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Abstract— The main goal of this paper is to present a novel  

approach of the Machine Learning (ML) in predicting the 

trend of the water properties within wastewater treatment 

processes.  Bibliographical analysis shows legacy 

approaches the most frequently adopted, such as the 

Feedforward Neural Network – FNN with few layers. The 

ML models proposed here uses, instead, Convolutional 

Neural Network – CNN with several layers and a number  

of parameters. The use of the embeddings is also proposed 

to manage the categorical features and thus reach an higher 

performance. A real case example of application is 

presented, by analysing real data in a given period to prove 

the quality of the ML algorithm architecture designed. 

I. INTRODUCTION 

The wastewater treatment is a delicate and important 
activity for the health of humankind as well as for the 
environmental sustainability. The optimal control of the 
water treatment processes plays a critical role, provided 
an excess or defect on the estimation of chemical 
treatment components quantities can hurt the 
effectiveness of the water purification process. The goal 
of the present work is to benchmark  the most modern 
approaches of Machine Learning (ML) in predicting the 
properties of the fluid subdue to a purification treatment 
process. 

Compared to the past, low-cost information archiving 
techniques allows to accumulate it without necessity of 
filtering [1]. As a consequence, a growing availability of 
information results that increases the difficulties related 
to the abstraction of valid models for the analysis of the 
data themselves. The increased number of samples and 
the variables involved make it difficult to analyse data 
using purely statistical methods or rules-based 
programming. Rule-based programming needs the 
definition of the IF-THEN rules that link an action to an 
event: this implies the need to indicate a priori all the 
situations that may occur, to codify the rules necessary to 
manage them. It is thus necessary to create new rules to 
adapt the operation of the system to data variation. In a 
context in which data often change at a faster rate than 
the time needed to code new rules, this type of 
programming results ineffective [2] [3]. This complex 
computational scenario  has favoured the increasing of 
the applications that use ML algorithms. In this type of 
algorithms, it is not necessary to specify exactly the 
expected behaviour, leaving the algorithm to deduce from 
a training set supplied. 

Unfortunately, models for wastewater treatment 
existing in literature rarely adopt the most recent ML 
techniques even if, in recent years, strong advancements 
have been done in this field. To the best of our 

knowledge, there aren’t literature work that apply 
temporal CNN [4] to predict parameters of an incoming 
fluids to a wastewater treatment plant, while this 
approach reached good results in similar field. In the 
model  proposed here we tested the use of the 
embeddings [5] to take into account categorical features. 
Embeddings allows to treat categorical values as a point 
in a multidimensional hyperspace. 

The paper is organized as follow: Section II describes 
the state of the art about the use of the ML to predict the 
properties of the fluid entering into a wastewater 
treatment plant. Section III describes the proposed 
approach and a real test case that use the CNN to predict 
COD and NO3. Section IV shows the obtained results. 
Finally, the conclusions and the future research questions 
are drawn in Section V. 

II. RELATED WORKS 

This Section describes the state of the art about the use 
of the ML for the prediction of the properties of the fluid 
in waste-water treatment. The work proposed in [6] 
describes a model based on FNN [2], [7]–[9], to predict 
DO (dissolved oxygen) and BOD (biochemical oxygen 
demand), in Gomti river in India. The Dataset was 
created by the monthly monitoring of the Gomti water in 
eight different points, in two different periods of time 
January 1994 – December 1999, and January 2002 – 
December 2005. The Dataset includes 13 features (11 
plus DO and BOD). Of the 960 available sample, 576 
was used for training, 192 for the validation, and the last 
192 for the test. Two different FNN was created, to 
predict DO and BOD. Both the FNN had one input layer 
with 11 neurons, one hidden layer with 23 and 11 neurons 
for DO and BOD prediction respectively, and one output 
layer with one neuron to represent the feature to predict 
(DO or BOD). 

