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Abstract—Technical Debt (TD) is commonly used in practice
as a measure of software quality. Due to the potential overlap
between software quality and software security, an interesting
topic is to investigate whether TD can be used as a software
security indicator as well. However, although some software-
related factors (e.g. software metrics) have been studied for
their ability to indicate security risk in software products, no
research attempts exist specifically focusing on TD. To this
end, in the present study, we empirically evaluate the ability
of TD to indicate security risks in software products. For
this purpose, a relatively large code repository comprising 50
open-source software applications was constructed and analyzed
using popular open-source static analysis tools, in order to
calculate their TD and security level (i.e. vulnerability density).
Subsequently, statistical analysis was employed, to assess the
relationship between TD and software security. The results of
the empirical study revealed a statistically significant positive and
strong correlation between the TD and the vulnerability densities
of the studied software products. This provides preliminary
evidence for the ability of TD to be used as an indicator of
software security. To the best of our knowledge, this is the first
study that empirically evaluates the relationship between TD and
software security.
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I. INTRODUCTION

Secure software development demands the identification and
mitigation of security risks early enough in the overall software
development lifecycle (SDLC) [1]. For this purpose, appro-
priate mechanisms are needed to help software developers
detect and remove potential security issues before the final
release of software products [2], [3]. Vulnerability prediction
is a common mechanism, which focuses on predicting the
existence of various security issues (i.e. vulnerabilities) in
software products. This information may be leveraged by
software developers and engineers for prioritizing their testing
and fortification efforts. Even though it is a relatively new area
of research, numerous research attempts have been conducted,
focusing chiefly on the ability of several software-related
factors (e.g. software metrics) to predict the existence of
vulnerabilities in software [4]–[9].

Technical Debt (TD) [10] is an appealing factor which de-
serves individual merit regarding its ability to indicate security
risks in software products. TD is inspired by the financial
debt and used to quantify long-term quality problems of soft-
ware products, which are caused by quality compromises that
provide short term benefits. Strict production deadlines often
force developers to focus mainly on the code they produce,
and therefore neglect its quality, leading to the introduction
of design and code quality issues. Design quality issues are
often termed as code smells, while code quality issues refer
to poorly written code that violates the best coding practices
or coding rules. These quality issues require future rework
for their correction. Systematically avoiding fixing the quality
issues leads to the aggregation of the effort required for their
mitigation. TD is a measure of the effort required for fixing
these issues in the future, and is used as a measure of quality.
Hence, the higher the TD of a software product, the more the
unresolved quality issues that it contains, and the poorer its
overall quality.

Consequently, it is reasonable to expect that some of the
quality compromises that are made by the developers may po-
tentially have security implications since most of the security
vulnerabilities that a software product contains are caused by
coding and design errors [1]. However, the relationship be-
tween different software-related factors and software security
has been extensively studied in the literature (i.e. software
metrics [4]–[6], text features [7], [11], or even popularity [9]).
To the best of our knowledge, no studies are documenting
the attempts to investigate the relationship between software
security and TD.

To this end, in the present paper we attempt to empirically
evaluate the relationship between TD and software security.
The problem that the present work attempts to solve can be
summarized in the following research question:

RQ: Is Technical Debt closely related to software
security?
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A positive answer to this question will suggest that TD may
highlight potential security risks in software products and that
it may be used as an indicator of software security. In other
words, this will indicate that TD can potentially be used as the
basis for the construction of vulnerability prediction models.

In order to provide answers to the aforementioned research
question an empirical study was conducted. In particular, we
initially constructed a relatively large code repository compris-
ing 50 real-world open-source Java applications retrieved from
the GitHub1 online repository. The software applications of the
resulting benchmark repository were analyzed using popular
static code analyzers, to calculate their TD as well as their se-
curity level. Subsequently, statistical analysis was employed, to
determine whether a statistically significant correlation exists
between their TD and security level. Hypothesis testing was
also employed, in order to reach safer conclusions regarding
the significance of the observed results. To the best of our
knowledge, this is the first study in the field of vulnerability
prediction that investigates the relationship between TD and
software security.

