
Testing of Large Scale Model-Driven Solutions

Bojana Zoranović*, Nenad Todorović*, Željko Vuković*, Aleksandar Lukić*, Gordana Milosavljević*
* Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
{bojana.zoranovic, nenadtod, zeljkov, lukic.aleksandar, grist}@uns.ac.rs

Abstract— Testing MDE (Model Driven Development)
solutions can be challenging due to their complexity and
constant evolution. If the solution is used for product
customization of a large scale software product line and
introduced in a later phases of development, developing and
maintaining testing infrastructure becomes increasingly
difficult. In this paper, we examine available techniques for
adequate implementation of major test types and present our
approach to establishing initial test data, test cases, and
validating test results for our MDE solution that supports
customization of every layer of a large scale web and desktop
business application and code generation of more than 150
different file types.

Keywords: Model-driven engineering, testing, code generation

I. INTRODUCTION
MDE was developed as a promising approach to address

platform complexity and the inability of third-generation
languages to alleviate this complexity and express domain
concepts by combining domain-specific programming
languages with transformation engines and generators [1].
In the context of MDE, we define a system as a “generic
concept for designating a software application, software
platform or any other software artefact” [2].

The focus of our research are large-scale software
product lines (SPLs), and the goal was to use MDE to
automatize product creation and customization, along with
making maintenance of the existing products easier [3]
(Figure 1). Target solution of the SPL was in later phases

of development, already delivered to numerous clients and
no MDE approach was previously used. Because of the
mature state of the SPL target solution, our code generator
had to be compliant with existing architecture without
introducing changes to the development process. Some of
the previous challenges that we encountered during our
research, along with results were described in [4].

In this paper, we will focus on examining the techniques
and strategies used for testing code generators. Because of
the large scale of the SPL, the code generator was being
developed in iterations. Even though the domain of testing
is mature, such iterative requirement management caused
the emergence of testing problems. After each development
iteration, new, previously unknown requirements for
improvements regarding generated software artefacts were
collected from the end-users (developers). Such expansion
of the initial solution scope caused changes in the desired
contents of the generated files, as well as in the meta-model
used to create the specification of the product
customization. We found that frequent meta-model
evolution brings compatibility issues (every model based
on the previous version of metamodel must stay compatible
with the new one), along with necessary changes in the
generation process. Testing infrastructure must be
adaptable to support this constant evolution.

 In [5] software testing is defined as “the process of
executing a program with the intent of finding errors”.

In this paper, we will tackle the following testing
techniques:

Figure 1. Product customization

Copyright 2019 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 174

• Unit testing (also known as module testing) is a
process of testing the individual subprograms,
subroutines, or procedures in a program. That
is, rather than initially testing the program as a
whole, unit testing is focused on the smaller
building blocks of the program.

• Function testing is a process of attempting to
find discrepancies between the program and the
external specification, i.e. precise description of
the program’s behavior from the point of view
of the end user. In our case, the code generator
result is generated code - change in the file
content.

• Compatibility testing has to assure that new
software versions remain backwards
compatible.

II. RELATED WORK
We sought to find papers discussing different types of

test implementation especially in MDE and SPL context.
The first challenge was to generate test data, i.e. test

models and define correct (possible) model
transformations. Paper [6] suggests that transformations
can be defined using general purpose languages, domain-
specific languages (such as OCL) or using a rule-based
transformation engine. In addition, the language used for
transformation should at least support defining pre- and
post-conditions.

Paper [7] proposes an algorithm and following tool for
automatic test model generation based on the meta-model.
The proposed algorithm takes meta-model and a set of
model fragments and produces a set of test models. Model
fragments can also be derived from metamodel or provided
by testers. The algorithm completes each model from the
set to become a valid meta-model instance. Although this
approach offers a solid basis for generating a broad
spectrum of test models, for our setup we considered it
time-consuming and complicated since it requires
developing a separate algorithm for applying fragments as
well as to transform generated test models to valid ones.