The work in [10], aims to apply a generic FNN for 
regression (GRNN) [11], to predict BOD in a waste-water 
treatment plant in Algeria. The proposed GRNN had four 
layers: input, pattern, summation, output. The Dataset 
was composed by 691 samples (one per day) with 6 
features, for two years, from August 1st 2009 to July 31th 
2011. The 80% of the 691 samples was used for training, 
the last 20% for validation. The number of neurons in the 
input layer corresponds to the number of input features. 
The number of neurons in the pattern layer corresponds to 
the number of training pairs, identified as each possible 
pair of input – output units. The summation layer is 
characterized by the presence of only two neurons, while 
one only neuron forms the output layer. 

In  [12] a FNN to predict DO is proposed. The case 
study refers to the estimation of DO concentrations 
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downstream of the city of Mathura, in India, which rises 
along the banks of the Yamuna river. The dataset is made 
of monthly samples with 5 features, carried out on three 
survey stations which were located respectively upstream, 
in the centre and downstream of the city of Mathura. 
Three different FNNs were created, which corresponded 
to different inputs, but which shared the output 
represented by the DO concentration downstream of 
Mathura. In the first case the neurons of the input layer 
was represented by the samples deriving from all three 
stations except for the output, for a total of 14 neurons; in 
the second case, the neurons of the input layer correspond 
to the samples deriving from the station in the centre and 
from those upstream of the city were input (10 neurons), 
while in the last case the neurons of the input layer were 
represented by the measurements of the Mathura 
upstream station alone (only 5 neurons). In the hidden 
layer there was an unspecified number of neurons that 
could not exceed 2 × n + 1 (with n = number of inputs). 
The output layer had only one neuron for the unique 
feature to predict (downstream DO of the city). The 
reference dataset is composed of 72 surveys of samples 
for each station made monthly from 1990 to 1996. For the 
training they use 48 of the 72 total samples, while for the 
validation the remaining 24. 

In [13] the authors apply the Wavelet approach to 
predict the DO concentration in water, comparing the 
results with other architectures. Each sample included 6 
features: solar radiation, water temperature, DO, pH, 
humidity and wind speed. Data were collected every 60 
minutes from 21 to 27 July 2010 for a total of 168 
samples. Of these 144 they formed the training set and 
the remaining 24 (which referred to the last sampling 
day), were used as a test set. According with some of the 
other works presented so far, the proposed architecture 
provides a three-layer FNN: one input, one hidden and 
one of output. Similarly,  in this case the number of 
neurons for the input and output layers depends on the 
number of features entering and leaving the FNN. The 
number of neurons in the input layer will therefore be 
equal to 6, while in output there is only one neuron. In the 
middle there is a hidden layer consisting of 4 neurons. 
The input will then be characterized by all six features 
sampled in the first half hour of detection, which will 
output the DO forecast in the next half hour. For the 
training phase a maximum number of 500 epochs was 
envisaged, with a desired error of 0.005 and a learning 
rate of 0.3. 

In [14] authors propose to predict the water quality of 
the Büyük Menderes river in Turkey, using an algorithm 
that combines an ARIMA model and a FNN model. The  
hybrid model used considering that the ARIMA models 
are not able to approximate the non-linear characteristics 
of the data, while the FNN models, approximate the non-
linearity better than they are able to do with the linear 
type characteristics. The dataset includes monthly 
samples of three parameters: water temperature, DO and 
boron B concentration, for a period of nine years (1996-
2004). Of the 108 total samples, the first 72 were used for 
the training phase, while the remaining 36 were used for 
the test phase. The FNN used in this work includes one 
input layer, one output layer and a single hidden layer. 
The data are processed in a first step by the ARIMA, 
which captures its linear characteristics. The result of this 
phase is the production of residues characterized 

exclusively by non-linear characteristics, ready to be 
processed by the FNN model. 

