
287

Comparing Apache Solr and Elasticsearch search

servers

Nikola Luburić, Dragan Ivanović

University of Novi Sad, Faculty of Technical Sciences, Novi Sad

{nikola.luburic, dragan.ivanovic}@uns.ac.rs

Abstract – The paper presents a comparative analysis of the

leading two platforms for developing information retrieval

systems, Apache Solr and Elasticsearch. We briefly examine

other similar solutions, but focus on the previously

mentioned solutions as they provide greater functionality

with better performance. Our goal was to examine both

systems, including what they offer and how they are used.

We examine expert opinions on both systems, as well as

concrete use cases. After that we make a comparative

analysis focusing on many aspects, from usability to

working at scale. Finally we conclude which system works

better for which use case.

INTRODUCTION

With the development of information communication
technology more and more data is being written and stored
digitally. While collecting data has become less of a
problem, extracting useful information from massive
volumes of digital documents has become a large issue.
Relational databases, which were the previously leading
solutions for data storage, aren’t designed for such scale
and big data searches. In order to solve this issue, a search
engine needs to be built that efficiently stores, indexes and
searches data, so that the end user can quickly access the
information he\she needs.

Search engine indexing is a process in which data is
collected, parsed and stored in order to support fast and
accurate information retrieval [1]. Searching is a process
which includes query processing and information retrieval
based on the query. In order to be efficient, the process
uses previously formed indexes, so as to avoid scanning
every document in the corpus [2].

The previously mentioned functionality is essential for
solving the problem of efficient information retrieval, but
it is not sufficient in and of itself. The system needs to
provide an easy to use, intuitive user interface, with which
the user can utilize the search capabilities. The system
needs to take into account not only the user’s lack of
knowledge about the underlying structure of the data set,
but also his\her inability to form precise queries. Another
issue, related to indexing and searching in general, is that
the result set for a given query will be imprecise,
regardless of the quality of the query or the
implementation of the search system. The previously
mentioned issues can be solved by introducing a ranking
system, which will sort the results for a given query by
relevance.

As information retrieval has become a serious problem,
many solutions have arisen over the years trying to
address it. In this large set of solutions it is hard to choose
the right tool without previous experience.

This paper represents a comparative analysis of the
leading systems which solve the problems mentioned
above. The main motivation behind this paper is to
provide developers and members of the scientific
community an overview of the best solutions for
developing information retrieval systems, as well as give
insight for the best use cases of both solutions.

During our research we preformed manual inspection of
various solutions, and in the end isolated the two systems
Apache Solr [3] and Elasticsearch [4]. Solutions such as
Sphinx [5] and Xapian [6], Whoosh [7], while still in
active development, lack functionality compared to Solr
and Elasticsearch, while solutions such as Swish-E [8]
have stopped with development altogether.

In the following chapter we take a look at examples
where Solr and Elasticsearch have been utilized. In
chapter three we analyze both systems separately, while
chapter four focuses on the actual comparison. This
includes comparing the differences in design, offered
functionalities, ease of use and resource consumption.
Finally, we list the use cases for each system and make
predictions about the future of these two systems.

RELATED WORK

We examined several solutions which used Apache Solr
or Elasticsearch as their primary search engine. This
includes solutions produced by the scientific community
as well as several major organizations in the industry.

In [9] Atanassova and Bertin present an information
retrieval system for scientific papers using Solr. Their
approach provides a new way to access relevant
information in scientific papers by utilizing semantic
facets. Faceted search allows the user to visualize multiple
categories and to filter the results according to these
categories. In [10] Cuff and colleagues show a significant
improvement in the search function of their CATH system
when switching to Solr. CATH, which stands for class,
architecture, topology and homology, is a hierarchical
protein domain classification system.

Many organizations, such as Helprace, Jobreez, Apple,
Inc., AT&T, AOL, reddit, etc. use Solr for search and
faceted browsing [11]. Helprace uses Solr to power its
search engine and search suggestions, while Jobreez uses
Solr to search for jobs across 25 000 sources. AT&T uses
Solr to run local searches on its yellowpages, while AOL
utilizes Solr to power most of its channels.

