
Examining Repudiation Threats Using a

Framework for Teaching Security Design

Analysis

Nikola Luburić*, Goran Sladić*, Branko Milosavljević*
* Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

{nikola.luburic, sladicg, mbranko}@uns.ac.rs

Abstract—Secure software engineering is quickly becoming

the standard for software development, due to the ever-

increasing number of threats and attacks to software

systems. While practices such as secure coding and testing

can be achieved through automated tools, security

requirements engineering, and secure design are fields

which heavily rely on the security expertise of software

engineers. Unfortunately, this is a skill set that is both

difficult to teach and learn.

Recently, a framework for teaching security design analysis

was developed, based on case study analysis and the hybrid

flipped classroom. This paper builds on that work and

presents an application of our framework, where we

construct a laboratory exercise dedicated to teaching the

security design analysis for repudiation threats. Through

this work, we provide additional guidance for the usage of

our teaching framework and outline a laboratory exercise,

which can be used as part of a university course or a

workshop in a corporate training program.

I. INTRODUCTION

The Information Age is a name used to describe the
current stage in the evolution of the civilized world. It
represents a knowledge-based society surrounded by
software systems that enable a global economy and
intertwine government and business operations, as well as
everyday life, to increase overall efficiency and
convenience [1]. With such transformation, threats to
society that were present in the physical world, such as
crime and terrorism, are increasingly moving to the
cyberspace. The global interconnectedness, provided by
the Internet and software, has enabled threat agents to
perform attacks anonymously and from faraway parts of
the world. Such attacks occur daily, costing the global
economy billions of dollars each year [2].

Governments and businesses that wish to protect their
users, intellectual property, and operations, are making the
security of their software systems a top strategic priority
[3]. This requirement propagates down the supply chain,
where software vendors are required to engineer secure
software. Recent years have seen the rise of the security
development lifecycle (SDL), a comprehensive approach
to secure software engineering that augments all parts of
the software development lifecycle to make sure that
security is being built into the software solution [4].

High-level software security requirements are often
concerned with protecting business assets and are elicited
from standards, regulations, and industry best practices.

Such requirements are usually defined at a high level of
abstraction, focused around protecting the security
properties (i.e., confidentiality, integrity, availability) of
sensitive assets (e.g., user credentials, PII, mission-critical
system functions) [5]. Principal activities of the SDL
called threat modeling and security design analysis
(SDA), are concerned with processing high-level security
requirements and deriving actionable, low-level security
requirements that can be implemented and tested at the
code level [6]. Through SDA, software engineers analyze
how their system’s design fulfills the high-level security
requirements, and plan work items to increase the security
posture of their system accordingly. This approach
identifies vulnerabilities before they are introduced to the
code when they are least expensive to fix [7].

A problem with SDA is its inherent complexity, where
engineers performing SDA need to possess a combination
of security knowledge and attacker-oriented thinking,
referred to as the attacker or security mindset [8]. This
security mindset is both difficult to learn and teach,
limiting the efficient practice of SDA in the industry
[6][9].

In our previous work [10], we presented a framework
for teaching security design analysis, using a combination
of the case study analysis technique and the hybrid flipped
classroom. By utilizing our framework, we constructed
laboratory exercises for a course dedicated to secure
software engineering, with a focus on SDA. The resulting
labs consist of preparatory materials, where students learn
about various software security design patterns and
controls (e.g., secure communication, key management,
authentication, and authorization) before attending the lab.
During the lab, the focus is placed on learning how to
apply the given patterns and controls to different systems
(the case studies), through security design analysis. Our
experimental results showed that labs constructed
following our framework provided better learning
outcomes for SDA, compared to the traditional teaching
approach.

One of the limitations of our approach in [10] is the
complexity of using the framework itself. While it
requires more investment to construct the preparatory
materials, the biggest issue lies in coordinating the
different parts of the lab design (i.e., the case study, the
preparatory materials, and the learning outcomes) to
construct a coherent, concise, and complete lab. While we
provided a high-level demonstration of our framework
application, more in-depth guidance is called for to
understand how to utilize our framework.

