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Abstract—The amount of geospatial data generated globally, 
together with the necessity for increased interoperability of 
these data, call for innovative solutions for global geospatial 
reference frames. Discrete Global Grid Systems are a class 
of spatial reference systems that use hierarchical tessellation 
of cells to partition and address the globe without gaps or 
overlaps. The specific properties of DGGS make them 
important candidates for future standard geospatial 
reference frames and fuel further efforts to investigate their 
potential for organization, exchange and processing such 
data. In this paper, we focus on DGGSs based on the so-
called spherical cube mapping technique and present some 
first results of how these can be optimized to serve as global 
reference frames for large volumes of gridded geospatial 
data. 

I. INTRODUCTION 

The amount of geospatial data increases with a very 
high velocity. As an example, high-resolution satellite and 
airborne footages are collected at rates of many terabytes 
per day. The organization of such data-collections 
becomes challenging per se, while processing and 
analyzing require suitable spatial reference frames. So far 
most satellite missions have come up with own individual 
reference grid(s) for global data representation. To 
facilitate the fusion of data from different missions, 
standardized multi-resolution reference frames would, 
however, be necessary. 

One option to define a hierarchical tessellation of near 
equal-area cells at multiple levels of granularity for the 
entire Earth is called Discrete Global Grid Systems 
(DGGS) [1]. The importance of DGGS is underlined by 
the fact that the Open Geospatial Consortium (OGC) has 
founded the DGGS Standard and Domain Working 
Groups to foster the interoperability of geospatial data. A 
lot of DGGS has been proposed in recent years, with 
various methods achieving the proper tessellation of the 
surface [2]. Most of such systems are based on regular, 
multi-resolution partitions of polyhedra, called Geodesic 
DGGSs [3]. The two out of five design choices that fully 
specify a Geodesic DGGS, according to [3], are a base 
regular polyhedron and its orientation relative to the Earth.  

A significant number of proposed DGGSs are based on 
the icosahedron and use triangular or hexagonal cells [2]. 
Despite their good properties in approximating the Earth’s 
surface, the absence of orthogonal axes and cell 
congruency, as well as a complicated implementation 
seem to prevent their widespread acceptance. On the other 
hand, cube-based DGGSs introduce greater distortion, 

because of the lower number of primary partitions. 
However, the ease of the implementation and superior 
properties in data organization and retrieval make them 
more attractive for the usage in different applications. The 
main motivation for this paper is to boost the public 
interest for the application of the cube based DGGS by 
minimizing area distortion in the ellipsoid to sphere 
mapping and the distortion of the landmass projection 
through the orientation of the base cube. 

II. RESEARCH QUESTIONS 

The term Discrete Global Grid System is relatively new 
[2], but the need for a global system that would collect 
spatial data from all over the world is much older. Without 
better nomenclature, they were referred to as Earth 
database systems at that time. Some attempts to develop 
an Earth database system based on a Quadrilateralized 
Spherical Cube dates from the early 1970s [4]. The 
proposed system was modified later [5], and served for the 
Cosmic Background Explorer (COBE) project at NASA. 
Several decades later, cube-based DGGS regain popularity 
[6-7], mainly because they provide quadrilateral cells that 
can be efficiently handled [8]. 

Although there are numerous spherical cube map 
projections [9], most of the published papers about them 
deal with the properties of projecting the sphere to a cube, 
as their names imply. However, the implementation of 
DGGS requires the usage of a more accurate 
approximation of the Earth’s surface, such as the WGS84 
ellipsoid. This paper provides an answer to the question of 
what the properties of such projections are when the 
ellipsoid is projected to a cube and whether the distortions 
can be minimized by additional transformations. 

The second question relates to a possibility to reduce 
the amount of distortion on the landmass if the projection 
cube is rotated, so that the areas with larger distortions are 
placed over the oceans or other water bodies. 

