
OpenCL Implementation of a Color Based Object Tracking
Marko Jocić, Đorđe Obradović, Zora Konjović, Daniel Tertei

{m.jocic, obrad, ftn_zora}@uns.ac.rs, danieltertei@gmail.com

University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia

Abstract – in this paper we present an algorithm for real-
time object tracking based on color. Firstly, a two-layer
perceptron is trained aimed at coping with scene
illumination changes. Based on this training, a piece of
OpenCL code is generated for the purpose of harnessing
the power of GPU computing. Then, color based object
tracking is done in four steps, and finally a fast connected
component labeling algorithm is applied for determining
distinct regions, with only the largest one selected and
tracked on the image. Proposed algorithm is executed
both on CPU and on GPU for comparative analysis.

1. INTRODUCTION

Real-time object tracking is the critical task in many
computer vision applications such as surveillance
perceptual user interfaces, augmented reality, smart
rooms, object-based video compression, and driver
assistance [1].

The proliferation of high-powered computers, the
availability of high quality and inexpensive video
cameras, and the increasing need for automated video
analysis has generated a great deal of interest in object
tracking algorithms [2].

Tracking objects can be complex due to [2]:

 loss of information caused by projection of the
3D world on a 2D image,

 noise in images,

 complex object motion,

 non-rigid or articulated nature of objects,

 partial and full object occlusions,

 complex object shapes,

 scene illumination changes, and

 real-time processing requirements
Selecting the right features plays a critical role in
tracking. In general, the most desirable property of a
visual feature is its uniqueness so that the objects can be
easily distinguished in the feature space. Feature selection
is closely related to the object representation. For
example, color is used as a feature for histogram-based
appearance representations, while for contour-based
representation, object edges are usually used as features
[2].

Color provides powerful information for object
recognition and tracking moving objects based on color
information is more robust than systems utilizing motion
cues [3] [4].

Among all features, color is one of the most widely used
for tracking. Despite its popularity, most color bands are
sensitive to illumination variation. The apparent color of
an object is influenced primarily by two physical factors:
the spectral power distribution of the illuminant, and the
surface reflectance properties of the object. In image
processing, the RGB color space is commonly used to
represent color. However, the RGB space is not a
perceptually uniform color space, that is, the differences
between the colors in the RGB space do not correspond to
the color differences perceived by humans [5].
Additionally, the RGB dimensions are highly correlated.
In contrast, L*u*v* and L*a*b* are perceptually uniform
color spaces, while HSV is an approximately uniform
color space. However, these color spaces are sensitive to
noise [6].

Due to noise in images, and in order to be able to cope
with scene illumination changes, we used a simple
artificial neural network (ANN) – a two-layer perceptron
[7] to calculate the value of membership function for each
pixel on the image, which represent a degree of similarity
between the pixel’s color and the desired color of object
that should be tracked.

Real-time image segmentation requires fast and effective
way of computing certain data for each pixel of the
image. To achieve this, we created automatic generation
of code for OpenCL framework, which then runs on
graphics processing unit (GPU).

This paper consists of seven sections. Following this
introductory section and OpenCL technical overview
section, the training of the proposed artificial neural
network is shown in section three. Color based object
tracking algorithm is described in fourth section. Section
five shows comparative results of presented algorithm
running both on CPU and on GPU. Sixth section contains
one example of practical application of the proposed
algorithm. The final section contains concluding remarks
and future research directions.

7



2. OpenCL

OpenCL™ is the first open, royalty-free standard for
cross-platform, parallel programming of modern
processors found in personal computers, servers and
handheld/embedded devices. OpenCL (Open Computing
Language) greatly improves speed and responsiveness for
a wide spectrum of applications in numerous market
categories from gaming and entertainment to scientific
and medical software [8].

OpenCL code platform modes consist of one host and one
or more compute devices, where each compute device is
composed of one or more compute units, and each
compute unit is further divided into one or more
processing elements. The main idea for speeding up
program execution and computing with OpenCL is by
replacing traditional loops with data and task parallel
OpenCL code. So, serial code still executes in Host
(CPU) thread, while parallel code executes in many
Device (GPU) threads across multiple processing
elements.