Copyright 2019 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 221

This paper focuses on guiding the execution of the
framework presented in [10] to help resolve the issue
mentioned above. We illustrate the algorithm and thought
process for constructing one lab dedicated to teaching
security design analysis for Repudiation threats, defined as
part of the STRIDE threat analysis methodology [6]. We
discuss each step and offer insight into the intricacies of
using our framework. Secondary contributions of this
paper include an outline of a lab dedicated to teaching
how to design logging controls and integrate them into a
system to mitigate repudiation threats. While this lab can
be used as part of a university course, it can also be
realized as a workshop in a software vendor’s training
program.

The rest of the paper is structured as follows: In Section
II, we provide the background needed to understand the
presented work, including a brief overview of SDA and
STRIDE, as well as the components of our framework and
the usage process. Section III describes the framework
application, where we define the preparatory materials and
case study to be used for the lab. Here we also present the
lab exercise, created as a result of the framework
application, and illustrate the lab flow designed to achieve
the specified learning outcome. Finally, Section IV
concludes this paper with a discussion, offering additional
insight and ideas for further research.

II. BACKGROUND

In this Section, we provide the reader with the

necessary knowledge to grasp the content of this paper

fully.

Section II-A outlines security design analysis and the

STRIDE methodology in general, and places focus on

Repudiation. In Section II-B, we present an overview of

our teaching framework and highlight its components and

usage process.

A. Security Design Analysis

Security design analysis (SDA), sometimes called
threat modeling, is the practice of assessing the design of a
(software) system and its ability to resist attacks from
threat agents and protect the security properties (i.e.,
confidentiality, integrity, availability) of its sensitive
assets [6][9][10].

The term module is used to describe the target of SDA,
where a module can be anything from a software
component to an enterprise system. The inputs for SDA
include a set of design artifacts, such as data flow and
deployment diagrams, that describe the module, as well as
a set of high-level security requirements detailing the parts
of the system that need explicit protection. The output of
SDA is a list of work items (e.g., design changes, user
stories, research spikes) that need to be completed to
increase the security posture of the examined module. A
prerequisite to successful SDA is that the input design
artifacts are correct and that the team performing SDA has
a clear understanding of the module they are analyzing.

In general, the software engineering team performing
SDA needs to answer the following questions [6]:

• What are we building? – Define the scope of the
examined module.

• What can go wrong? – Identify applicable threats and
decompose them to determine attacks that can realize
them and vulnerabilities that can be exploited.

• What are we going to do about that? – Plan and
prioritize work items to resolve discovered
vulnerabilities.

• Did we do a good enough job? – Examine the quality
of the previous steps.

STRIDE [6] is a method for security design analysis
that helps answer the second question, offering a
taxonomy of threats to guide threat identification.
STRIDE is an acronym for Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service,
and Elevation of Privilege, where each threat represents a
class of attacks that can compromise a system or its assets.
When applied to data flows, STRIDE can be used to
generate relevant threats (following the STRIDE-per-
element or STRIDE-per-interaction method [6]), which
can then be decomposed to identify attacks and
vulnerabilities.

We examine repudiation threats in more detail, as they
are the primary learning outcome of the lab presented in
this paper. Repudiation is the denial of action or the denial
of inaction by a user. The term user throughout the rest of
this paper includes human users, services, devices, and
any entity that takes part in an action (e.g., sends or
receives a message, calls a function) [11]. Repudiation is
claiming that a button was not clicked (when it was) or
that a message was received (when it was not).
Repudiation can be deliberate (e.g., when the user wishes
to deceive) or it can be accidental (e.g., when the UI is
poorly designed, or a system error occurs causing the user
to believe an action did or did not happen when the
opposite is the case) [6].

B. Framework for Teaching Security Design Analysis

In [10], we presented a framework that utilizes the case
study analysis method, and the hybrid flipped classroom
to generate lab exercises dedicated to teaching SDA. Our
framework consists of the following parts:

• The SDA method that is the learning objective.

• One or more case studies which describe a software
system and that are modules for SDA.

• The preparatory materials that describe security
concepts (i.e., attacks, vulnerabilities, mitigations)
and which the trainees need to examine before the
lab.