The reminder of the paper is structured as follows: Section
II discusses the related work in the field of vulnerability
prediction. Section III describes the experiment setup, while
Section IV presents the results of the experiment. Finally,
Section V concludes the paper and discusses ideas for future
work.

II. RELATED WORK

Numerous research endeavors can be found in the field of
software security focusing on the ability of several factors
to indicate security risks (e.g. vulnerabilities) in software
products. The vast majority of them emphasized specifically on
the ability of common software metrics to predict the existence
of security issues in software components. In particular, Shin et
al. [4], [5] and Chowdhury et al. [12] were the first to observe
the ability of common coupling, cohesion, and complexity
(CCC) metrics to indicate security risks in software products.
Based on these metrics they also proposed vulnerability pre-
diction models, which demonstrated promising results [13],
[14]. These observations were supported by the results of a
large number of follow-up studies (e.g. [6], [15]), which also
considered additional metrics.

Apart from software metrics, significant emphasis was also
given on static information retrieved directly from the source
code, including keywords and static analysis alerts. Neuhaus
et al. [7] were the first to investigate the ability of specific
keywords (i.e. import statements and function calls) to indi-
cate the existence of security issues in software components.
Based on their observations, more elaborate studies focusing
on text-mining of source code have been conducted (e.g.
[11]). Regarding static analysis alerts, the most representative
attempt was made by Gegwick et al. [8], who showcased that
a close relationship exists between the densities of security-
relevant static analysis alerts and actual vulnerabilities. This
observation was also supported by recent studies (e.g. [16]).

1https://github.com

Recently, the research community shifted its focus towards
factors that are not directly related to the source code of
software applications. For instance, Roumani et al. [17] exam-
ined the relationship between the firm’s financial records (e.g.,
size, financial performance, sales, research and development
expenditures etc.) and security vulnerabilities that may exist
in their software products, revealing a strong association
between these two factors. In addition, in a recently published
empirical study, Siavvas et al. [9] examined the relationship
between the popularity of open-source software applications
and their security level (i.e. vulnerability density), leading to
the conclusion that popularity may not be a reliable indicator
of software security.

Although several highly divergent factors have been studied
for their ability to indicate security risks in software products,
no research attempt exists explicitly focusing on TD. There-
fore, the purpose of the present study is to empirically evaluate
the relationship of TD with software security, and the ability
of TD to indicate security risks in software products.

III. EXPERIMENT SETUP AND METHODOLOGY

A. Benchmark Repository

For the present study, a relatively large benchmark repos-
itory of software applications was constructed. In particular,
we mined the online GitHub repository and retrieved a large
number of real-world open-source software applications writ-
ten in Java programming language based on their popularity.
From the retrieved software applications, we kept only those
that were able to compile without any errors or warnings
successfully. This resulted in a benchmark repository of 50
open-source Java applications, comprising approximately 1.7
million lines of code. It should be noted that compilation
was necessary since the static code analyzers that were used
in the present study for calculating the TD and the security
level of the software products require the binary files of the
applications to execute.

B. Indicator of Software Security

The Static Analysis Vulnerability Density (SAVD) [18] was
selected as an indicator of software security. The Vulnera-
bility Density metric [19] is defined as the total number of
vulnerabilities that a software product contains per thousand
lines of code. The SAVD is the Vulnerability Density metric
that is calculated based on vulnerabilities reported by static
analysis tools. SAVD has been widely used in the literature as
an indicator of software security [6], [9], [20], as well as for
the conduction of vulnerability prediction [8].

In order to quantify the SAVD of the selected software
applications, the FindBugs [21] static code analyzer was
utilized. FindBugs is a popular open-source static analysis tool
for Java applications, widely used in the literature for security
auditing purposes (e.g. [9]). Similarly to [9], the tool was
properly configured in order to detect only security-relevant
issues (i.e. bugs), which belong to the bug categories of
Performance, Malicious Code, and Multithreaded Correctness
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provided by FindBugs. We also included another 128 security-
related issues that belong to the Security bug category provided
by the FindSecurityBugs2 plugin, which is a popular FindBugs
plugin.

