
PERFORMANCE IMPROVEMENT OF PARALLEL ALGORITHMS
EXECUTED ON A GPU

Irena Skrceska, Fakulty of Informatics, European University – Republic of Macedonia

Abstract

A large number of algorithms that encompass intensive
calculations are basically parallel algorithms or such that
can be parallelized. GPU devices (Graphical Processing
Units) which were originally designed for graphics
applications, are massively parallel structures that have an
enormous potential in massive parallel processing. With a
leader in technology such as Nvidia in the frontline, the
approach for using General Purpose computation on
Graphics Processing Units (GPGPU) which combines the
need to process intensive computations with high
performance (High Performance Computing, HPC) with the
characteristics of GPU devices, has rapidly gained ground
compared to other methods for parallel programming. The
present paper provides experimental results of the impact of
certain optimization techniques on the working performance
of the algorithm for matrix-matrix multiplication.
Experiments were done on a GPU device GeForce
GTX480. A number of optimization techniques were
applied on the initial parallel algorithm, and a speed up of
3706x on the kernel function was achieved.

1. Introduction

The fact that GPU devices offer great potential for a
fairly low price makes investigating the ways to exploit it
attractive for research. The execution of data parallel
algorithms with simple execution flow and a variety of
arithmetic operations can be moved from CPU to GPU,
which would result in significant performance improvement
for sufficiently large data set.

With the introduction of the Compute Unified Device
Architecture (CUDA) by Nvidia in 2006 [01, 02], it became
possible for GPU devices to be used for general purpose
computation, General Purpose computation on Graphics
Processing Units (GPGPU) [01, 03, 04].

The CUDA architecture was developed based on the
following objectives related to its design:

- To provide a small extension set over standard
programming languages, such as the C programming
language, which will contribute to a simple
implementation of parallel algorithms. By using CUDA

and CUDA C, developers will be focused on
parallelizing algorithms, rather than on implementation.

- To support heterogeneous processing, so that
applications will use both CPU and GPU. The serial part
of the application would be executed on CPU, while the
parallel part in the form of kernel functions would be
performed on the GPU. CPU and GPU are two different
devices which have their own memory space. This
configuration allows for both the CPU and GPU device
to perform calculations simultaneously, without memory
resources collision.

The initial CUDA parallel implementation for
algorithms suitable for parallelization is relatively simple,
but making the most of GPU’s capacity is not a simple task.
Utilization of the GPU capabilities is a complex task that
depends on the various characteristics of the GPU device,
the dimensions of the multidimensional structure of threads
defined by the configuration parameters by calling the
kernel function and the implementation of the algorithm,
which should implement adequate optimization techniques
suitable with the GPU execution model.

This research study evaluates the efficiency of several
well-known optimization techniques such as the tiling
technique, the data pre-fetching technique, and the loop
unrolling technique that are often elaborated in the CUDA
literature [05, 06, 07], as well as two new optimization
techniques suitable for CUDA parallel algorithms, a
technique that changes block granularity and a technique
that changes thread granularity.

2. Scalable programming model

By calling the kernel function, the CUDA execution
system genetartes appropriate grid of threads. Each thread
will execute the code of the kernel function individually.
Grid dimensions are defined by the execution configuration
parameters specified when the kernel function is called. The
threads within the grid are organized in a two levels
hierarchy. In the top (first) level, the grid is composed of
one or more blocks, while in the lower (second) level each
block consists of several threads.

As all threads of the grid perform the same code, the
CUDA programming is an example of the well known

41

SPMD (Single-Program, Multiple-Data) model of parallel
programming [08]. Although in SPMD parallel processing
units perform the same program on different data, at
specific point of time not all processing units have to
perform the same instruction, which is typical for the
SIMD (Single-Instruction, Multiple-Data) model [09, 10].

The multi-dimensional hierarchical structure of threads
will be mapped in the hierarchy of processors within the
GPU device, which performs the execution of threads.
Thus, the GPU device executes one or more grids, SM
(Streaming Multiprocessor) executes one or more blocks,
and CUDA cores execute the threads. SM executes groups
of 32 threads (warp).

Since SM performs one instruction for all the threads
within a warp at the same time, the SM employs a SIMT
(Single-Instruction, Multiple-Thread) architecture [09]. The
price for fetching and instruction processing will be
amortized by the large number of threads that are
performing the instruction.