• The labs themselves, as the output of the framework
execution, which describe how to apply SDA on the
selected case studies, utilizing the knowledge
provided by the preparatory materials.

Once the SDA method is selected, it is decomposed into
aspects, where each aspect is the learning objective of one
or more laboratory exercises. STRIDE, for example, can
be decomposed into six aspects, one for each letter.

Each aspect is analyzed to define relevant security
concepts (i.e., attacks, vulnerabilities, mitigations), for
which preparatory materials are created. These materials
can take any form, from text constructed for the lab to
publicly available resources (e.g., videos, blogs).

Considering both the SDA aspects and the identified
security concepts, requirements are defined for the case

222

study, so that a relevant case study is selected for SDA
analysis. For the example of repudiation, a suitable case
study should include sensitive functions and data, where
an essential requirement is to audit access to the data and
calls to the functions.

The final step of framework execution entails the
merger of all previous work (the SDA aspect, the
preparatory materials, and the case study) into a lab
exercise, where the flow of the lab is defined. The general
flow requires the trainees to go over the preparatory
materials before attending the lab. During the lab, they use
this knowledge to perform SDA on the selected case
study, guided by the trainer.

Following the hybrid-flipped classroom approach, we
found that students had less trouble understanding specific
security controls and attacks. On the other hand, they had
more difficulty identifying when and where to invoke the
control in the software’s design. For these reasons, we
offloaded the easier subject matter to the preparatory
materials, while putting more emphasis on growing the
security mindset during the labs.

The complete framework presented in [10] is more
complex and entails additional steps not mentioned here,
as it is designed to produce multiple lab exercises to cover
the whole SDA method. For this paper, we take a
simplified look at our framework, as only one laboratory
exercise is produced comprising the Repudiation aspect of
STRIDE.

III. FRAMEWORK APPLICATION FOR TEACHING

REPUDIATION THREAT ANALYSIS

In this Section, we present an application of the
teaching framework described in [10], to offer guidance
for its use. We construct a lab exercise that tackles
repudiation threats and mechanisms for their mitigation in
software systems.

Section III-A describes the security concepts (i.e.,

attacks, vulnerabilities, mitigations) relevant for handling

repudiation threats and presents the preparatory materials

for the lab. Section III-B discusses the case study

requirements and describes a suitable case study. Finally,

in Section III-C, we show the flow of the laboratory

exercise.

A. Preparatory Materials

The main vulnerability that enables repudiation threats

in software systems is missing or poorly design logging

mechanisms [6]. Log files contain entries that track the

events of a system. On the one hand, they offer insight

into a system’s (mis)behavior, aiding software engineers

in debugging issues. On the other hand, they offer non-

repudiation, by recording user actions. While the concept

of an event logger is simple, correctly implementing

logging controls throughout the system to achieve non-

repudiation can be difficult [11].

Recently, the IEC organization has released a standard

describing technical security requirements for industrial

automation and control systems [11], detailing many

security controls and component requirements (CR),

including a logging mechanism for non-repudiation. We

use this document as a basis for our preparatory materials

and from it derive the following requirements for our

logging mechanism (the related requirements from the

standard are noted in the braces):

1. Completeness – Each log entry needs to contain

enough data to prove non-repudiation of an action

(CR 2.8) and each event for which non-repudiation

is required needs to be logged (CR 2.12).

2. Reliability – Logging needs to be reliable, which is

achieved by ensuring the availability of the

mechanism (CR 2.9, CR 2.10) and integrity of the

log files (CR 3.9, CR 6.1).

3. Accuracy – Log entries across the system need to

state their creation time precisely (CR 2.11).

Apart from the requirements derived directly from the

standard, we add two requirements that improve the

efficiency of the logging mechanism:

4. Usability – The logging mechanism needs to be

designed so that security-relevant events (e.g., those

that provide non-repudiation) can be easily extracted

from the log files.

5. Minimalism – The logging mechanism should create

the minimal amount of log entries needed to serve

its purpose, to avoid cluttering the log files.

As log files contain system events that are used

primarily for debugging, we need to make sure that

security events are not buried and lost due to a large

amount of non-security events.

