
Superlinear Speedup for Matrix - Vector
Multiplication in Different Multiprocessors

Sasko Ristov, Goran Velkoski and Marjan Gusev
Ss. Cyril and Methodius University,

Faculty of Information Sciences and Computer Engineering,
Skopje, Macedonia

Email: sashko.ristov@finki.ukim.mk, velkoski.goran@gmail.com, marjan.gushev@finki.ukim.mk

Abstract—In this paper we analyze the performance of sequen-
tial and parallel implementation of matrix vector multiplication
algorithm on a multi-chip multi-core multiprocessor. We analyze
three different multiprocessors: single-chip multi-core, multi-chip
single-core and multi-chip multi-core multiprocessor. The results
show that the speed and speedup depends on cache organization
of multiprocessors despite the same number of cores. Although
Gustafson’s Law limits the speedup for parallel implementation
on the number of used processors (CPU cores), we achieved
a region for problem size where superlinear speedup (speedup
greater than the number of processors) is achieved for each
multiprocessor.

Index Terms—Gustafson’s law, shared memory multiprocessor,
high performance computing

I. INTRODUCTION

Nowadays, many linear algebra algorithms are used which
requires huge computing power since they are computation
intensive and memory demanding. The former means that
the operations increase proportionally with greater problem
size. The latter refers to increased storage requirements when
problem size rises, which implies to increased computation,
as well. The memory was the most expensive part of the
computer and the algorithm lacks memory space at the begin-
ning. But, the time is changing and todays computers lacks of
computing resources instead of memory storage.

Speeding up an algorithm execution is imperative and
many techniques exist: reducing the number of program steps
computations (operations), reducing the calculations, speeding
the hardware, adding more computing resources, using some
methods for parallelization, etc.

Adding cache memory between the CPU and main mem-
ory speeds up the memory access [1], especially when the
algorithm reuses the same data many times. Cache memory
helps with data locality also. In this paper we use one of
the most common linear algebra algorithms, i.e. matrix-vector
multiplication (MVM) to analyze its behavior in sequential
and parallel execution. We use it since this algorithm can be
easy parallelized and it is cache intensive algorithm [2], i.e.
the number of accesses of each element the vector depends of
the problem size.

The paper is organized as follows. Section II analyzes the
speed and speedup of the MVM algorithm. The different
architectures of multiprocessors used in the experiments are
described in Section III. In Section IV we present the results

of the experiments executed sequential and parallel on three
different multiprocessors. Finally, we conclude our work and
present our plan for future research in Section VI.

II. SPEED AND SPEEDUP ANALYSIS

In this section we present the sequential and parallel im-
plementation of MVM algorithm and analyze their speed and
speedup.

A. MVM Algorithm

MV multiplication algorithm is defined in (1).

CN ·1 = AN ·N ·BN ·1 (1)

For simplification, we use squared matrix AN ·N . We use
double precision numbers with 8 bytes each for each matrix
and vector element.

B. MVM Algorithm Implementations

We use sequential and parallel implementation of the MVM
algorithm. Sequential implementation consists of one thread
which multiplies the whole matrix AN ·N and vector BN ·1.

In parallel implementation, each thread multiplies the row
block matrix AN ·N/c and the whole vector BN ·1, where c ∈
{2, 4, 8, 16} denotes the total number of parallel threads and
used CPU cores. We test the performance of the matrix and
vector size that produce the best efficiency, i.e. the multiple
of 16.

From memory point of view, each inner product performs
M memory reads for matrix elements. For N inner products
M · N memory reads are needed. Added M reads for the
vector, the memory complexity is:

O(M ·N +M) = O(M ·N) (2)

The memory complexity is calculated based on memory
accesses because this is the most expensive operation. The
MVM algorithm operates on two arrays representing the
matrix and the vector respectively. Similar to computations,
both the sequential and parallel implementations should store
matrix AN ·N , and vectors BN ·1 and CN ·1, or total N2+2 ·N
elements.

52



C. MVM Speed

Let’s analyze the algorithm execution. In sequential imple-
mentation, the single thread multiplies each matrix row with
the vector executing N ·N multiplications and N ·N additions,
or total 2N2 floating point operations.

Parallel implementation of the algorithm is realized by P
cores such that each core multiplies N/P rows executing
N/P · N multiplications and N/P · N additions, or total
2N2/P floating point operations. Therefore, all P cores will
execute total 2N2/P · P or the same 2N2 as sequential
implementation.

That is, the speed V (P ) of the sequential and parallel
implementation of the MVM algorithm is determined with one
equation (3), where T (P ) denotes the execution time when all
threads finish with their computations.

V (P ) =
2 ·N2

T (P ) · 109
(3)

We express the speed in gigaflops.