3. Performance improvement of CUDA
applications

The capacities of the GTX480 GPU device will be
analyzed on a linear algebra matrix-matrix multiplication
algorithm. This algorithm has simple execution flow and
large number of arithmetic operations on loaded data. When
the matrix dimensions are large enough, the parallel
implementation of the algorithm which will be executed on
GPU will provide high scale of data parallelism. This
research study uses 1024x1024 matrices. Apart from the
initial naive parallel CUDA implementation, a number of
optimization techniques relevant to both CUDA architecture
and parallel algorithms are applied to the initial
implementation. The optimization techniques examined in
this study are: a technique that uses shared memory and the
tiling technique, a technique that changes the block
granularity, a technique that changes the thread granularity,
the data pre-fetching technique and the loop unrolling
technique.

The efficiency of the individual optimization technique
will be measured by the achieved speed up of the kernel
function and the number of executed floating point
operations per second during kernel execution [GFLOPS].
In order to calculate the speed up of the kernel function, the
total execution time of the parallel kernel function should
include: data transfer from the host to the device memory,
the actual kernel function execution time, and data transfer
from the device memory to the host, while calculating the
number of executed floating point operations per second
during kernel execution is based on the actual kernel
function execution time.

The efficiency of the initial naive CUDA parallel
algorithm for matrix-matrix multiplication is given in Table

1. Although the initial naive parallel algorithm provides
significant speed up of 1241x compared with the serial
version of the algorithm, the achieved performance is far
from the peak performance of the mentioned GPU device.
The main reasons for such a poor performance are
limitation of the memory bandwidth and the large global
memory latency. This could be overcome by introducing
localization in data access by using shared memory, which
will reduce the number of global memory accesses. Another
limitation is the capacity of the shared memory, which
would be overcome by using the tiling technique.

Algorithm Execution time of
kernel function

[ms]

Achieved
performance

[GFLOPS]

Kernel function
speed up [x]

ММ00 30,37146 70,70729 1241,20377
Table 1. Efficiency of the naive parallel algorithm

Thus, the naive parallel algorithm is a starting algorithm
to which subsequently a number of optimization techniques
will be applied.

3.1 Tiling technique

Due to the limitation of the shared memory capacity, the
initial naive parallel algorithm has to be adapted using the
tiling technique which will incorporate partial calculations
in several phases performed on a part of the data set i.e. a
tile, that can be stored in the shared memory. This
technique will reduce the number of global memory
accesses, and will take the advantage of the shared memory
regarding the fast data access.

In the matrix-matrix multiplication algorithm, each
thread performs dot product calculation in an N/WTILE
phases, N being the matrix dimension, and WTILE the tile
dimension. In each phase, each thread within a block will
copy one element from the matrix A located in the global
memory to a tile As located in the shared memory, and
likewise, one element from the matrix B located in the
global memory to a tile Bs located in the shared memory.
When the tile dimension corresponds to the block
dimension and is equal to 16x16, the number of global
memory accesses will be reduced by a factor of 16.

Algorithm Execution time of
kernel function

[ms]

Achieved
performance

[GFLOPS]

Kernel function
speed up [x]

ММ00 30,37146 70,70729 1241,20377

ММ01 10,03508 213,99748 2559,39281
Table 2. Efficiency of the tiling algorithm

Tiling technique leads to a function speed up of 2559x
compared with the sequential function execution time. The
efficiency of the tiling technique is given in Table 2.

The basic requirement for introducing the tiling
technique is the possibility for independent execution of the

42

kernel function on data set segments. It should be noted that
not all data sets in individual kernel functions can be tiled,
so the tiling techniques not always can be applied.

3.2 Technique that changes the block
granularity

The simplest example of tiling technique is when the tile
and block dimensions are the same, used in the previous
section. The analysis of the global memory access reveals a
certain redundancy in the activity of the threads which
belong to the neighboring blocks; it appears that they copy
the same data from the global to the shared memory. The
redundancy can be traced in the activities of the threads
within the same block too; they read the same data from the
shared memory.

Since the neighboring blocks which have the same value
for by use the same tiles As from the A matrix, their
redundant reading by two, four or eight blocks can be
eliminated given that the threads from one block calculate
elements from two, four or eight blocks with the same value
for by. The blocks that have the same value for bx use the
same Bs tiles from the B matrix, so if the threads from one
block compute the elements from two, four or eight blocks
that have the same value bx, the redundant reading by two,
four or eight blocks can also be eliminated.

The changes in the initial naive parallel algorithm will
address the block granularity, or the workload that the block
has to perform. By increasing the workload that the block
has to perform, data reusability in shared memory is also
increased; however, the number of blocks within the grid or
the number of threads that execute the kernel functions is
decreased.