C. Indicator of Technical Debt

Several models and methods for the calculation of TD have
been proposed over the years [22], with the SQALE method
to be the most popular among them [23]. For this purpose,
in the present work we decided to use the SQALE method
for quantifying the TD of the selected software products,
and particularly the SQALE Index plugin that is provided by
SonarQube3, which is a popular static analysis platform for
detecting software issues (e.g. bugs, code smells, etc.) and for
monitoring TD.

The SQALE Index, since it is a measure of TD, quantifies
the effort that is required by the developers in order to fix all
the code smells that reside in the analyzed software product.
This effort is expressed in minutes by SonarQube. However, it
is evident that the actual value of the SQALE Index depends
on the size of the software products. Larger software products
are expected to have more quality issues, and, in turn, more
effort will be required for their correction, which is reflected
as higher TD. Hence, in order to avoid being biased by the
size of the software products, and to make the products directly
comparable concerning their TD, similarly to [24], we decided
to normalize the SQALE Index by the size (i.e. lines of code)
of the software products. We term the normalized SQALE
Index as SQALE Density and we use it as the indicator of
TD.

D. Statistical Analysis

SonarQube and FindBugs were employed in order to cal-
culate the SQALE Density and the SAVD of each one of
the software products that reside in the selected benchmark
repository. Based on these values, two individual rankings
of the selected products were produced, one based on their
TD (i.e. SQALE Density) and another based on their security
(i.e. SAVD). The two rankings were compared using the
Spearman’s rank correlation coefficient (ρ) [25], which is a
non-parametric and non-sensitive to outliers test. In order to
assess the strength of the calculated correlation the thresholds
proposed by Cohen et al. [26] were used. According to Cohen
et al. [26], a correlation value higher than 0.5 is considered
strong, between 0.3 and 0.5 is considered moderate, and below
0.3 is considered low. The statistical significance of the results
was tested at 95% level of confidence. Similar approaches have
been used in the related literature (e.g. [4], [9], [27]).

IV. RESULTS AND DISCUSSION

In Table I the selected software applications, along with
their SQALE Densities, SAVDs, and their corresponding
rankings are presented. As already mentioned, in order to
provide answer to the formulated RQ, statistical testing

2https://find-sec-bugs.github.io/
3https://www.sonarqube.org/

was applied. More specifically, we initially calculated the
Spearman’s rank correlation coefficient (ρ) between the
two rankings, in order to examine whether there is any
relationship between TD and software security. In order to
reach safer conclusions regarding the significance of the
observed relationship, the following null hypothesis was
formulated and tested at the 95% (a = 0.05):

H0: No statistically significant correlation exists between
the two rankings.

H1: A statistically significant correlation exists between
the two rankings.

TABLE I: The SQALE Densities, the SAVDs and the cor-
responding rankings of the analyzed open-source software
applications.

Project Name SQALE Density SAVD SQALE Ranking SAVD Ranking
aho-corasick 0.100751 0 12 1
BIMserver 0.320257 1.586809 48 33
docker-client 0.09464 0.339591 11 5
emoji-java 0.122463 0.532765 15 10
EMV-NFC-Paycard-Enrollment 0.080121 1.010729 10 19
essentials 0.218784 2.356457 33 49
fast-serialization 0.434894 1.645736 50 37
ffmpeg-cli-wrapper 0.152304 1.312203 22 22
geohash-java 0.157101 0.8663 24 16
GeoIP2-java 0.071523 0.4 6 9
gifencoder 0.049389 0.363636 4 7
HotswapAgent 0.270131 1.533333 44 29
hutool 0.182167 1.542039 29 31
imgscalr 0.160807 1.128243 26 20
incubator-dubbo 0.343403 1.766615 49 44
infinitest 0.136301 0.856664 17 15
j2v8 0.243073 2.066902 40 47
Java-Chronicle 0.277928 1.581333 46 32
java-client-api 0.176241 1.352874 28 24
java-speech-api 0.143185 1.528013 19 27
JavaVerbalExpressions 0.032989 0 2 1
jcabi-aspects 0.045878 0.798722 3 12
jesque 0.182275 1.728866 30 43
jimfs 0.079692 0 9 1
jInstagram 0.148015 1.66372 21 39
jmustache 0.220505 2.060439 35 46
jongo 0.155766 0.851498 23 14
JSqlParser 0.077733 0.249231 8 4
lanterna 0.165803 1.59815 27 34
mapstruct 0.116729 0.730215 13 11
mbassador 0.160088 1.382579 25 26
mp3agic 0.220133 1.633259 34 36
mybatis-3 0.273134 1.813956 45 45
netty-restful-server 0.248489 1.697235 41 42
obd-java-api 0.225306 1.368791 38 25
okhttp 0.221066 1.337507 36 23
open-replicator 0.142396 1.528384 18 28
opsu 0.22425 2.278014 37 48
paho.mqtt.java 0.278734 1.536873 47 30
pcap4j 0.147341 1.244906 20 21
spring-roo 0.215516 1.667379 32 40
ta4j-origins 0.077285 0.396877 7 8
takes 0.025682 0.831699 1 13
threetenbp 0.122252 0.351932 14 6
thumbnailator 0.056834 0.89481 5 18
traccar 0.123737 0.872846 16 17
unirest-java 0.267268 1.658833 43 38
webbit 0.209792 1.695142 31 41
XChart 0.251977 2.503507 42 50
xmemcached 0.230889 1.609042 39 35