The second challenge was to find a suitable method to
generate test cases. Some papers advocate validating the
behavior of the generation process (model to code
transformation) and its properties using formal methods

and associated tools [8]. The main drawback of this
approach is that it is inefficient for larger models and
transformations. An alternative to this is validating
transformation only for a set of selected test input models.
Although the approach does not prove correctness
completely, it effectively identifies emerging problems [9].

The third challenge was to compare generated code with
the one that is supposed to be generated. In paper [10],
authors based their model comparison on version control
systems. This approach uses already existing and stable
utilities, however, the comparison does not take into
consideration specific language syntax - either primary or
secondary (whitespace characters for example) which often
leads to detecting false differences.

III. SOLUTION
Our solution constitutes of three phases, depicted in

Figure 2:
• In the first phase, the stage is prepared for

testing to occur - the test data is scaffolded, and
specification for the generator is created;

• In the second phase, the generator is tested with
several test types;

• The third test phase serves to test the target
solution of the generation process and is part of
the already existing continuous integration
cycle.

A. Preparation Phase
As has been previously mentioned, the main problem

with testing was caused by iterative requirement
management, which resulted in frequent changes of the
meta-model and expected generated content.

To mitigate the problem of compatibility of test data with
the ever-evolving meta-model, we used dynamic model
construction - test models are created programmatically
instead of being constructed once and loaded from test files
when required. We have provided an API to help rapidly
scaffold initial test model which ensures that the scaffolded
model is a valid instance of the meta-model. After that, test
cases simulate user's interaction with the model and
iterative nature of code generator usage through the API,

Figure 2. Phases of testing process

175

i.e. frequent model to code transformations separated by
only a few model changes.

In order to track what content should be generated, we
have created a test scenario configuration, which includes a
list of files that are expected to change. For each file, we
can configure if whitespace character differences should be
ignored. Some sensible defaults are provided for this
option, based on the type of the file (e.g. leading tabs or
spaces are part of the style in Java or C#, but are a part of
the syntax in Python). However, in our experience, there
are cases where maintaining file layout is required, even if
the whitespace characters are not part of the concrete
syntax, in order to increase readability or to generate code
that resembles handwritten. For this reason, ignoring of
whitespaces can be configured per each file.

B. Generator Testing Phase
After the preparation phase, the following test types were

developed to detect possible errors in the generation
process and generated content.

Unit testing. In order to be tested, the code generator
should be modularized into manageable units so that every
module is validated separately [11]. When it comes down
to unit testing, an examined module should be evaluated
detached from the rest of the system. This process requires
mock objects to imitate existing application infrastructure
that tested module interacts with, along with corresponding
interfaces.

Functional testing. Two main example scenarios for
functional testing are:

• The code is generated utilizing the model
previously created using API. After that, the
subsequent generation process is executed without
any changes applied to the model. We expect that
no modification is introduced with the second
generation cycle. This scenario is critical to ensure
that the generation process is idempotent;

• The code is generated once, the subsequent
changes are applied to the model, and then the
code is generated again. In this scenario, we
expect that only files affected by the change to the
model are modified.

Since the generation process affects many files, it was
proven challenging to effectively, reliably and rapidly
perform detailed comparisons. Instead, the comparison was
performed in several steps:

1. Creation of affected files snapshot. Content and
computed hash value are stored for every file
(Figure 3);

2. Two generation cycles snapshots are compared to
conclude whether there were files created (Figure
4) or deleted (Figure 5) between two generation
cycle;

3. Hash values are compared for every file that

exists in both snapshots (Figure 6);

4. If there are differences between hash values,
content is compared (Figure 7).

This process consumes the least effort since every action is
taken only if it is indispensable and the comparison of the
entire content is avoided.

Figure 4. Hashing file content

Figure 3. New files added after generation cycle

Figure 5. File deleted after generation cycle

Figure 6. Content hash comparison

Figure 7. File content comparison

176

Compatibility testing. Compatibility tests were necessary
in order to assure that two different tool versions generate
similar output, at least to some extent, considering new
features could be introduced in new versions. Code is
generated from the same model using two different tool
versions.

In addition to the list of files expected (not) to change,
the configuration for this test includes references to two
version control commits. When the test is executed, the
first commit is checked out, the tool is compiled, and code
generation is executed. The same is repeated using the
latter commit and snapshots of generated content are
compared.

