

 JetBrains MPS and KernelF as a basis for

creation of Domain Specific Languages for

Blockchain in P2P energy trading

Marija Borisov*, Goran Sladić**, Gordana Milosavljević**

* Engineering Software Lab, Belgrade, Serbia

** University of Novi Sad, Faculty of Technical Sciences, Serbia

marija.borisov@gmail.com, {sladicg, grist}@uns.ac.rs

Abstract—Innovations in blockchain technologies are

expected to have a significant effect on many industry fields.

In this paper, we explore the position of Domain Specific

Languages (DSLs) in today's world, especially in emerging

P2P energy trading powered by blockchain. Our motivation

to research these areas is the potential of P2P trading in

blockchain to revolutionize the energy sector. Existing

programming languages cannot solve all the issues when

working with smart contracts in energy blockchain. We

elaborate usage of JetBrains MPS and KernelF as a core for

developing a mini-DSL for P2P energy trading. We put

forward the idea that DSLs based on KernelF can overcome

shortcomings in employing existing programming languages

in the given domain.

I. INTRODUCTION

Energy sustainability is among the most critical issues
of the modern age. Distributed energy enabled with
blockchain technology is part of the solution which can
contribute to the broader inclusion of renewable energy
sources into smart grids.

Blockchain in the energy sector has been recognized as
a promising but disruptive technology. Lack of regulations
not only in the blockchain field but also in the emerging
smart grid systems may pose a problem for the global
acceptance of blockchain in the energy sector.
Furthermore, the leading energy companies are less
willing to participate in innovative approaches than the
small and medium ones.

Blockchain enables secure, transparent, tamper-proof
distributed systems that eliminate the need for centralized,
third-party identity [1]. This distributed ledger technology
uses consensus algorithms to achieve validation and
agreement. The most prominent consensus algorithms are
Proof-of-Work (PoW), Proof-of-Stake (PoS), Proof-of-
Authority (PoAu), and Practical Byzantine Fault
Tolerance (PBFT). As blockchain aims to be green
technology, many blockchain platforms move toward
more sustainable consensus algorithms such as PoS.
Ethereum1 is an example of a blockchain in which the PoS
algorithm will remove PoW, and this process has already
started.

1 https://ethereum.org/en/upgrades/merge/

P2P energy trading presents the decentralized form of
the energy market. In many papers that describe P2P
trading, some kind of distribution system operator (DSO),
an operator or manager of the grid, is still present, but P2P
trading can revolutionize the existing structure of power
markets. Blockchain-enabled systems have a huge part in
this process, as they give the infrastructure and the means
to achieve these goals. Direct energy trading between
prosumers and consumers can provide more power to
involved parties to control their energy production and
demand [1]. As the system operators such as DSOs now
manage the network and operations in it, work on
reducing their roles in the smart grids is undergoing. Good
results are achieved in small microgrids and various pilot
projects worldwide, such as Brooklyn Microgrid [1].

Moreover, local and community microgrids are
expected to be essential in future energy systems. Because
the energy in these systems is produced locally, this can
cause a reduction in distribution and transmission losses.
Possible problems may impose many participants, the
inclusion of different energy sources, and operations of
the grid such as the continuous balance of demand and
supply [1].

In energy trading, the concept of smart contracts is
crucial. This concept is linked to Ethereum blockchains
but can be transferred to Hyperledger also. Solidity2 on
Ethereum is a popular object-oriented programming
language for writing smart contracts. Every smart contract
has its unique address. Because they automate the
execution of an agreement between the actors, including
no intermediary, they present a very effective solution for
P2P energy trading. This paradigm can also create new
business models [3]. Nevertheless, the risks and
opportunities of using smart contracts extensively must be
studied in detail. Although Solidity matured over time,
there are still some vulnerabilities in Solidity smart
contracts, such as calls to unknown, type conversion,
reentrancy, loss of ether, costly loops and gas limit,
overflow, and underflow, etc. [11].

In this paper, we propose the usage of JetBrains MPS
and KernelF as a core for developing a mini-DSL for P2P
energy trading. We put forward the idea that DSLs based

2 https://docs.soliditylang.org/en/v0.8.14/

on KernelF can overcome shortcomings in employing
existing programming languages in the given domain.

This paper is organized as follows. Section 2 reviews
related work. Section 3 presents the main characteristics
of a language workbench JetBrains MPS and its KernelF
language. Mini-DSL for P2P energy trading is shortly
described in Section 4. Section 5 concludes the paper and
outlines future work.