An OpenCL application runs on a host which submits
work to the compute devices. OpenCL execution model
consists of [9]:

 Work-item: the basic unit of work on an
OpenCL device (work-items are grouped into
local work-groups)

 Kernel: the code for a work item. Basically a C
function (more specifically C99 (ISO/IEC
9899:1999), a past version of the C
programming language)

 Program: Collection of kernels and other
functions (Analogous to a dynamic library)

 Context: The environment within which work-
items execute. Includes devices and their
memories and command queues

 Command Queue: A queue used by the Host
application to submit work to a Device. A
sequence of commands scheduled for execution
on a specific device

In order to efficiently harness the power of this parallel
programming model, first the task has to be decomposed
into work-items, meaning that N-dimensional
computation domain has to be defined. Then, a kernel at
each point in computation domain is executed.
Programming kernels is done with OpenCL C language.
This language is subset of C99, but without some features
such as function pointers, recursion, variable length arrays
and bit fields. In addition, it is a superset of C99 with
additions for work-items and work-groups, vector types,

synchronization and address space qualifiers. OpenCL
language also includes a large set of built-in functions,
such as image manipulation, work-item manipulation,
specialized math routines, etc.

3. ANN TRAINING

In order to calculate membership function value for each
pixel on the image, a simple two-layer perceptron is used.
Proposed ANN consists of three input neurons, three
neurons in the hidden layer and one output neuron (Figure
1). Sigmoid function is used as an activation function.
Hue, saturation and value values are fed to input neurons.

te
tf 


1

1
)(

Figure 1 – artificial neural network structure

Training set for this ANN consists of two distinct parts.
First part contains positive examples (object color that
should be tracked), with output neuron value set to 1. The
other part contains negative samples (color that should
not be tracked), with output neuron value set to 0. Figure
2 shows an example where four points from the red
marker are taken as positive examples, and all the rest are
taken as negative examples.

Figure 2 – training set example

8



The network is trained with backpropagation algorithm
[10]. After the network is trained, OpenCL kernel code
for calculating value of output neuron is generated. This
can be done because the proposed network is simple and
the value of output neuron can easily be calculated by
formula based on trained network’s weights and neuron
biases.

Value of output neuron can be calculated as:

R = f(f(H* W1
11 + S* W1

21 + V* W1
31 + B1

1)* W2
11 + f(H*

W1
12 + S* W1

22 + V* W1
32 + B1

2)* W2
21 + f(H* W1

13 + S*

W1
23 + V* W1

33 + B1
3)* W2

31 + B2
1).

Here, f is a sigmoid activation function, H, S and V are
Hue, Saturation and Value values respectively, and Wk

ij

are network weights.

For the ANN trained on the previously shown example of
red marker, the resulting generated piece of OpenCL code
looks like this:
float result = sigmoid(sigmoid(h * 0.2993147f +

s * 2.3967974f + v * 1.8910142f - 5.1325531f) *

7.5345923f + sigmoid(h * 0.9216228f + s *

2.5096687f + v * -0.5978528f - 0.4280259f) *

3.4976720f + sigmoid(h * 0.2387477f + s *

2.2689740f + v * 1.76323059f - 5.0153077f) *

7.1598966f - 10.5906315f)

4. COLOR BASED OBJECT TRACKING
ALGORITHM

Proposed color based object tracking algorithm consists
of four steps, as shown in Figure 3. Firstly, a raw image is
blurred in order to reduce image noise. For this purpose,
Gaussian blur with standard deviation equal 1 is used.
The second step is based on our previous work [11]. A
classical fuzzy set is created from the image, by
calculating membership function value for each pixel on
the image. This is done both on CPU (as an output from
previously trained ANN) and on GPU (with previously
generated OpenCL code) to compare performances later.
Output for each pixel is real value in range [0,1].
Following this step, α-cut is applied to the resulting
classical fuzzy set, which produces a classical set, or more
precisely a binary image, where all pixels on the image
either do satisfy certain minimal membership value (white
pixels) or do not satisfy this criteria (black pixels).
Concluding with these first three steps, the image
segmentation is done. The fourth and the last step is
applying fast connected component labeling algorithm
[12] to detect regions, and once all the distinct regions are
detected, the largest one is selected and tracked. Figure 4
illustrates application of the proposed algorithm.

Figure 3 – color based object tracking algorithm diagram

Figure 4 – an example result of the proposed algorithm

5. PERFORMANCE ANALYSIS

In order to show performance increase when using
parallel OpenCL code that executes on GPU, opposed to
serial code that executes on CPU, a series of performance
measurements are done for various image resolutions.
Images (or frames) are fed to the algorithm through the

marked object

9



web camera and then processed. Performance is measured
in processed frames per second (FPS), where maximum
value of FPS on the used web camera (Logitech C525 HD
Webcam) is 30. Measurements were done on the system
with Intel Core i5-2320 CPU, NVidia GeForce GT 420
GPU, and 8GB of RAM. Results are shown in Table 1.