The two previously described steps for the WGS84 
ellipsoid projection to a cube are combined into a pipeline 
of transformations. These can, then, serve for constructing 
DGGSs that would provide effective solutions for the 
needed standardized reference frames, boosting 
interoperability of global raster data. 

III. DISTORTION OPTIMIZATION 

In this paper, we focus on the two aspects of distortion 
optimization: minimizing the influence of ellipsoid to 
sphere mapping and reducing distortion over certain areas 
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by base polyhedron rotation. Although the greatest 
influence on the distortion comes from the chosen sphere 
to cube mapping, the principles described in this paper are 
generally applicable to all of them. To illustrate the impact 
of proposed methods, we have chosen adjusted spherical 
cube [10-11], as easy to implement, yet very efficient 
method to project sphere to a cube [9]. The forward 
transformation, i.e. mapping the spherical (,) to 
rectangular (x,y) coordinates of the cube face is defined by 
(1) and (2). 

x =   4/ (1) 

y = arctan( tan() / cos() )  4/ (2) 

The adjusted spherical cube mapping is neither equal-
area, nor conformal projection, but the maximum-to-
minimum area distortion is 1.4142, which is far better than 
most other non-equal-area spherical cube map projections, 
for which this parameter ranges from 2.0, for the 
Continious Cube mapping [12], up to 5.2 for the 
Tangential Spherical Cube [9]. 

A. Transformation Pipelines 
In order to provide the WGS 84 to Cube-map 

coordinates transformation, and vice versa, proper 
pipelines are defined. Fig.1 depicts the main steps in both 
the forward and the inverse pipeline, combined to a cycle 
of coordinate transformations. 

 

 
The forward transformation starts with the ellipsoid to 

sphere transformation, presented in the next section. This 
step is optional and serves to reduce a certain type of 
distortion, according to the property we want to preserve. 

The next step rotates the base cube, diminishing the 
distortion over the areas of interest. Since the distribution 
of the distortion is fixed across the faces of the cube, and 
depends on the chosen projection only, the impact on 
certain areas can be changed by rotating the base cube. 

The last step in the forward pipeline is mandatory. It 
defines the actual sphere to cube transformation. 

The inverse pipeline converts spherical cube map 
coordinates back to WGS84, consisting of the reverse 
order of the inverse transformations from the forward 
pipeline. 

B. Ellipsoid to Shere Transformation 
The ellipsoid to sphere transformation is the first stage 

in the forward pipeline. It is not a unique process and 
depends on the property that should be preserved. A 
common way to perform this step is to transform geodetic 
latitude to some “auxiliary” latitude. 

The geodetic latitude is an angle between the equatorial 
plane and the vector perpendicular to the surface of the 
ellipsoid at a given point. It is slightly greater than any 
auxiliary latitude, except at the Equator and poles, where 
they are all equal. Spherical forms of map projections can 
be adapted for use with the ellipsoid by substituting the 
geodetic latitude with one of the various auxiliary 
latitudes. The auxiliary latitudes were systematically 
described and all formulas derived by O. Adams [13], in 
1921, but wider popularity is gained much later with 
Snyder’s working manual [14]. 

There are six auxiliary latitudes, each with certain 
properties: 
 geocentric () – an angle between the equatorial 

plane and the radius vector, 
 parametric () – the parallel on the sphere (with the 

radius equal to a semi-major axis) has the same 
radius as the parallel of geodetic latitude, 

 conformal () – preserves angles, 
 authalic () – preserves surface area, 
 rectifying () – preserves distances along 

meridians and 
 isometric () – equal increments of isometric 

latitude and longitude correspond to equal distance 
displacements along meridians and parallels. 

Geocentric and parametric latitudes are the simplest to 
compute. In both cases, the ratios of tangents of given 
auxiliary and geodetic latitude are constants. Rectifying 
latitude represents the other extreme on the calculation 
scale. It cannot be expressed in the closed-form and 
requires series or numerical integration. Isometric latitude 
is also specific. It rapidly diverges from the geodetic 
latitude, tending to infinity at the poles. Both, rectifying 
and isometric latitudes, are out of the scope of this paper. 