In [12] Kononenko and colleagues describe the
significant improvement in performance they got with
their software analytics dashboard tool. This performance
boost is solely due to switching from a traditional
relational database to Elasticsearch. In [13] Thompson and

6th International Conference on Information Society and Technology ICIST 2016

288

colleagues describe their use of Elasticsearch in querying
graphical music documents. As far as organizations go,
notable users include CERN [14], GitHub [15], Stack
Exchange [16], Mozzila [17], etc. CERN uses
Elasticsearch to efficiently manage and search through the
various logs their devices produce. In 2013 GitHub started
using an Elasticsearch cluster which indexes code as it
gets pushed to the repository. This change marked an
increase in search result relevancy and general search
performance.

Lastly, there are organizations such as Foursquare
which use both Solr and Elasticsearch in their
infrastructure [18].

As both Solr and Elasticsearch are leading solutions for
information retrieval this paper aims to compare the two
systems. There are several articles written by experts in
the industry which compare these systems [19-22], and
this paper represents a synthesis of those articles, as well
as our own experience.

ANALYZED SYSTEMS

Before examining Solr and Elasticsearch we take a look
at Apache Lucene [23] which is the underlying
information retrieval library for both systems. Lucene is a
free, open source and independent library which has been
widely recognized for its utility in the implementation of
Internet search engines and local searching. The primary
function of this library is indexing and searching and
Lucene result ranking uses a combination of the Vector
Space model and the Boolean model of information
retrieval [24] to determine how relevant a given document
is to a user’s query.

Apache Solr is an open source enterprise search server
originally written in Java. It runs as a standalone full text
search server, using Lucene for indexing and search
functionalities. The system exposes a REST-like API and
most of the interaction between the user and Solr is done
over HTTP. By sending HTTP PUT and POST requests it
is possible to send documents for storage and indexing,
while the HTTP GET request allows the user to retrieve
results based on queries. The data sent and retrieved
supports several formats, including XML, JSON and
CSV. Not only does Solr store, index and search data, it
also offers additional features, including analytics of the
indexed data. Unlike Lucene which offers indexing and
searching, but lacks the needed infrastructure to be a
standalone application, Solr is a web application which
can be deployed on any servlet container. This allows Solr
to be used as a tool by people from various professions, as
was shown in the related works section.

Similarly to Solr, Elasticsearch is also an open source
enterprise search server written in Java. It provides a
distributed full text search engine, with a REST-like web
interface and uses JSON for the document format. It
provides scalable search, has near real-time search and
supports multitenancy. A significant feature of this system
is massive distribution and high availability. Elasticsearch
allows users to start small and scale horizontally as they
grow. These clusters are resilient and will detect new or
failed nodes and reorganize data automatically, to ensure
that it stays safe and accessible. More so than Solr, this
system offers real time advanced analytics of the indexed
data. Elasticsearch can be used as a standalone system by
people of various professions.

It should be noted that both systems evolved together
and learned from another, reaching a point where they are
very similar to one another.

COMPARATIVE ANALYSIS

Before diving into the comparative analysis it should be
noted that both solutions in their current versions (Solr at
5.3.1 and Elasticsearch at 1.7.2 at the time the comparison
took place) are similar systems, in the sense that they offer
near-equal functionalities and have similar performance. It
should also be noted that while some difference does
exist, both systems can be suitable solutions for most
common information retrieval needs. As both technologies
are mature and stable and have a strong community
behind them, most of the time the decision whether to use
one solution over the other will come down to preference
and the foreknowledge of the team.

