>

DataAccess : 2

MessageDispatcher

ActionMessage

UIFragment : 2

<<use>>

<<instantiate>>

<<access>>

<<instantiate>><<access>>

<<use>>

<<instantiate>>

ListHandler

 Figure 4. Controller component

UIFragment, as a part of user interface, reacts to the

specific UI event (e.g. button-click) and generates a
message represented by ActionMessage component. The
message holds information about UI event. UIFragment
passes the message to MessageDispatcher, which
instantiates a new UIFragment, if necessary. This new
fragment can replace current fragment in the Activity.

UIFragment displays data received from Controller layer.
Controller loads data from Model layer using ListHandler
component which is a bridge between Controller and
DataAccess component.

AUTHENTICATION
Concerning the fact that most of the REST-based server

applications support user management, in addition to
mention components, the framework introduces a special-
purpose component providing user authentication. Since
they are typically based upon the stateless HTTP protocol,
the authorization in most of the REST-based server
applications is achieved by using access tokens. An access
token is a random server generated opaque string assigned
to each authenticated user when logging in to the system.
The user is required to introduce itself to the server by
sending the access token along with every request. The
main advantage of such an approach is the fact that clients
never send their passwords (not even encrypted) to the
server, but only random strings. In addition to that, it is
possible to restrict the duration of an access token and to
deactivate the access token manually, so to prevent
possible abuses.

User authentication and access tokens generation in the
proposed component is based upon OAuth2 protocol.
Such an approach prevents client application to abuse the
data entered when logging into the system, since entering
usernames and passwords is delegated to the server, while
client application manages only access tokens. OAuth2
protocol requires each client application to have its ID and
secret key, obtained when registering the application to
the system. Figure 5 shows the sequence of activities
performed when authenticating a user in a system that
uses OAuth2 protocol.

Figure 5. OAuth2 authentication

The first step in the authentication process consists of

redirecting the user to the server application’s page where
he or she enters username and password. If the entered
data are correct, the server application assigns temporary
code to the user. After that, the client application sends the
temporary code and the application’s secret key to server

ICIST 2015 5th International Conference on Information Society and Technology

Page 34 of 522

application. The response to this request contains an
access token that is being sent along with every other
request.

This authentication mechanism is suitable when client
is a Web application so that the secret key needs not be
persisted at the client’s local machine. In cases when
client is a mobile or a desktop application there is a risk of
stealing secret keys by decompiling the executable code of
the application (if the secret key is hardcoded into the
application or if the application keeps the secret key in
working memory).

To avoid this problem, a new component is introduced:
a Web application that mediates in the process of
assigning the access tokens, namely Authentication server.
The sequence of authentication activities in such a system
is shown in figure 6.
SequenceDiagram_1

Call API with token

Response

Token

Exhange keys

response

Redirect user

User Application Auth Server REST Server

User login

Call API with token

Response

Token

Exhange keys

response

Redirect user

User login

Figure 6. OAuth2 authentication with the Authentication
server

In the proposed approach, instead of letting client

application itself to keep the temporary code, the
temporary code is being kept by the Authentication server,
which holds the secret key as well. The Authentication
server’s task is to complete the authentication process and
to send the access token to the client application. This
mechanism denies client application ever to get hold of
the secret key and reduces the risk to stealing the user’s
access token. Even if this would happen, the overall
system integrity would not be threatened.

 CANVAS ANDROID CLIENT
Canvas LMS [4] is an open source cloud-native

learning management system developed by Instructure.
This LMS provides a wide range of e-learning
functionalities based upon web 2.0 technologies, such as
e-learning tools, tools that support collaborative work and
system administration tools [10]. Canvas LMS itself is a
Ruby on Rails application, but it can be easily extended
with third party tools regardless of the particular language

in which the tools have been developed, since it supports
IMS LTI standard.

Instructure offers a mobile application for Canvas [11].
Even though Canvas LMS is an open source application,
Canvas for Android is not open source and it can be used
only in combination with the Instructure hosted instances
of Canvas LMS. Therefore, this paper proposes an open
source Android application for Canvas LMS (Canvas
Android Client - CAC) that can be used in educational
settings with self-hosted instances of Canvas LMS. CAC
is based upon the framework for developing android
REST clients proposed in the previous parts of this paper.

Canvas LMS has an open REST API through which it
exposes some of its operations as external services. The
operations that are exposed via the API include, among
others, mechanisms for accessing assignments, course
information, registration, roles, users and discussion
topics. Full specification of Canvas API can be accessed
at [12]. CAC is a thin REST client, and its entire
functionality comes down to calling the services from
Canvas REST API and interpreting the results. Since
calling the REST services requires the client to be
authenticated, the authentication mechanism is described
in details in the Canvas authentication section that
immediately follows. The set of functionalities that are
supported by the current version of CAC is described in
the CAC functionalities section.

The current version of CAC supports following
functionalities:

 Browsing courses
 Browsing announcements
 Browsing assignments

All the functionalities require user to be authenticated.
After the user has successfully logged in to the system,
she or he can choose the action from the menu shown in
figure 7.