Based on these requirements, we construct a three-page

white paper to serve as preparatory materials for the lab.

The document explains the danger of repudiation,

illustrates it through real-world examples and describes

the motivation behind it. The paper concludes by

explaining event logging and details the requirements for

an efficient and secure logging mechanism.

B. Case Study

Audit records need to be generated for access control,

request errors, critical system events, backup and restore

events, configuration changes, and audit log events, as

noted in [11], CR 2.8. Furthermore, CR 2.10 defines

additional activities that require logging, including

performing system actions, creating or changing

information, and sending messages.

Based on this list, we conclude that any software

system that interacts with human users and has some

sensitive assets can be used as a case study. As the SDA

aspect and relevant security concepts do not impose

significant limitations for our case study selection, we

look to find a case study that is familiar to the audience

that will be attending the lab. In our case, the lab is

conducted as part of a fourth-year undergraduate course

on the topic of secure software engineering. For this

context, we choose the software system of a software

vendor as our case study.

The information system of a software vendor contains

a wide array of sensitive assets, including intellectual

property (e.g., source code, design documents), data (e.g.,

employee PII, financial data, customer correspondence),

and mission-critical systems (e.g., source code

repositories, testing servers). Software vendors can be

targets of sophisticated attackers, including

cybercriminals looking to steal intellectual property and

223

sensitive data and corporate espionage aiming to take

intellectual property and sabotage the vendor’s systems.

Perhaps the most significant threat is posed by

disgruntled employees, as they have internal access to the

system and software engineering skills.

For these reasons, the standard on secure software

engineering issued several requirements for securing the

environment in which the software is developed [4],

including requirements for non-repudiation.

C. Lab Flow

The trainees are required to go over the white paper
describing repudiation and logging before attending the
lab. At the start of the lab, the trainer conducts a brief
discussion with the trainees to summarize the main points
of the preparatory materials.

After the initial recap, the trainer presents the case
study, introducing ACME corporation as a software
vendor that produces software for industrial automation
and control systems. The context of the vendor is given,
the different software systems used by its employees, as
well as the critical assets that need to be protected. The
trainer takes care to introduce the main points of the
system that need to be protected, without making them
obvious. This information is masked with irrelevant
information and low priority assets. However, care is
taken not to bloat the presentation too much, to avoid loss
of interest from the trainees. The presentation concludes
with data flow and deployment diagrams of the ACME
corporation, as they offer a view of the module suitable
for security analysis.

Once the case study is presented, a discussion takes
place to examine the security considerations for the given
system. It is guided by the trainer and is an excellent
opportunity to repeat course materials from previous labs
or courses, especially if the presented case study is new
and has not been examined during previous labs.

Ultimately, the discussion arrives at repudiation threats.
The trainees examine the ACME system and try to find
actions that a user might have reason to rebut. They
identify interfaces between the human users and the
software and discuss where and how the actions need to
be logged. The goal of this discussion is to fulfill the
Completeness requirement of the logging mechanisms, as
well as obtain an understanding that logs can be generated
at different levels of the software system (e.g., operating
system, web server, application software).

Once most of the system events requiring non-
repudiation have been mapped, the trainees expand the
data flow diagrams with log data stores. At this point, the
trainer directs the discussion towards the Reliability
requirement, examining how the logging mechanism can
be protected from tampering and denial of service.
Scenarios that detail attacks are discussed, and the trainees
determine appropriate security controls and design
changes to protect the logging mechanisms.

The trainer addresses the final security requirement,
Accuracy, by explaining how the network time protocol
and GPS time synchronization protocols [12] can be used
to create system-wide time synchronization. The design of
ACME’s system is expanded with these controls, and their
security is discussed.

Finally, the software engineering requirements of
Usability and Minimalism are addressed. The trainer
divides the trainees into teams and asks them to design an
application logging mechanism that can answer the
following user stories:

“As a data protection officer, I want to quickly examine
all access requests to GDPR [13] related data, so that I can
examine if there is an anomaly in the system’s behavior.”