The main challenge here is that both tool versions
should be run on the same specification, even if the way
that the tool stores that specification might have changed
between the two versions. For this reason, the specification
used for tests is constructed at test runtime. The tool
provides an API for building such a specification in the
manner specific to its version.

C. Target Solution Testing
Finally, in the third and last phase, the code generated

from the test model is combined with the rest of the
product line code, and the result is submitted to the
continuous integration (CI) infrastructure. There, the
project is built, and another batch of tests are executed, that
now target the end application. These tests are the same
ones that are used when application development is
performed manually. As this procedure can take a long
time, it is usually executed as a part of the nightly CI cycle.

IV. DISCUSSION AND FURTHER WORK
 Testing code generators can often significantly increase
cost and effort comparing to testing non model-driven
solutions [10]. Additionally, test case production is often
ad-hoc, manually written or difficult to evaluate [12]. Even
with all the challenges, testing MDE solutions is crucial
for the reliable development process. MDE solution often
starts with automatization of some minor part of problem
domain by developing proof of concept. If the proof of
concept is accepted, solution scope gradually expands.
Creation of every new generator feature must not affect its
existing features (in our case, code generator affected more
than 150 different software artifacts) which is practically
impossible without a wide variety of different test types.

 In the near future, we plan to improve a few of the
described processes. Firstly, the test model generation
could be improved by introducing a rule engine or domain-
specific language for a more efficient test model
specification. In addition, metamodel evolution imposes
occasional changes onto the existing test suite. We aim to
automate this process in order to avoid manual test
adjustments.

REFERENCES
[1] Schmidt, D.C. Guest editor’s introduction: Model-driven

engineering. Volume: 39, Issue:2, pp. 25-31, Computer, IEEE 2006
[2] da Silva, A.R., Model-driven engineering: A survey supported by

the unified conceptual model, Volume: 43, Issue: C, pp. 139-155,
Computer Languages, Systems and Structures, Elsevier Scence
publishers, 2015

[3] Völter M., Groher, I., Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development, 11th
International Software Product Line Conference, IEEE, 2007

[4] Todorović, N., Lukić, A., Zoranović, B., Vaderna, R., Vuković, Ž.,
Stoja, S. RoseLib: A Library for Simplifying .NET Compiler
Platform Usage, ICIST 2018 Proceedings Vol.1, pp.216-221, 2018

[5] Myers, G.J., Sandler, C., The Art of Software Testing, Second
Edition, John Wiley & Sons, Inc, USA, 2004

[6] Fleurey, F., Steel, J., Baudry, B., Validation in Model-Driven
Engineering: Testing Model Transformations, Proceedings. 2004
First International Workshop on Model, Design and Validation,
IEEE, 2004

[7] Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.,
Metamodel-based Test Generation for Model Transformations: an
Algorithm and a Tool, 17th International Symposium on Software
Reliability Engineering, IEEE, 2006

[8] Loli Burgueño, L., Wimmer, M., Troya, J., Vallecillo,
A.,TractsTool: Testing Model Transformations based on Contracts,
CEUR Workshop Proceedings, vol. 1115, pp.76-80, 2013

[9] Cabot, J., Clarisó, R., Guerra, E., de Lara, J., Verification and
validation of declarative model-to-model transformations through
invariants. JSS 83(2), pp.283–302, 2010

[10] Lin, Y., Zhang, J., Gray, J., Model comparison: A key challenge for
transformation testing and version control in model driven software
development, Control in Model Driven Software Development.
OOPSLA/GPCE: Best Practices for Model-Driven Software
Development, pp.219-236, Springer, 2004

[11] Stürmer, I., Conrad, M., Dörr, H., Pepper, P., Systematic Testing of
Model-Based Code Generators, IEEE Transactions on Software
Engineering, Volume: 33, Issue: 9, IEEE, 2007

[12] Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel, J.-M.,
Model-Driven Engineering for Software Migration in a Large
Industrial Context. Lecture Notes in Computer Science, pp.482–
497, MODELS 2007: Model Driven Engineering Languages and
Systems, Springer, 2007

177