The calculated Spearman’s rank correlation coefficient be-
tween the two rankings was found to be ρ = 0.808, which is
a positive and strong correlation according to the suggestions
of Cohen et al. [26]. In addition, the p-value of the test was
found to be 1.26× 10−12, which is significantly smaller than
the threshold of 0.05. This led us to the rejection of the null
hypothesis and to the acceptance of the alternative hypothesis,
which suggests that the observed relationship between the two
rankings is statistically significant.

From the results of the above analysis, we can conclude that
a statistically significant positive correlation exists between the
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two rankings (at least for the studied benchmark repository).
In other words, the SQALE Densities of the selected software
products were found to be closely related to their SAVDs. This
provides empirical evidence that a strong relationship exists
between TD and software security, while it may also indicate
that TD may be used as an indicator of software security. This
opens a new area of research on whether TD can be used as the
basis for the construction of vulnerability prediction models,
able to highlight the existence of potential vulnerabilities in
software products.

V. CONCLUSION

In the present paper, we empirically evaluated the rela-
tionship between Technical Debt (TD) and software security.
For the empirical study, a relatively large benchmark reposi-
tory comprising 50 real-world open-source Java applications
retrieved from GitHub was constructed. Subsequently, the
software applications of the resulting benchmark repository
were analyzed using the SonarQube and FindBugs static code
analysis tools, to determine their SQALE Density (see Section
III-C) and Static Analysis Vulnerability Density (SAVD) [18],
which were used as indicators of the TD and security levels
respectively. Two individual rankings were produced, one
based on the SQALE Densities of the studied applications and
another one based on their SAVDs, and were compared using
the Spearman’s rank correlation coefficient [25]. Hypothesis
testing was also applied in order to reach safer conclusions.
A strong positive correlation was observed between the TD
and the security level of software products, which provides
evidence for the ability of TD to indicate security risks in
software products.

Since a strong relationship has been found, an increase in
the TD of a software product could indicate a similar increase
in software vulnerabilities and vice versa. Furthermore, the
strong interrelationship between TD and software security
indicators, as demonstrated in this work, justifies the need
for further elaboration that will finally lead to the design
and development of a decision-support tool that will assist
software developers to perform code optimizations taking
into account critical TD and security aspects. In this study,
analysis is conducted at the application level; however fine-
grained recommendations at a lower level of granularity would
improve the application in a real use case scenarios. For
example, a possibility to perform analysis (i.e., assess the
relationship between TD and security indicators) at the class,
function or code block level would improve the usability of
the envisioned tool. Another interesting challenge would be to
consider various TD and security indicators.

The results of the present study provide preliminary ev-
idence for the ability of TD to be used as an indicator of
software security. However, in order to reach safer conclu-
sions and exclude false positive correlation, a more elaborate
empirical study is required. In particular, in our future research
endeavors we are planning to replicate the present study
by using a significantly larger code repository. Subsequently,
if a relationship between TD and software security is still

observed, we will attempt to use TD as the basis for the
construction of models able to highlight security risks in
software products (e.g. vulnerability prediction models).
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