D. Speedup Limits

Gustafson’s [3] concludes that linear speedup is maximum
speedup in a parallel system. He presents the domain of
computing performance pattern in the log scaled Fig. 1. Fixed-
size speedup (Amdahl’s law) bounds speedup to the sequential
part of the algorithm.

Fig. 1. Ensemble computing performance pattern [3]

A typical curve for fixed size speedup (Amdahl’s Law) is
presented in the log scale Fig. 2 bounded by the superlinear
speedup.

In this paper we are interested in speedup behavior for
parallel implementation of MVM algorithm in different mul-
tiprocessors varying matrix and vector size in range N ∈

Fig. 2. Typical Speedup Curve [4]

[16, 1800]. The speedup is defined as the ratio of speeds of
parallel and sequential executions, as defined in (4).

S(P ) =
V (P )

V (1)
(4)

Since each processor in parallel implementation executes P
times smaller number of operations, we expect that they will
finish P times faster than sequential implementation of the
MVM algorithm. That is, the speedup S(P ) has maximum
value P as referred in (5).

S(P ) ≤ P (5)

Therefore, the maximum expected speedup for different size
N is depicted in Fig. 3.

Fig. 3. Expected theoretical speedup

Since P > 1 for parallel implementation, speed should be
in the range:

1 < S(P ) ≤ P

III. THE MULTIPROCESSOR ENVIRONMENT AND
EXPERIMENTS

In this section we present different multiprocessors used in
the experiments.

A. Testing Environment

The architecture of the multiprocessor is used as platform
for each experiment is depicted in Fig. 4. It consists of
four CPUs AMD Opteron 8347 chips, each with four cores.
Therefore, sixteen cores are available to be utilized with
maximum of sixteen threads for parallel execution. Each of the

53



cores have 64KB of dedicated L1 cache and 512KB dedicated
L2 cache. Additionally, 2MB of shared per CPU L3 cache per
chip is present.

Different parallel implementations have different cache or-
ganization for each experiment. Each thread has its own private
L1 and L2 caches and shares main memory. The difference
is in L3 cache, sometimes it is shared per threads, sometimes
it is private per core, and sometimes it is shared but per two
cores per chip. This organization is explained more detailed
in the following paragraphs.

B. The Experiments

We define four parallel and one sequential experiments of
the MVM algorithm:

• Experiment 1 - Parallel implementation of MVM algo-
rithm on two cores (on two separate chips by one core)

• Experiment 2 - Parallel implementation of MVM algo-
rithm on four cores (on four separate chips by one core)

• Experiment 3 - Parallel implementation of MVM algo-
rithm on eight cores (on four separate chips by two cores)

• Experiment 4 - Parallel implementation of MVM algo-
rithm on sixteen cores (on four separate chips by four
cores)

We chose to employ each thread on different core
for all of the scenarios because this is confirmed to
be best case for OpenMP parallelism. Hence, OpenMPs
GOMP CPU AFFINITY is used for thread binding to a
specific chip and core. Each experiments varies the matrix
and vector size from 16 to 1800. Each test case is executed at
least 10s in order to achieve reliable results.

IV. THE RESULTS OF THE EXPERIMENTS

In this section we present the results for the speedup of each
experiment.

A. Experiment 1 - 2 Cores

Experiment 1 consists of executing parallel implementation
of MVM algorithm with two threads on 2 cores on the separate
chip. That is, L3 cache is private per chip, but also per core.
The speedup compared to sequential execution is depicted on
Fig. 5.

We observe the three different regions going from left to
right in Fig. 5, i.e. increasing the matrix and vector size N .
The speedup grows in the first region from the left. Then the
speedup is superlinear in the second region, and even in the
third region on the right the speedup value is as expected, i.e.
near, but lower than P = 2.

B. Experiment 2 - 4 Cores

In this experiment we use 4 cores on separate chips, i.e. not
only that L3 cache is private per chip, but also per core. The
speedup of MVM algorithm executed by using four parallel
threads is depicted on Fig. 6.

The same issues are observed for the speedup S(4) as the
speedup S(2). However, the superlinear region is wider for
S(4) compared to S(2).

Fig. 5. Speedup for first experiment scenario

Fig. 6. Speedup for second experiment scenario

C. Experiment 3 - 8 Cores

Experiment 3 is executed on multi-chip multi-core multi-
processor with semi shared L3 cache. We also observe similar
regions for this experiment as depicted in Fig. 7. But although
the speedup is constant in the third region (right), it is much
smaller than limit P .

We explain this with the fact that this experiment uses
shared L3 caches per two cores and therefore their total
capacity is smaller. Therefore, more cache misses are being
generated and the speedup is smaller than expected.