The main difference between these solutions derives
from their cores which significantly differ from one
another. Looking at the distributions, Solr takes more
space on the hard drive. This is primarily owed to the fact
that the standard Solr distribution includes functionality,
other than the base, which may or may not be useful to the
end user, such as Map-Reduce, a testing framework, a
web application which represents a GUI monitoring tool,
etc. Unlike Solr, Elasticsearch’s core consists of only the
base code and documentation, which is why it needs one
third of the space that Solr needs. Fig. 1 shows the
composition of the web application archives of both
systems.

Figure 1. Solr and Elasticsearch .war composition1

Elasticsearch starts from the premise that the end user
will always need the minimum functionality that Lucene
offers and not much else. By configuring the system and
using additional tools like Logstash, Kibana and Marvel,
the user can expand the basic functionality to suit his
needs. While Solr also offers a wide variety of plugins, its
core includes modules which aren’t always necessary. A
problem that both systems have, but is more evident with
Elasticsearch, is the lack of a centralized orchestration
tool, for plugin and dependency management. If the user
wants to create an Elasticsearch cluster he must manually
install Elasticsearch and all the needed plugins on each
node.

The second difference can be found in the cluster
management subsystems of these two solutions. Solr relies
on Apache ZooKeeper [25] which is a mature and tested
technology, but more often than not offers little more than

1 Source: http://www.slideshare.net/arafalov/solr-vs-elasticsearch-case-

by-case

6th International Conference on Information Society and Technology ICIST 2016

289

the much simpler built-in cluster management subsystem
of Elasticsearch. ZooKeeper adds complexity to the
system, as it is a separate component that needs to be
managed. ZooKeeper also requires three nodes to form a
cluster, while Elasticsearch can form a cluster with only
one node.

Both Solr and Elasticsearch handle document
preprocessing in a similar fashion. Both systems have
configuration files in which analyzers, tokenizers and
filters are declared. The declared components are used
both during file and query preprocessing. Fig. 2 shows an
example document containing the preprocessing
configuration in Solr, while fig. 3 shows a similar
configuration for Elasticsearch.

Figure 2. Solr preprocessor configuration file

Figure 3. Elasticsearch preprocessor configuration file
Apart from the built-in preprocessing components, both

systems allow for creation and use of custom components.
It is even possible to move the preprocessing to an entirely
separate system, and this is where the two systems differ.
While Solr recommends a tight coupling between
preprocessing and indexing and searching, Elasticsearch
takes a more modular approach, and recommends a

separate system (e.g. Logstash) for preprocessing. This
approach increases the system complexity by introducing
another moving part, but avoids bottlenecks by allowing
each subsystem to scale separately.

In the context of document preprocessing it is also
worth noting how both systems handle language
recognition. Solr has this functionality built-in, while
Elasticsearch requires a plugin. Several good solutions
exist, and coupled with such a library, Elasticsearch
handles this issue as well as Solr.

Both Solr and Elasticsearch can index digital
documents such as PDF, MS Word document, etc. Once
again, this is part of Solr, while Elasticsearch uses an
external module. Both systems rely on Apache Tika for
this functionality [23].

Highlighting is another feature both systems handle
well, offering a high degree of flexibility in the
configuration of summary creation and management. Solr
handles this using the hl object [24]. By accessing the
object’s fields (e.g. hl.formatter, hl.snippets, etc.)
the highlighter can be configured. Elasticsearch
highlighter configuration is done by sending a
highlight object [25] with the query request. This
object contains most of the fields that Solar’s hl object
has. Fig. 4 shows an example of such an object. As the
image shows, it is possible to form a query for the
highlighter, making highlighting independent from
searching.

Figure 4. Highligh object in an Elasticsearch query request

Elasticsearch has a few advantages when compared to
Solr. The main advantage this system has comes from its
simplicity. Elasticsearch is easier to install, setup and use.
The REST-like services which work with JSON are not
only simple to use, but are more aligned with the current
trends in the industry that Web 2.0 has brought. This does
simplify things for software developers, but it should be

6th International Conference on Information Society and Technology ICIST 2016

290

noted that other industries use these systems as well. The
JSON-based query language that Elasticsearch uses is also
arguably simpler than the HTTP requests that need to be
formed in order to query Solr.