 In  [15] the authors developed a set of ANNs mediated 
by an  ensemble method, for the prediction of pH, DO 
and turbidity of the waters of the Nakdong river, in South 
Korea. The choice of using ensemble method is justified 
by the authors' attempt to eliminate the influence on the 
performance of the model of the initial choice of weights, 
mediating between them the results obtained by different 
ANNs. In the specific application, there are three 
architectures mediated: 

• only one hidden FNN layer; 
• a multilayer FNN; 
• a Recurrent Neural Network (RNN). 

Clustering algorithms were also adopted for the data 
related to water turbidity, so that they were divided into 
classes, before using the ensemble method. As for the 
dataset, the daily data for a period ranging from 2009 to 
2012, of PH, DO and turbidity were observed, for a total 
of 785 samples. Given the data collected on day t and t-1, 
the goal was to predict the water quality per day t+1. A 
number of tests were performed that varied with respect 
to the samples considered during the training phase and 
with respect to the number of neurons in the hidden layer. 

To the best of our knowledge, there are no works in the 
literature that refer to the particular context of this work 
(tertiary wastewater treatment) and contemporarily use 
the most recent ML approaches.. Many of the proposed 
architectures, consider only FNN consisting of a single 
hidden layer and characterized by an extremely limited 
number of neurons. In none of the cases proposed the 
temporal CNN have been used, provided they are  
extremely effective in the analysis of time series: their 
effectiveness lies in the reduced demand for 
computational resources undergoing training and running. 
Likewise, under no circumstances were categorical 
variables using the definition of embeddings [5], whose 
use has proven to bring many benefits in terms of 
performance, as demonstrated in Google and GloVe's 
Word2vec [16], [17]. The papers in the literature use only 
legacy ML techniques, so in this paper, we have applied 
two of the most recent ML approaches (i.e. temporal 
CNN and embedding for categorical features) to make 
predictions of COD and NO3 for the incoming fluid in a 
wastewater treatment plant. 

 

III. PROPOSED APPROACH 

A. ML algorithm 

In this paper we propose two different types of CNN to 
analyse wastewater treatment sustainability, that differ in 
the use of embeddings to consider categorical values. In 
particular, the use of temporal CNNs has been devised as 
the optimal one. For each type, we have created two 
different CNNs to predict NO3 or COD, as it will be 
shown in the subsequent case. 

The goal of the proposed ML algorithm was to predict 
two critical wastewater parameter (say NO3 and COD) 
for the a given period of observation (10 hours,  
corresponding to the mean time for waste-water 
treatment) starting from a set of samples (last 24 hours as 
explained in the next paragraph). 

For all the CNN configurations (see example in Figure 
1), there are 4 different branches, one for each feature in 
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input. First two branches (left of Figure 1) refer to two 
features characterized by real values. They are both 
composed by a set of convolutional layers (Conv1D) with 
Zero-Padding and Batch normalization, with different 
size. The  other two branches refer to two categorical 
features (these features are categorical because they take 
only a limited number of integer values (from n to m)). 
Firstly, this type of feature have been taken into account 
with word embeddings, that allows to represent a word as 
a vector [16], [17]. In this case (example in Figure 1) the 
two branches are composed by an input layer, an 

embedding layer, a flatten layer, and a dense layer with 
Batch normalization. Secondly, to compare the accuracy 
of the prediction with and without the use of the 
embeddings, the two categorical features have been taken 
into account with only dense layers. 

A concatenation layer has been added, to concatenate 
the four branches and a set of dense layer to allow 
reaching the desired output (30 values corresponding to 
the following 10 hours). 

 
 

Figure 1.  CNN architecture with embeddings for categorical features 
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To benchmark the proposed approach we use the Mean 
Absolute Percentual Error – MAPE as the difference 
from predicted and actual data.  

B. A real test case 

The ML algorithm described in the previous section 
was tested in a real case that refers to an artificial basin 
for tertiary treatment of waste water in southern Italy.. 