 

 
Figure 2. Auxiliary Latitudes – The divergence from the geodetic 

latitude 

The divergence from the geodetic latitude of the four 
most frequently used auxiliary latitudes is shown in Fig.2. 
The difference is maximal at around 45. It is interesting 
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Figure 1. Coordinate transformation cycle consisting of the two 
pipelines – forward and inverse 
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to notice that geocentric and conformal latitudes are 
almost the same; hence, being much easier to compute, the 
geocentric latitude usually substitutes the conformal 
latitude in the calculations. 

One of the main problems in cartography is preserving 
sizes and shapes. However, as in the projecting a sphere to 
a plane, projecting an ellipsoid to a sphere cannot preserve 
both of them. The projection can be either a conformal or 
equal-area. For preserving angles, geocentric latitudes can 
be used as a good approximation; while preserving surface 
area requires application of authalic latitudes. 

The authalic latitude () is very complex to compute 
and requires multiple iterations for the inverse 
transformation. The equations (3) through (5) define 
forward (geodetic to authalic), while (6) through (8) 
define inverse (authalic to geodetic) transformation. 

 = arcsin(q/qp) (3) 

q = (1 – e2) {sin  / (1 – e2sin2) – (1/(2e))  
        ln[(1 – e sin ) / (1 + e sin )]} (4) 

qp = q(=90)= (1 – e2) {1 / (1 – e2) – (1/(2e))  
         ln[(1 – e) / (1 + e)]} (5) 

q = qp sin  (6) 

0 = arcsin (q/2) (7) 

i+1 = i + [(1 – e2 sin2 i)
2 / (2 cos i)]  

        { q/(1 – e2) – sin i / (1 – e2 sin2 i) +  (8) 
         (1/2e) ln[(1 – e sin i) / (1 + e sin i)]}  

Aside from its complexity, the inverse authalic 
transformation loses its precision toward the poles, as 
shown in Fig.3. With a single iteration, the error is about 2 
degrees at the pole, which corresponds to approximately 
200km. 

 

 
Figure 3. Authalic Latitude Inverse Function Error  

 - InvAuth(Auth(  )) 

Because of the very poor properties of the authalic 
latitude, like complex computation, iterative calculation of 
the inverse transformation with a loss of the precision in 
the proximity of the poles, a better solution is desirable. 
So, we propose an approximation, defined in (9), that is 
easy to compute, requires no iterations, and retains a very 
high precision throughout with a maximum deviation of 
about 0.1 arc-second (3m) around 25 latitude ( see Fig.4).  

’ = arctan [(1 - e2)2/3 tan ] (9) 

Note that the approximated authalic latitude (9) has a 
form similar to the geocentric latitude ( = arctan [ (1 - e2) 
tan ]) and the parametric latitude ( = arctan [ (1 - e2)1/2 
tan ]), with values somewhere in between the two. 

 
Figure 4. The difference between the authalic () and the approximated 

authalic (’) latitude 

The impact of the chosen auxiliary latitude on the 
ellipsoid to sphere mapping distortion illustrated by the 
example of the adjusted spherical cube, is shown in 
section IV. 

C. Base Cube Orientation 
The distribution of the distortion depends on the chosen 

spherical cube map projection. Usually, the minimums are 
located at the centers of the faces, and the distortion 
increases toward the edges and corners of the base cube 
[9]. Hence, the impact on the area of interest can be 
diminished by rotating the cube and moving those areas 
toward the center of the faces. 

The second phase in the forward pipeline performs the 
transformation by converting coordinates into the 
Cartesian coordinate system, rotating about all three axes, 
and transforming them back to the polar coordinate 
system. 