If the threads from one block perform the usual
calculations from eight blocks, or if the block reads one As
tile from the A matrix and eight Bs tiles from the B matrix
(which have the same value by) and perform the calculation
for eight tiles of the resulting matrix (MM02a), or if the
block reads one Bs tile from the B matrix and eight As tiles
from the A matrix (which have the same value bx) and
performs the calculation for eight tiles of the resulting
matrix (MM02b), then the global memory access is reduced
by 7/16.

The efficiency of the algorithm that changes the block
granularity so that one block performs the workload of eight
blocks with block dimensions of 16x16 in a matrix with
dimension 1024x1024 is given in Table 3.

Algorithm Execution time
of kernel

function [ms]

Achieved
performance

[GFLOPS]

Kernel function
speed up [x]

ММ00 30,37146 70,70729 1241,20377

ММ01 10,03508 213,99748 2559,39281

ММ02а 6,01385 357,08930 3221,13731

ММ02b 5,51768 389,20009 3350,28418
Table 3. Efficiency of the algorithm that changes the block
granularity

3.3 Technique that changes thread
granularity

Redundancy can also be considered within the block.
Threads which belong to one block and have the same value
for tx read the same data from the Bs tile located in the
shared memory. If one thread computes the elements from
WTILE threads which have the same value for tx, the
redundant reading by WTILE threads will be eliminated.
The threads which belong to one block and have the same
value for ty read the same data from the As tile also located
in the shared memory. If one thread computes the elements
from WTILE threads that have the same value for ty, the
redundant reading by WTILE threads will be eliminated.

In this case, the changes in the initial tiling algorithm
will address the granularity of the thread within the block,
or the workload that the thread has to perform. By
increasing the workloads of the thread, data reusability in
shared memory as well as data reusability in registers is also
increased.

The efficiency of the algorithm that changes the
granularity of the thread so that one thread performs the
workload of WTILE = 16 threads with the same value tx,
block dimensions 16x8, BLOCK_SIZE_X = 16,
BLOCK_SIZE_Y = 8 and matrix dimension 1024x1024 is
given in Table 4.

Algorithm Execution time
of kernel

function [ms]

Achieved
performance

[GFLOPS]

Kernel function
speed up [x]

ММ00 30,37146 70,70729 1241,20377

ММ01 10,03508 213,99748 2559,39281

ММ02а 6,01385 357,08930 3221,13731

ММ02b 5,51768 389,20009 3350,28418

ММ03 4,52679 474,39410 3429,90761
Table 4. Efficiency of the algorithm that changes the thread
granularity

The execution time of the kernel function in situations
when one threads performs the workload of WTILE = 16
threads which have the same value of ty for various block
dimensions, brings to significantly worse performance
compared with the initial tiling algorithm MM01, mainly
because of the cost of an uncoalesced global memory access
when reading data from matrix A directly onto an automatic
variable.

43

Generally, the changes in block/thread granularity will
lead to decreasing the number of global memory accesses.

The limitation of the algorithm that changes
block/thread granularity is that the new kernel function now
uses more shared memory and/or registers, which can lead
to a reduction in the number of active blocks that the SM
can execute. Additionally, due to the reduction in the
number of blocks within the grid by half, significant
reduction of the parallelization level can occur, especially in
the case of matrices with smaller dimensions.

3.4 Data pre-fetching technique and loop
unrolling technique

The tolerance of the large global memory latency in
CUDA programming model is a result of the execution
system’s ability to select warps which are ready for
execution instead of warps which must wait for the result of
a previously initiated long-latency operation such as global
memory access. Unfortunately, there is a possibility for all
warps to be waiting for a long-latency operation. In such a
case a performance improvement can be achieved by using
the instructions to prepare the following data while threads
are using current data (already read in the previous step), a
technique known as a data pre-fetching technique. The pre-
fetching technique will increase the number of independent
instructions between memory access instructions and the
consumer instructions of the accessed data.

As far as the above mentioned tiling technique is
concerned, each thread executes the loop cycle given in
Code1. Within this loop cycle, apart from the floating point
instructions, there is an extra instruction for updating loop
counter (k), an instruction for conditional branching at the
end of each iteration, and an extra address arithmetic
instruction which uses the loop counter (k) to index Ads and
Bds.

for (int k=0; k<WTILE; k++)
sum+=a_ds[ty][k]*b_ds[k][tx];

Code 1. Simple loop cycle

It can be considered that only one third of the executed
instructions are floating point calculation instructions,
which limits the achievable performance. This instruction
mix which consumes part of the instruction processing
bandwidth can be significantly changed by unrolling the
loop cycle. The loop unrolling will reduce (or entirely
eliminate, depending of the unrolling level) the number of
instructions for updating the loop counter (k), the
instructions for conditional branching and address
arithmetic instructions, since the indices are constant.