D. Experiment 4 - 16 Cores

Finally, the Experiment 4 is executed on multi-chip multi-
core multiprocessor with shared L3 cache per chip and 4 cores.
We also observe similar regions for this experiment as depicted
in Fig. 8. The third region is more emphasized with decreasing
the performance, although the speedup is constant there, it is
much smaller than limit P and smaller than S(8).

V. MULTIPROCESSORS COMPARISON

In this section we compare the speed and speedup in each
experiment, i.e. for different multiprocessor.

54



CPU 0

Core 0

L1 Cache

L2 Cache

Core 1

L1 Cache

L2 Cache

Core 2

L1 Cache

L2 Cache

Core 3

L1 Cache

L2 Cache

L3 Cache

CPU 1

Core 4

L1 Cache

L2 Cache

Core 5

L1 Cache

L2 Cache

Core 6

L1 Cache

L2 Cache

Core 7

L1 Cache

L2 Cache

L3 Cache

CPU 2

Core 8

L1 Cache

L2 Cache

Core 9

L1 Cache

L2 Cache

Core 10

L1 Cache

L2 Cache

Core 11

L1 Cache

L2 Cache

L3 Cache

CPU 3

Core 12

L1 Cache

L2 Cache

Core 13

L1 Cache

L2 Cache

Core 14

L1 Cache

L2 Cache

Core 15

L1 Cache

L2 Cache

L3 Cache

Main Memory

Fig. 4. Experiment platform architecture

Fig. 7. Speedup for third experiment scenario

Fig. 8. Speedup for forth experiment scenario

A. The Speed

Speed is defined as number of floating point operation in
second and the results of the all experiments are depicted in
Fig 9.

We clearly observe that V (P ) > V (R) when P > R for

Fig. 9. Speed comparison

each valule of N , that is, using more resources (cores) will
provide greater speed. Another important fact is that the region
where the speed grows is wider for the experiments with the
greater number of cores.

B. The Speedup

The more important results are obtained for the speedup in
all experiments, depicted in Fig 10.

We observe that superlinear region for the experiment with
greater number of processors P is wider than the counterpart
with smaller number of processors, although they start earlier
for the experiments with greater P . Even more, not only that
superlinear speedup region is wider, but it is also higher, i.e.
the maximum speedup is achieved with the greater number of
processors.

VI. CONCLUSION AND FUTURE WORK

In this paper we analyze the performance behavior of MVM
algorithm on different multiprocessors with different cache
organization and resources. We vary the matrix and vector

55



Fig. 10. Speedup comparison

size by 16 in order to have the same maximum efficiency for
the algorithm and to be comparable all experiments.

The results show that the performance varies for different
matrix and vector size. The speed rises until it reaches its
maximum value, then starts decreasing and then saturates. All
this regions are moved in the right with scaling the resources
by 2. The speed difference is greater in the region where the
speeds rise compared to the region on the right where the
speed saturates.

The speedups has similar curves as the speed for particular
experiment. Multiprocessors with private L3 cache provide
almost linear speedup in the right region when the speedup
saturates. The speedup also saturates for multiprocessors with
shared L3 cache, but it is much lower than theoretical value
P as the number of processors.

In each experiment we achieved a region with superlinear
speedup. These regions are wider and higher for the experi-
ments with greater number of processors.

We analyzed the MVM algorithm as one of the most com-
mon linear algebra algorithms. But, more interesting would
be matrix matrix multiplication since it is cache intensive
algorithm where each element is accessed 2 · N times and
the memory organization of the matrices is very different than
the one in MVM algorithm.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach. MA, USA: Elsevier, 2012.

[2] S. Ristov, M. Gusev, M. Kostoska, and K. Kiroski, “Virtualized environ-
ments in cloud can have superlinear speedup,” in Proceedings of the Fifth
Balkan Conference in Informatics, ser. BCI ’12. New York, NY, USA:
ACM, 2012, pp. 8–13.

[3] J. Gustafson, G. Montry, and R. Benner, “Development of parallel
methods for a 1024-processor hypercube,” SIAM Journal on Scientific
and Statistical Computing, vol. 9, no. 4, pp. 532–533, July 1988.

[4] J. L. Gustafson, “The consequences of fixed time performance measure-
ment,” in Proceedings of the Hawaii International Conference on System
Sciences, vol. 25, 1992, p. 113.

56


	Introduction
	Speed and Speedup Analysis
	MVM Algorithm
	MVM Algorithm Implementations
	MVM Speed
	Speedup Limits

	The Multiprocessor Environment and Experiments
	Testing Environment
	The Experiments

	The Results of the Experiments
	Experiment 1 - 2 Cores
	Experiment 2 - 4 Cores
	Experiment 3 - 8 Cores
	Experiment 4 - 16 Cores

	Multiprocessors Comparison
	The Speed
	The Speedup

	Conclusion and Future Work
	References