II. RELATED WORK

Smart contracts, in a nutshell, present programming
code saved on a blockchain. A smart contract is a
computer protocol that is created to verify and execute a
contract on the blockchain, allowing transactions without
third parties. This should ensure that they work correctly,
executing the trading agreement each time the conditions
are met and creating immutable records of the transaction
[2]. A number of important use cases of smart contracts in
the energy field are given in [1].

In today's world, in many cases, it is still impossible to
enable trust between all actors to determine the price,
balance the network, etc., without some third party. In [2]
is given a solution that uses Ethereum blockchain and the
concept of limited DSO to provide security and integrity
of trading records, prevention of double sales, and
automatic and autonomous network operations.

Dynamic pricing models are usually envisioned for
smart grids. In [2], an adaptive and adjustable dynamic
pricing scheme is proposed to balance demand and supply
among prosumers and consumers. If total supply
overpowers total demand, the price is reduced to the
minimum. Then, the price is gradually increased until
demand is much greater than supply.

In [3] is presented a state diagram for representation of
the trading system. Interestingly, this property of the
proposed trading system is very suitable to be modeled
with JetBrains MPS state machine concept, which will be
presented in this paper. The proposed DSO fully controls
the created smart contract. From a technical point of view,
Etherium's identity-based messaging system called
Whisper is leveraged as a solution, in particular situations,
for not creating traffic and skipping mining into a block.

Along with use cases in various fields, the potential of
using specific DSLs in the energy sector enabled with
blockchain has just started to be realized as a great way of
solving many problems originating from existing
programming languages application to smart contract
development.

In [7] is given a short description of the DSL based on
KernelF for smart contracts specification. The proposed
DSLs effectively solve many of the issues known when
working in Solidity.

The detailed description and specification of the
KernelF language are elaborated in [8]. It should be noted
that KernelF changed its reference and added
constructions, so these papers are not quite up to date.

III. DSLS, JETBRAINS MPS, KERNELF

DSL is a language optimized for a specific problem
domain [4]. It has suitable syntax to describe the
abstractions clearly and concisely. External DSLs are new
languages built from scratch with their own syntax.
Internal DSLs are embedded into an existing host

language and use its syntax and development
environment. Simpler and smaller DSL, for example, the
one used by a single application, can be named mini-
language or mini-DSL.

The line that divides DSL and GPL (General-Purpose
Language) is sometimes blurred, such as in cases of Perl,
PostScript, etc. It can be leveraged that domain-specificity
is a gradual term. There are no clear yes or no answers in
many cases. It is important to note that Solidity has many
features of GPL, although it is used for smart contract
creation in Ethereum.

The drawbacks of using a DSL are its potentially
complex development and a small community of users,
which can make new DSL development risky from an
economic and business point of view [6]. Also, DSL often
sacrifices flexibility to enable productivity and
consistency in a given domain.

DSL's development can be optimized, and risks
minimized using language workbenches such as JetBrains
MPS3 (Meta Programming System). JetBrains MPS is an
open-source platform for the rapid creation of textual
DSLs. DSLs are equipped with custom editors enabling
code completion, system checks, static code analysis,
debugging, and testing. DSL can be developed from the
start as external or embedded in an existing language
supported by MPS as internal DSL. It is possible to
include non-textual notations, for example, mathematical
formulas, tables, and graphics, in both types of DSLs.

mbeddr consists of extensible languages equipped with
an IDE (Integrated Development Environment). It is
primarily intended for embedded software engineering
based on a variant of C programming language developed
on MPS. It supports implementation, testing, verification,
and process aspects. It integrates with command-line build
tools, integration servers, and file-based version control
systems. Its state machine extension is used in this paper
for contract specification in P2P trading. State machine
extension contains events based on KernelF expression
language, variables, states, and transitions with guards.

KernelF is a functional language created on top of MPS
which supports "funclarative programming" - a mix of
functional and declarative programming. KernelF is
designed to be easily used as a core of DSLs and, as such,
extensible and embeddable [7]. It consists of several MPS
languages that can be used independently in a newly
created DSL [7]. Besides its use in different fields such as
security analysis, insurance, and bookkeeping, it has
started to be used for smart contracts specification. The
following paragraphs provide an overview of the
fundamental principles of the KernelF.