 
Figure 5. Raster masks used for the optimal base cube orientation 

The optimal orientation can be found by varying 
rotation angles (,  and  in Fig.1), from -45 to 45, 
around all three axes, and comparing distortions over the 
areas of interest. These areas are confined by raster masks 
(Fig.5) defining landmass, population density, or any 
other criterion used for estimating an optimal orientation. 
The raster maps used as masks can be in any projection. 
However, for the sake of simplicity and efficiency, 
avoiding additional transformations, the maps used in 
experiments, as shown in Fig.5, are in LatLon WGS84 
projection (EPSG:4326). The calculation is done for each 
pixel of all faces of the cube, that projects to a masked 
area, using the inverse pipeline. Since the calculation time 
is directly proportional to the resolution of the cube faces, 
the lower resolution is used for a wide range of angles, 
while higher resolution ones are used for fine-tuning of 
the base cube orientation, around expected extremes. 
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IV. RESULTS AND DISCUSSION 

A. The Effects of Chosen Ellipsoid to Shere 
Transformation 

The two most frequently used metrics to depict shape 
deformations in the projection process are angular and 
areal distortions. Ideally, two lines should intersect at the 
same angle, both on the surface of the globe and on the 
projected map. If the projection is conformal, the angles 
are preserved and, hence, the shape of the features. For the 
non-conformal projections, the angular distortion 
represents the maximum deviation from the correct angle 
at a given location. 

On the other hand, the projection also may alter the 
scale of the features. The ratio of the projected and 
original area is known as the areal distortion. Equal-area 
projections preserve the area. Unfortunately, the 
projection cannot be both conformal and equal-area. 
Preserving one feature leads to sacrifice of the other, and 
sometimes the distortion of the unpreserved feature can be 
severe. So, in most of the cases a compromise is required, 
and, hence, the projections that are neither conformal nor 
equal-area are very commonly used. The adjusted 
spherical cube is one of such projections. 

Table I summarizes the effects of the distortion using 
different sphere-to-ellipsoid mappings. The first row 
contains parameters of the perfect sphere, while the next 
three contain distortion for the WGS84 ellipsoid using 
geodetic, geocentric and the approximated authalic 
latitude mappings, respectively. Each row is divided into 
three sub-rows, for the side face, top face and the cube as 
a whole (an averaged value for the four side faces and two 
top faces). The values are separately shown for the side 
and top faces to illustrate the asymmetry of the mappings. 
Table I does not contain the minimal value angular 
distortion column, since the value is always 0. The 
maximum-to-minimum is added as an additional column 
to the areal distortion, as it, probably, depicts the essential 
aspect of the surface preserving – a cell size variation 
across the surface of the map. Or, in our case, across the 
surface of the cube face.  

 
TABLE I.  

Distortion Effects of Various Sphere-to-Ellipsoid Mappings (Auxiliary 
Latitudes) on the Different Cube Faces 

Angular 
distortion 

Areal 
distortion 

Type Face Max. Avg. Min. Max. Max./Min. Avg. 

Sphere 

Side 31.085 11.569 1.621 2.293 1.414 1.925

Top 31.085 11.569 1.621 2.293 1.414 1.925

All 31.085 11.569 1.621 2.293 1.414 1.925

Geodetic 

Side 30.962 11.570 1.632 2.308 1.414 1.934

Top 31.332 11.588 1.610 2.293 1.424 1.921

All 31.332 11.576 1.610 2.308 1.433 1.929

Geo-
centric 

Side 31.085 11.569 1.621 2.300 1.419 1.927

Top 31.084 11.569 1.632 2.300 1.410 1.934

All 31.085 11.569 1.621 2.300 1.419 1.929

Approx. 
authalic 

Side 31.044 11.567 1.625 2.298 1.414 1.929

Top 31.167 11.575 1.625 2.298 1.414 1.929

All 31.167 11.570 1.625 2.298 1.414 1.929

 
 