Table 1 – comparative performance results

Resolution Performance

320x240
(76.8K pixels)

GPU 29.6 FPS

CPU 17.2 FPS

GPU vs. CPU increase 72.1%

640x480
(307.2K pixels)

GPU 14.7 FPS

CPU 4.3 FPS

GPU vs. CPU increase 241.7%

800x600
(480K pixels)

GPU 9.5 FPS

CPU 2.6 FPS

GPU vs. CPU increase 265.4%

1280x960
(1228.8K pixels)

GPU 3.7 FPS

CPU 0.9 FPS

GPU vs. CPU increase 311.1%

Performance analysis illustrates superiority of OpenCL
GPU computing to regular CPU computing, with
performance increasing from 70% on low resolutions, up
to 300% on full HD resolution.

6. AN EXAMPLE OF PRACTICAL APPLICATION

Implemented algorithm for color based image tracking
can be used to manually draw shapes with tracked object.
This can enhance video teaching lessons or can be used
for some kind of presentation purposes. An example of
this application, with red marker as drawing object is
shown in Figure 5.

Figure 5 – an example of practical application, real-time drawing with red marker

10



7. CONCLUSION

In this paper we proposed an algorithm for color based
object tracking. Proposed algorithm does image
segmentation and fast connected component labeling in
order to detect object that needs to be tracked based on its
color. To support real-time algorithm execution, it has
been implemented to run on GPU (with OpenCL). In
addition, it has been implemented to run on CPU (with
serial code) as well, for purposes of performance analysis,
where GPU has shown as superior to CPU, with
performance increase up to 300%. Future research
includes improvement of the current algorithm, in a way
to potentiate texture based object tracking. Also, as GPU
computing has shown remarkable results in speeding up
image segmentation, it can be used for fast and effective
medical image analysis.

REFERENCES

[1] P. Meer, “Kernel-based object tracking,” IEEE
Transactions on pattern analysis and machine
intelligence, vol. 25, no. 5, 2003.

[2] A. Yilmaz, O. Javed, and M. Shah, “Object
tracking,” ACM Computing Surveys, vol. 38, no. 4, p.
13–es, Dec. 2006.

[3] M. M. Asif, P. Angelov, and H. Ahmed, “An
Approach to Real-time Color-based Object
Tracking,” in Evolving Fuzzy Systems, 2006
International Symposium on, 2006, pp. 86 –91.

[4] T. Gevers and W. M. Smeulders, “Color based
object recognition,” Pattern recognition, vol. 32, no.
3, pp. 453–464, 1999.

[5] G. Paschos, “Perceptually uniform color spaces for
color texture analysis: an empirical evaluation,”
Image Processing, IEEE Transactions on, vol. 10,
no. 6, pp. 932–937, 2001.

[6] K. Y. Song, J. Kittler, and M. Petrou, “Defect
detection in random colour textures,” Image and
Vision Computing, vol. 14, no. 9, pp. 667 – 683,
1996.

[7] J. Freeman and D. M. Skapura, Neural networks:
algorithms, applications, and programming
techniques. Reading, MA: Addison-Wesley, 1991.

ACKNOWLEDGEMENT

Research presented in this paper is partly funded by the
Ministry of Education, Science and Technological
Development of the Republic of Serbia, Grant No. III
47003.

[8] “OpenCL - The open standard for parallel
programming of heterogeneous systems.” [Online].
Available: http://www.khronos.org/opencl/.
[Accessed: 19-Jan-2013].

[9] Khronos OpenCL Working Group, The OpenCL
Specification. 2010.

[10] R. Rojas, Neural networks: a systematic
introduction. Berlin; New York: Springer-Verlag,
1996.

[11] D. Obradovic, Z. Konjovic, E. Pap, and M. Jocic,
“Linear fuzzy space polygon based image
segmentation and feature extraction,” in Intelligent
Systems and Informatics (SISY), 2012 IEEE 10th
Jubilee International Symposium on, 2012, pp. 543 –
548.

[12] J.-M. Park, C. G. Looney, and H.-C. Chen, “Fast
Connected Component Labeling Algorihtm Using a
Divide and Conquer Technique.” University of
Alabama, Tuscaloosa.

11