1) Dataset and pre-processing 
A real Dataset has been chosen to test the proposed 

algorithm characterized by measurements taken in a 
period from July 1

st
, 2014 to June 30

th
, 2016 every 4 

minutes, in an artificial reservoir of wastewater treatment, 
for about 263000 samples. Each sample was 
characterized by the following features (Figure 2): 

·  COD (Chemical Oxygen Demand); 

·  NO3 (Nitrates); 

·  Temp (Temperature). 

The sampling period equal to 4 minutes was considered 
too low due to excessive noise in the data and because, 
considering the phenomenon under examination, it is not 
possible to appreciate any significant variation in such a 
short time. For this reason, the dataset has been 
resampled considering the need to reduce noise, to be 
able to consider significant variations, and continue to 
have a sufficiently high number of data. The result was 
the determination of the new sampling period of 20 
minutes, going from about 263000 samples to around 
53500. 

After resampling, we deleted all wrong data (for 
example NO3 equals to zero because it is impossible to 
have this value for NO3), we introduced  new features 
that are strongly related to NO3 or COD, and after a 
preliminary test we decided to ignore Temp because 
poorly correlated with NO3 and COD. The features used 
as input of the proposed ML algorithms  were: 

 NO3_sh: difference between the logarithm of 
two following NO3 measurements; 

 COD_sh: difference between the logarithm of 
two following COD measurements; 

 Hours of the day; 

 Month of the year.  

 

 
2) Training, validation, and test sets 
After resampling, we obtained 53500 samples (3 

samples/hour). 34 consecutive hours,  correspond to a 
total of 102 consecutive samples. There were 
approximately 520 surveys conducted, each survey 

contained 102 consecutive samples, for a total of 53500 
samples measured. The test set was composed of 
approximately 100 surveys. Approximately 43300 
samples remained after the test surveys selection which 
can only fulfil approximately 420 surveys. 420 surveys is 
not sufficient to create a CNN training set. In order to 
increase the number of surveys, and so, to satisfy the 
CNN training set sample size requirement, we created 
p+1 surveys from a set of 102+p samples. For example, 
105 samples satisfy 4 surveys by a single shift in sample 
(0-101, 1-102, 2-103, 3-104). By adopting this procedure 
it was possible to obtain about 30100 distinct surveys, a 
sufficient number for the training set of the CNNs. 

IV. RESULTS 

In previous Section we described the ML architectures 
used in proposed ML algorithms. In this section we 
discuss the obtained results. For each data surveys in test 
set we predict the last 30 points (10 hours), starting from 
the first 72 (24 hours), as depicted in Figure 3.  

To evaluate the prediction accuracy, we compare the 
predicted points (red in Figure 3) with the last 30 points 
of the surveys in test set (they were composed by 72 
values used as x and 30 as y). 

 
To compare the predicted value with the true ones we 

use the Main Absolute Percentage Error (MAPE). Figure 
4 shows MAPE for each ML model. 

 

 

Figure 4. MAPE 

 

The MAPE is less than 2% NO3 prediction and less 
than in 5% for the COD prediction. The use of 
embedding has not produced the desired effects. Their 
use has in fact resulted in a performance improvement 
that is too small to consider the use to be advantageous. 

V. DISCUSSION AND FUTURE WORK 

This article describes how, through the use of temporal 
CNNs, it is possible to predict the properties of a fluid 

 

 
Figure 3.  Predicted values (in red) of NO3, starting from actual 

samples (in blue) 

 

Figure 2.  Data trend 
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entering a wastewater treatment plant with a MAPE less 
than 5%. The main purpose was to show how the use of 
this approach is promising with respect to existing 
approaches. Future research will try to improve the 
results obtained through the use of new features deriving 
from data not directly related to the surveys used (e.g. 
weather data) and through ad-hoc fine-tuning process. It 
will be thus necessary to compare the results obtained 
with those resulting from ML approaches commonly 
adopted in the state of the art. 
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