The integration of these two techniques, the data pre-
fetching technique and loop unrolling technique (one level
of unrolling and pre-fetching two elements from the B

matrix), into the algorithm that changes the thread
granularity (MM03) provides significant performance
improvement (MM04). This is shown in Table 5 which
displays the efficiency of the algorithm.

Algorithm Execution time of
kernel function

[ms]

Achieved
performance

[GFLOPS]

Kernel function
speed up [x]

ММ00 30,37146 70,70729 1241,20377

ММ01 10,03508 213,99748 2559,39281

ММ02а 6,01385 357,08930 3221,13731

ММ02b 5,51768 389,20009 3350,28418

ММ03 4,52679 474,39410 3429,90761

ММ04 4,09799 524,03272 3706,34096
Table 5. Efficiency of the algorithm that integrates the
technique that changes thread granularity, the data pre-
fetching technique, and the loop unrolling technique.

4. Conclusion

The presented results in this study show that GPGPU
provides an opportunity for a significant performance
improvement or a decrease of the execution time of
parallelizable algorithms.

The initial transformation from serial but parallelizable
algorithm into a parallel version of the algorithm which will
be executed on a heterogeneous CPU/GPU system is
relatively straightforward, but the achieved speed up usually
is not satisfactory. The initial transformation usually does
not exploit the resources and processing capabilities of the
GPU device. For an efficient parallel CUDA algorithm, the
GPU characteristics and its memory hierarchy need to be
considered in order to apply a set of appropriate
optimization techniques.

The initial naive parallel algorithm for the problem of
matrix-matrix multiplication when the matrices dimensions
are 1024x1024 provides a function speed up of 1241x. The
improved algorithm that uses shared memory and tiling
technique gives a function speed up of 2559x. By applying
the technique that changes the block granularity, a function
speed up of 3350x is achieved, and by applying the
technique that changes the thread granularity, the result is a
function speed up of 3429x. Further improvement of the
algorithm with the data pre-fetching and loop unrolling
leads to a function speed up of 3706x.

The programmer should properly choose the memory
location where the data will be stored based on the
algorithm that needs to be parallelized, the characteristics of
the GPU device, and the CUDA memory hierarchy.

44

References

[01] David B. Kirk, Wen-mei W. Hwu; Programming
Massively Parallel Processors; Elsevier; 2010;
ISBN: 978-0-12-381472-2

[02] NVIDIA Corporation; NVIDIA CUDA C
Programming Guide Version 4.0; March 2011

[03] NVIDIA Corporation; NVIDIA CUDA C
Programming Guide Version 4.0; March 2011

[04] NVIDIA Corporation; NVIDIA Best Practice
Guide Version 4.0; March 2011

[05] Chang Xu, Steven R. Kirk, Samantha Jenkins;
Tiling for Performance Tuning on Different
Models of GPUs; Pages: 500 – 504; IEEE
Explore, December, 2009; ISBN: 978-1-4244-
6325-1

[06] Tushar Athawale, Xie Xu; Optimization
Techniques for CUDA application; Department
of Computer and Information Science and
Engineering, University of Florida; 2012

[07] Yuri Torres, Arturo Gonzalez-Escribano, Diego R.
Llanos; Understanding the Impact of CUDA
Tuning Techiques for Fermi; in Int.Conf. on
High Performance Computing and Simulation,
HPCS 2011; 2011; pages:631-639

[08] Laurent Badduel, Francoise Baude, Denis
Caromel, “Object-Oriented SPMD”, Proceedings
of the Fifth IEEE International Symposium on
Cluster Computing and the Grid, Volume 2, Pages:
824-831, 2005

[09] John Nickolls, Ian Buck, Michael Garland, Kevin
Skadron; Scalable Parallel Programming with
CUDA; ACM Queue-GPU Computing; Volume 6
Issue 2, Pages: 40-53; March/April 2008

[10] Mahmoud Hassaballah, Saleh Omran, Youssef B.
Mahdy; A review of SIMD Multimedia
Eztensions and their Usage in Scientific and
Engineering Applications; The Computer
Journal, Volume 51, Issue 6, Pages:630-649;
November 2008

45