Another difference comes from the general direction
that both systems are moving towards. While Solr remains
specialized for document indexing and searching, the
Elasticsearch team puts significant efforts into improving
and expanding their data analytics subsystem. This might
very well be the most significant difference between these
two systems.

When analyzing performance we found that both
systems showed similar results on datasets of medium
size. Elasticsearch did, however, surpass Solr when testing
analytic queries, which was expected.

Finally, another key difference can be seen in the
metrics that both systems offer. While Solr does provide
key metrics, Elasticsearch (in its core, as well as by
utilizing plugins) offers significantly more metrics.

CONCLUSION

The paper examines two leading solutions for
information retrieval, Apache Solr and Elasticsearch, and
presents a side by side comparison of these two systems.
After manually inspecting both systems and researching
the papers and articles on the subject we conclude that
both systems are good choices when it comes to document
indexing and searching.

Over the years both solutions learned from one another
and significant improvements in both systems are partially
due to the competition. While Solr still seems to be the
more common solution for classic enterprise systems,
Elasticsearch’s simplicity, flexible design and modular
architecture make this system a great choice for both
prototyping and large, scalable information retrieval
solutions. Elasticsearch offers far better data analytics, and
when combined with Logstash and Kibana, the ELK stack
surpasses Solr in many areas, including preprocessing,
analytics and visualization.

Even though both teams continue to upgrade and
develop new features, the fact of the matter is that
Elasticsearch has a fresh, compact core, created after the
various drawbacks of Solr were noticed. Solr hasn’t stood
still and while many improvements were made it can be
concluded that Elasticsearch will in time surpass this
system. This coupled with the fact that Elasticsearch relies
on one man to approve or decline changes to the system,
while Solr requires that every new features goes through a
more rigid protocol of evaluation means that
Elasticsearch, as it stands, will have quicker and more
frequent updates.

The only real downside of Elasticsearch in its current
version is that it lacks a centralized tool for managing the
nodes of a cluster. This can easily lead to misconfiguration
in clusters with many nodes, as a separate installation of
the core Elasticsearch instance and all of its plugins is
needed every time a node is added to the cluster. Without
version control, installing updates for parts of the system
present another problem.

While Elasticsearch does seem to be the go to solution
for use cases where serious analytics are needed this does
not mean Solr should be abandoned. The ELK stack might
be a slightly more suitable solution, but reworking a

system which already utilizes Solr will more often than
not be pointless. Likewise, teams who have experience
with Solr shouldn’t switch to a new system without
serious consideration, as both systems are near equal in
most cases.

ACKNOWLEDGMENT

Results presented in this paper are part of the research
conducted within the Grant No. III-47003, Ministry of
Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] Z. G. Gonzalez, M. Kelly, T. E. Murphy Jr, and M. Nisenson,
International Business Machine Corporation, 2012. Search Engine
Indexing. U.S. Patent Application 13/713,765.

[2] S. T. Kirsch, W. I. Chang, and E. R. Miller, Infoseek Corporation,
1999. Real-time document collection search engine with phrase
indexing. U.S. Patent 5,920,854.

[3] Apache Software Foundation, Solr, http://lucene.apache.org/solr/,
retrieved: 20.10.2015.

[4] S. Banon, Elasticsearch, https://www.elastic.co/, retrieved:
20.10.2015.

[5] A. Aksyonoff, Sphinx, http://sphinxsearch.com/, retrieved:
20.10.2015.

[6] Xapian Team, Xapian, http://xapian.org, retrieved: 20.10.2015.

[7] M. Chaput, Whoosh, https://bitbucket.org/mchaput/whoosh/wiki,
retrieved: 20.10.2016.

[8] K. Hughes, Swish-E, http://swish-e.org/, retrieved: 20.10.2015.