As it is expected, geocentric latitude produces the 
smallest angular distortion, while approximated authalic 
produces the smallest area distortion. If geocentric latitude 
is used in ellipsoid to sphere mapping, there is an increase 
of about 0.34% in area distortion (max/min ratio), while 
angular distortion is kept at the level of a perfect sphere. 
On the other hand, approximated authalic latitude keeps 
the areal distortion; while maximum angular distortion is 
increased by 0.26%. The usage of the geodetic latitude 
yields the largest distortions: 
 0.8% the increase of maximum angular distortion, 
 0.056% the increase of average angular distortion 

and 
 1.35% the increase of area distortion (max/min 

ratio). 

B. The Optimal Orientation to Minimize Landmass 
Distortion 

There are lots of different criteria that can be used for 
choosing the best orientation of the base cube. One of the 
most prominent goals is to preserve continental plates of 
being split by the cube edges and reduce overall distortion 
of the landmass. Without rotations, all continents, except 
for Antarctica, are in quite unfavorable positions with 
regard to the cube faces, as shown in Fig. 7. 

If the rotation angles are confined to integer numbers, 
the minimal angular distortion of the continental plates is 
gained for the following rotation angles:  = 17,  = -10 
and  = 32. Fig. 6 illustrates the position of the base 
cube, after rotating by the defined angles.  

 
Figure 6. Optimal base cube orientation for the landmass distortion 

minimization 

The rotation angles differ for minimum areal or aspect 
distortion, but we have chosen to minimize the angular 
distortion, because it has a wider range of possible values 
and hence a more noticeable difference between 
consecutive values of rotation angles. Also, the proposed 
rotation yields visually a very effective result, as can be 
seen in Fig. 8. 

By using the proposed base cube orientation and 
approximated authalic latitude, an average angular 
distortion is reduced from 11.21 to 9.03, while at the 
same time an average areal distortion is decreased from 
1.92 to 1.86. Fig.8 shows the position of the continental 
plates on the cube faces for the optimal orientation of the 
base cube. 
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Figure 7. Cube-map faces for the initial base cube orientation (without 

rotations) 

 

V. CONCLUSIONS 

The need to store and organize large amounts of 
multiresolution geospatial data bring into play DGGS as a 
powerful concept. Geodetic DGGSs based on a cube, 
despite their relatively large distortion of the stored data, 
have a great potential to be accepted by a wide range of 
users due to the simplicity of implementation. 

The effect of distortion can be reduced, to some extent, 
by choosing the appropriate mapping of the ellipsoid to 
the sphere and the orientation of the base cube. Given the 
almost spherical shape of the planet Earth, the choice of 
auxiliary latitude does not significantly affect the 
reduction of distortion imposed by ellipsoids to the sphere 
mapping. However, it is desirable to use the appropriate 
auxiliary latitude according to the type of projection, to 
preserve certain properties. For conformal projections, it is 
desirable to use geocentric latitude, while for equal-area 
projections it is desirable to choose authalic latitude. As 
the authalic latitude is very complex to compute, requires 
more iterations for the inverse transformation, and even 
with more iterations loses precision near the poles, an 
approximate function is proposed in this paper that 
eliminates all these shortcomings. 

The orientation of the base cube cannot affect the 
overall distortion, but it can significantly reduce their 

impact on specific areas of interest. We have shown that 
by appropriate rotation the average angular distortion of 
continental plates can be reduced by almost 20% in the 
case of adjusted spherical cubes, while the area distortion 
is reduced by a much more modest 3%. 

The proposed methods are part of the measures that 
should pave the way for enhanced DGGSs based on 
spherical cubes. Further research will be focused on other 
aspects of DGGSs, such as hierarchical spatial partitioning 
of cube pages, consideration of characteristics and 
efficiency of individual projections of spherical cubes, as 
well as finding an efficient method for visualization of 
such organized spatial data. 
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