KernelF is statically typed. A handy design of KernelF
regarding its usage for smart contracts is that all
expressions are effect-free. Values and collections (lists,
sets, maps) are immutable. Structures like boxes and state
machines enable mutability when it is needed. KernelF
does not have loops, just conditionals. It also does not
support generics but alt expression to work with a range of
numbers. "Attempt" is used for error handling.

Enumerations and records are supported. There are
effect flags just for reading and for reading and modifying

3 https://www.jetbrains.com/mps/learn/

Listing 1. Sample of core functions for P2P trading

that can be added to the functions. Transactions are also
supported.

Interpreter, code generator, read-eval-print-loop, and
debugger are present in KernelF. Creating tests that use an
interpreter is very useful for checking all the values and
correctness of the functions and variables in state
machines, and records, used in KernelF.

IV. MINI DSL LANGUAGE FOR ENERGY TRADING

By examining the existing solutions for smart contracts
that run on the blockchain [10], we can conclude that used
GPLs and existing DSLs do not have proper support for
the patterns that exist in smart contracts for the energy
sector. The architecture of smart contracts is well studied,
and main features are identified, which can help build
appropriate DSLs. Although the blockchain guarantees the
execution of a smart contract, once the conditions are met,
the smart contract must be correctly implemented.
KernelF is a good choice as a core language for DSL
creation because it is functional, supports transactions, and
its code can be easily verified. Moreover, KernelF
provides low-level language constructs, making creating
DSLs less challenging. Smart Contract can be viewed as a
state machine, which is supported as mbedder extension
[9]. Although a person without programming experience
could find some difficulties in using DSLs to build smart
contracts that execute energy trading logic, domain
experts can easily use DSLs.

In Figure 1, the interconnections of the main aspects
discussed are depicted. The smart grid is enabled with a
blockchain platform on which smart contracts are
executed. Created DSLs are implemented and deployed as
smart contracts in the Ethereum or Hyperledger
blockchain.

Based on the findings from the literature survey,
especially prototypical implementations explained in [9],
this paper presents a mini-DSL for energy trading on the
blockchain. It is developed in JetBrains MPS and uses
KernelF as a core language. This DSL implements
Offers, Sales, Accounts, Bids, and Consumers and
Prosumers as records. Lists of consumers and prosumers
are created, so these entities are registered in the system.
Functions for checking if the entity is a consumer or
prosumer are given (Listing 1). Also, lists of offers and
sales are created. Several important system functions are
given, which can also find their place in the state machine
for the contract specification. The domain expert can
easily find the first prosumer, all offers by the specified
prosumer, and all sales made by the consumer. Energy
offer can be sold if it is not sold before that moment and is
not expired. A function for a simple buying process is also
implemented.

The state machine for the TradingEnergy contract
initially has four states: bids, finishedBids, toSell
and finishedTrading. The decision if the energy offer
is going to be sold is changed in comparison to the one
present in [9] because the given voting system is not
suitable for energy trading.

Instead of the voting system, the concept of biding is
introduced. First, consumers can give their bids on offers,
and all bids are gathered. If there is at least one bid for
each offer or the rest of the offers expired, the state is
transferred from bids to finishedBids (Listing 2). On
the other hand, if there are no bids and all offers expired,
the state is changed to finishedTranding.

In the finishedBids state, the user gives a list of
offers for which she wants to perform selling. The highest
bid for each selected offer is calculated, and that bid is set
to be accepted. Then the status transfers to the state
toSell

In toSell state, for each of the highest bids, the
function for buying is executed. Important aspects that

Figure 1. Mini-DSL for P2P trading architecture

have an effect if an offer is sold are: (1) its expiration time
and status, (2) if it is already sold or not, and (3) if the
highest bid is higher than the price specified in the energy
offer record. The domain expert could choose which
offers to sell. Offers are updated, and in the sales list are
added successfully performed trading processes.

When all offers are processed, the state machine
transfers to the finishedTrading state. It is also chosen
to allow users to perform bidding again (when they are in
the toSell state) if all offers are not sold or expired.
Then the user can go again through the states, create
additional bids, choose offers to buy, etc.

Besides the definition of language, a test suite is also
created to ensure the correct execution. It checks and
reports the values and changes in the system. Moreover,
the concept of inspectors is used, so the value of different
variables can be seen after the test suite's execution.
Several cases of usage and possible scenarios are given,
and an assert construct is used to verify the correct
execution.