“As a reliability engineer, I want to quickly examine all
mission-critical function calls, so that I can monitor
performance to prevent a denial of service.”

“As a software engineer, I want to examine log entries
when an error occurs in a system, so that I can triage the
bug and resolve the issue.”

At the end of this exercise, each team presents their
design and argues how it can fulfill the listed user stories.
All trainees take this opportunity to discuss the pros and
cons of each approach.

At the end of the lab, the trainer summarizes the main
learning points of the lab and offers additional exercises
and reading materials. The flow of the lab is illustrated in
Figure 1, where the arrows originating from the trainees
and trainer signify whether the user is the driver of an
activity.

Figure 1. Flow of laboratory exercise dedicated to security design

analysis for repudiation threats

224

IV. CONCLUSION

In this paper, we demonstrated the application of our
framework for teaching security design analysis [10], to
offer low-level guidance for the framework’s use.

We focused on the Repudiation threat, one of the six
aspects of the STRIDE threat analysis method, selecting it
as the learning goal of the lab. By examining a recent
industry standard [11], we identified requirements for
security controls that mitigate repudiation threats. We
constructed the preparatory materials guided by this
source. Next, we selected a suitable case study for security
design analysis, considering the trainees’ familiarity with
the chosen software system. Finally, we merged all the
materials to design a laboratory exercise that utilizes the
case study analysis, and hybrid flipped classroom teaching
approach.

The presented lab, along with the outlines of the
preparatory materials and case study, can be used to
construct a lab for a university course and is suitable for a
workshop held as part of a software vendor’s training
program.

Exploring new teaching methods that increase the
quality of the learning outcomes is a never-ending task.
When it comes to secure software engineering, there is a
clear need to advance the security expertise of software
engineers, to combat the growing threat of cyberattackers.
With our teaching framework, we aim to tackle this issue
and provide an efficient way for software engineers to
learn about security design analysis.

Further work includes exploring alternative teaching
approaches, such as gamification or e-learning, to see if
they increase the quality of the learning outcomes.
Furthermore, we need to determine the appropriate
balance between the burden of examining preparatory
materials and the learning value derived from them.

REFERENCES

[1] Castells, M., 1996. The Information Age: Economy, Society and
Culture. Volume I. The rise of the network society.

[2] Tarter, A., 2017. Importance of Cyber Security. In Community
Policing-A European Perspective (pp. 213-230). Springer, Cham.

[3] James, L., 2018. Making cyber-security a strategic business
priority. Network Security, 2018(5), pp.6-8.

[4] International Electrotechnical Commission (IEC). 2018. 62443-4-
1: Security for industrial automation and control systems, part 4-1:
Product security development life-cycle requirements. USA.

[5] Luburić, N., Sladić, G., Milosavljević, B. and Kaplar, A., 2018.
Demonstrating Enterprise System Security Using an Asset-Centric
Security Assurance Framework. In International Conference on
Information Society and Technology (ICIST 2018).

[6] Shostack, A., 2014. Threat modeling: Designing for security. John
Wiley & Sons.

[7] Security Innovation Europe, The Business Case for Security in the
SDLC, source: cdn2.hubspot.net/hub/355303/file-559719186-
pdf/whitepapers/business-case-appsec.pdf?t=1471855549672,
retrieved: 5.12.2018.

[8] Mansfield-Devine, S., 2017. Threat hunting: assuming the worst to
strengthen resilience. Network Security, 2017(5), pp.13-17.

[9] Brook SE Schoenfield. 2015. Securing systems: Applied security
architecture and threat models. CRC Press.

[10] Luburić, N., Sladić, G., Slivka, J. and Milosavljević, B., 2019. A
Framework for Teaching Security Design Analysis Using Case
Studies and the Hybrid Flipped Classroom. ACM Transactions on
Computing Education (TOCE), 19(3), p.21.

[11] International Electrotechnical Commission (IEC). 2018. 62443-4-
2: Security for industrial automation and control systems, part 4-2:
Technical security requirements for IACS components. USA.

[12] Mills, D.L., 2016. Computer network time synchronization: the
network time protocol on earth and in space. CRC Press

[13] Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation).

225