[9] I. Atanassova, and M. Bertin, Faceted Semantic Search for
Scientific Papers. PLoS Biology, 2, pp.426-522.

[10] A. L. Cuff, I. Sillitoe, T. Lewis, A. B. Clegg, R. Rentzsch, N.
Furnham M. Pellegrini-Calace, D. Jones, J. Thornton, and C. A.
Orengo, 2011. Extending CATH: increasing coverage of the
protein structure universe and linking structure with function.
Nucleic acids research, 39(suppl 1), pp.D420-D426.

[11] Apache Wiki, PublicServers, https://wiki.apache.org/solr

/PublicServers, retrieved: 20.10.2015.

[12] O. Kononenko, O. Baysal, R. Holmes, and M.W. Godfrey, 2014,
May. Mining modern repositories with elasticsearch. In
Proceedings of the 11th Working Conference on Mining Software
Repositories, pp.328-331.

[13] J. Thompson, A. Hankinson, and I. Fujinaga, 2011. Searching the
Liber Usualis: Using COUCHDB and ELASTICSEARCH to
query graphical music documents. In Proceedings of the 12th
International Society for Music Information Retrieval Conference.

[14] G. Horanyi, Needle in a haystack, https://medium.com/@ghoranyi

/needle-in-a-haystack-873c97a99983#.autnzq6bt, retrieved:
20.10.2015.

[15] T. Pease, A Whole New Code Search, https://github.com/blog

/1381-a-whole-new-code-search, retrieved: 20.10.2015.

[16] N. Carver, What it takes to run Stack Overflow,
http://nickcraver.com/blog/2013/11/22/what-it-takes-to-run-stack-
overflow/, retrieved: 20.10.2015.

[17] P. Alves, Firefox 4, Twitter and NoSQL Elasticsearch,
http://pedroalves-bi.blogspot.rs/2011/03/firefox-4-twitter-and-
nosql.html, retrieved: 20.10.2015.

[18] H. Karau, A. Alix, foursquares now uses Elasticsearch,
http://engineering.foursquare.com/2012/08/09/foursquare-now-
uses-elastic-search-and-on-a-related-note-slashem-also-works-
with-elastic-search/, retrieved: 20.10.2015.

[19] K. Tan, Apache Solr vs Elasticsearch - The Feature Smackdown,
http://solr-vs-elasticsearch.com/, retrieved: 20.10.2015.

[20] O. Gospodnetić, Solr or Elasticsearch – that is the question,
http://www.datanami.com/2015/01/22/solr-elasticsearch-question/,
retrieved: 20.10.2015.

[21] R. Sonnek, Realtime Search: Solr vs Elasticsearch,
http://blog.socialcast.com/realtime-search-solr-vs-elasticsearch/,
retrieved: 20.10.2015.

6th International Conference on Information Society and Technology ICIST 2016

291

[22] A. Rafalovitch, Solr vs. Elasticsearch – Case by Case,
http://www.slideshare.net/arafalov/solr-vs-elasticsearch-case-by-
case, retrieved: 20.10.2015.

[23] Apache Software Foundation, Lucene, https://lucene.apache.org,
retrieved: 20.10.2015.

[24] C. D. Manning, P. Raghavan, and H. Schütze, 2008. Introduction
to information retrieval, Cambridge: Cambridge university press.

[25] Apache Software Foundation, Apache ZooKeeper,
https://zookeeper.apache.org/, retrieved: 20.10.2015.

[26] Apache Software Foundation, Apache Tika,
https://tika.apache.org/, retrieved: 20.10.2015.

[27] Solr HighlightingParameters, https://wiki.apache.org/solr

/HighlightingParameters, retrieved: 20.10.2015.

[28] Elasticsearch Highlighting, https://www.elastic.co/guide/en/

elasticsearch/reference/current/search-request-highlighting.html,
retrieved: 20.10.2015.

6th International Conference on Information Society and Technology ICIST 2016

	Volume 2
	Comparing Apache Solr and Elasticsearch search servers