Presented approach differs from the one in the
traditional blockchain development based on Solidity
language as follows:

• KernelF functional programming language is
used as a core enabling variables to be mostly
immutable (except in specific cases).

• Thanks to KernelF modularity and reusability,
we created mini-DSL dedicated only to P2P
energy trading. It resulted in a much simpler
language that non-professional programmers can
easily use.

• Data types are based on KernelF's data types,
with the possibility of introducing new ones if
needed.

• The State Machine concept is better suited for
smart contracts description. Solidity does not
have embedded support for state machines.

The code and test suits for the proposed mini-DSL can
be found in [12].

V. CONCLUSION

The paper discusses potential opportunities of using
MPS and KernelF as a base for creating DSL for energy
trading on a blockchain. A blockchain-based system for
P2P energy trading is described, alongside one of the
dynamic pricing models. JetBrains MPS and KernelF are
shortly described to present their full potential.

Usage of KernelF-based DSLs can reduce many low-
level mistakes. An example of a mini-language is given as
a proof-of-concept of how well KernelF-based DSLs go
with smart contracts.

In future work, we plan to create a complete DSL based
on the KernelF that will implement the algorithm
presented in [2]. We believe that we will be able to prove
that domain-specific languages can solve the problem of
the implementation of P2P energy trading on blockchain
efficiently and suitably. The envisioned solution will
follow the presented modeling and programming
approaches.

REFERENCES

[1] M. Andonia, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins,
P. McCallum, A. Peacock, Blockchain technology in the energy
sector: A systematic review of challenges and opportunities,
Renewable and Sustainable Energy Reviews Volume 100,
February 2019, Pages 143-174, online
https://www.sciencedirect.com/science/article/pii/S136403211830
7184.

[2] J. G. Song, E. S. Kang, H. W. Shin, J. W. Jang, A Smart Contract-
Based P2P Energy Trading System with Dynamic Pricing on
Ethereum Blockchain A Smart Contract-Based P2P Energy
Trading System with Dynamic Pricing on Ethereum Blockchain
Sensors 2021, 21(6), 1985; doi:https://doi.org/10.3390/s21061985

[3] M. J. Bürer, M. de Lapparent, V. Pallotta, M. Capezzali, M.
Carpita, Use cases for Blockchain in the Energy Industry
Opportunities of emerging business models and related risks,
Computers & Industrial Engineering, Volume 137, November
2019, 106002, doi: https://doi.org/10.1016/j.cie.2019.106002.

[4] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L.
Kats, E. Visser, G. Wachsmuth, DSL Engineering: Designing,
Implementing and Using Domain-Specific Languages, The PDF
book, 2010-2013 Markus Voelter, online http://dslbook.org

[5] mbeddr - engineering the future of embedded software,
http://mbeddr.com/

[6] I. Dejanović, Prilog metodama brzog razvoja softvera na bazi
proširivih jezičkih specifikacija, doktorska disertacija, FTN Novi
Sad 2011.

Listing 2. Bids state in State machine

[7] M. Voelter, The Design, Evolution, and Use of KernelF: An
Extensible and Embeddable Functional Language, Conference
paper, 2018, Part of the Lecture Notes in Computer Science book
series (LNCS, volume 10888), doi: 10.1007/978-3-319-93317-7_1

[8] M. Voelter, KernelF - an Embeddable and Extensible Functional
Language, online: http://voelter.de/data/pub/kernelf-reference.pdf

[9] M. Voelter, A Smart Contract Development Stack, online:
https://languageengineering.io/a-smart-contract-development-
stack-54533a3a503a

[10] A. Vacca, A. Di Sorbo, C. A.Visaggio, G. Canfora, A systematic
literature review of blockchain and smart contract development:
Techniques, tools, and open challenges , Journal of Systems and

Software, Volume 174, April 2021, 110891, doi:
https://doi.org/10.1016/j.jss.2020.110891.6

[11] A. L. Vivar, A. T. Castedo, A. L. S. Orozco, L. J. G. Villalba, An
Analysis of Smart Contracts Security Threats Alongside Existing
Solutions, Entropy 2020, 22(2), 203, doi:
https://doi.org/10.3390/e22020203.

[12] Mini-DSL for P2P energy trading source code,
https://github.com/Marija-
Borisov/DSL_smart_contract_energy_trading.

https://doi.org/10.3390/e22020203