Figure 7. CAC main menu

When a user chooses the item Courses from the main
menu, the list of all courses is being presented, as shown
in Figure 8. Each item in this list has course name and the
information that indicates if the course is still available.

When user chooses one item from the list, a view with
the details about the selected course is being shown, as in
the figure 9. In addition to the general information on the
course, this view contains a list of announcements and a
list of assignments from the selected course.

ICIST 2015 5th International Conference on Information Society and Technology

Page 35 of 522

Figure 8. Courses

Figure 9. Course details

When the user chooses the item Announcements from

the main menu (figure 7), the list of all announcements
from all the courses that the user is enrolled is being
presented, as shown in figure 10. Each item in this list
contains the avatar of the user who has posted the
announcement, course name, as well as the announce title
and date the announcement has been posted.

Figure 10. Announcements

When an item in the list is selected, the general
information along with the content of the announcement is
shown, as presented in figure 11.

Figure 11. Announcement details

When a user chooses the item assignments from the

main menu (figure 7), the list of all current assignments
from all the courses that the user is enrolled part in is
being shown, as presented in figure 12. Each item in this
list contains course title, assignment name as well as the
date upon which the assignment is available.

Figure 12. Assignments

When one item from the assignments list is being

selected, a view with the assignment details containing
assignment general information along with the content of
the assignment is being presented, as shown in figure 13.

Figure 13. Assignment details

CONCLUSION
A new software framework for developing REST-based

Android applications has been proposed. The framework
can be used for any thin-client Android application that
access functionalities exposed as REST web services. For
this type of Android applications, the framework proposes
application architecture, as well as particular
implementation of common functionalities. The
framework generally follows MVC pattern, organizing
programming code into three layers where each layer
provides a single point for communication with other
layers. Concerning the fact that most of the REST-based
server applications support user management, in addition
to mention components, the framework introduces a
special-purpose component providing user authentication.

ICIST 2015 5th International Conference on Information Society and Technology

Page 36 of 522

The framework has been evaluated on the Android
application for Canvas LMS. In contrast to the official
Canvas for Android application developed by Instructure,
which can be used only in combination with Instructure-
hosted Canvas instances, the application proposed in this
paper is open-source and can be used with self-hosted
Canvas instances. Current version of the application
provides access to common Canvas features within mobile
environment.

The future plans for the proposed application include:
 Start using the application at the Faculty of

Technical Sciences at University of Novi Sad
 Extending current set of the application’s

functionalities with new features
 Integrating the application with other educational

services at University of Novi Sad

ACKNOWLEDGMENT
Results presented in this paper are part of the research

conducted within the Grant No. III-47003, Ministry of
Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES
[1] W3C (2004), Web Services Glossary". Retrieved 24.11.2014
[2] L. Richardson, S. Ruby (2007), RESTful web service, O'Reilly

Media, ISBN 978-0-596-52926-0

[3] R. Fielding, R. Taylor (2002), Principled Design of the Modern
Web Architecture (PDF), ACM Transactions on Internet
Technology (TOIT) (New York: Association for Computing
Machinery) 2 (2): 115–150, doi:10.1145/514183.514185, ISSN
1533-5399

[4] Instructure Inc. (2012), Canvas LMS, http://www.instructure.com,
Retrieved: 24.11.2014.

[5] V. Dobjanschi (2010), Developing Android REST Client
Applications, https://dl.google.com/googleio/2010/android-
developing-RESTful-android-apps.pdf, Retrieved 24.11.2014.

[6] CodeProject (2012), Sample Implementation of Virgil
Dobjanschi's Rest pattern, http://www.codeproject.com/Articles/
429997/Sample-Implementation-of-Virgil-Dobjanschis-Rest-p.
Retrieved 24.11.2014.

[7] Z. McCormick and D. C. Schmidt (2012), Data Synchronization
Patterns in Mobile Application Design, Proceedings of the Pattern
Languages of Programs (PLoP) 2012 conference, Tucson,
Arizona.

[8] J. Wilson (2013), Creating Dynamic UI with Android Fragments,
Packt publishing, ISBN: 9781783283095

[9] Android Developers (2014), Fragments, http://developer.android.
com/ guide/components/fragments.html. Retrieved 24.11.2014.

[10] N. Nikolić, G. Savić, M. Segedinac and Z. Konjović (2014),
Migration from Sakai to Canvas, Proceedings of the 4th
International Conference on Information Society and Technology
(ICIST 2014), Kopaonik, Serbia, 366 – 370, ISBN: 978-86-85525-
14-8

[11] Instructure Inc (2014), Canvas for Android,
https://play.google.com/store/apps/details?id=com.instructure.can
droid, Retrieved: 26.11.2014.

[12] Instructure Inc. (2012), Canvas LMS API Documentation,
https://canvas.instructure.com/doc/api/, Retrieved: 26.11.2014.

ICIST 2015 5th International Conference on Information Society and Technology

Page 37 of 522

	VOLUME 1
	Software Framework for REST Client Android Applications: Canvas LMS Case Study

