

The model of code readability features: visual,

structural and textual

Ivana Zeljković, Jelena Slivka, Goran Savić, Milan Segedinac

Faculty of Technical Sciences/Department of computing and control engineering, Novi Sad, Serbia

ivana.zeljkovic@uns.ac.rs, slivkaje@uns.ac.rs, savicg@uns.ac.rs, milansegedinac@uns.ac.rs

Abstract — This paper describes the model that captures a

variety of features important for code readability: visual,

structural and textual. Code readability can be defined as a

measure of how easy it is to understand the logical context of

the source code, work on it collaboratively and maintain the

same. Successful classification of code as readable or

unreadable is a prevalent problem in today AI’s world. By

the automatic discovery of unreadable code, we could

significantly reduce the time needed for software

development and maintenance, enforce best practices and

potentially discover bugs in the code. Current solutions for

the measurement of code readability are still unsatisfactory

from the aspect of accuracy. To build an accurate code

readability model, an appropriate dataset is needed. All

existing solutions use a set of structural and/or textual

features, but none of them use a visual component.

Accordingly, this work represents an improvement in the

described problem, introducing visual component. The

visual features in our model serve to express the visual focus

of the person while reading a piece of code with the

hypothesis that a person will pay more attention to the more

complex and penitentially less readable parts of the

programming code. On the other side, the structural features

are used to express the key programming concepts of the

target programming language and describe the impact of

code’s general structure on its readability, as well as the

impact of some rarely used concepts in contrast to often used

ones. Finally, the textual features, extracted from comments

and identifiers, describe the semantics of software's logic and

in that way contribute to a higher degree of code
comprehension and readability.

I. INTRODUCTION

Keeping code readable is of crucial importance for the
success of every software project. Readability is one of the
key preconditions for easy and quick understanding of the
written code, which is necessary for every phase of the
software’s life cycle. The degree in which the code
satisfies readability criteria determines the speed of
development, as well as maintenance of the software [1].

The main goal of the model introduced trough this paper
is a formal description of aspects that have the most
significant impact on code readability. As such, this model
has a dual purpose, in software development, as well as in
the educational domain. Regarding software development,
this model could be an appropriate base for the
development of a tool that measures code readability. The
tool like this one with its assessment of code readability
would make it easier and faster to write code. Also, its use
would enable software engineers the insight into good and
bad practices and teach them to organize their code in a
better, clearer way. This would also improve the quality of
the software by reducing the number of potential bugs and
decrease the time it takes to maintain the final software.

Another benefit of the model of code readability features
would be an improvement in software engineering
education. By analyzing the features that turned out to be
critical for code readability from the aspect of students, we
can gain insight into concepts that require the highest level
of student attention, as well as identify concepts that are
obstacles to overcome individual problems in
understanding code.

The main goal of this work is the formal specification
of system for creating the dataset that is used for the
development of the code readability classifier. This system
relies on three main components: (1) visual data extractor,
used for extracting visual features by filtering the data that
the eye tracker device collects while a person reads a
programming code; (2) static analyzer, used for extracting
structural features; (3) textual analyzer, used for extracting
textual features.

The first section, Structural component, describes a set
of structural features considered in our model of code
readability features, as well as how they are extracted from
code snippets. In the second section, Textual component,
is given a description of code readability features,
analyzed from the textual aspect. The third section, Visual
component, represents the novelty introduced through this
work, which gives a detailed description of visual features.
The last section gives a short review of existing models of
code readability features and also describes future work.

II. STRUCTURAL COMPONENT

The structural features are used to describe how the
source code is constructed, i.e., which particular concepts
from a set of key concepts of the target programming
language are used. Most of the programming languages
have a lot of concepts in common, but there are also
structural and semantic peculiarities characteristic to every
particular programming language.

Structural features are important when assessing the
readability of the source code. For example, the try-catch
block is a prevalent concept in languages such as Java or
C#, but not in Python, where catch keyword is replaced
with except keyword. Also, one of the concepts in Python,
that, based on our previous educational experience, is
relatively rarely used and a potential reason for the
confusion is for loop with else clause. Programmers new
to Python think that this structure is wrong from syntax
aspect, which is why they tend to assess examples with this
structure as unreadable. Another example is the
importance of the code layout. The example that illustrates
this in the best way is a well known if-else structure, which
can be written using an inline or block layout (Fig. 1 and
Fig. 2). Block layout is used in 90% of the time, while
inline layout (ternary operator) is used only in 10% of the
time. The reason for this is that the block layout shows in

Copyright 2019 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 160

1. def func(words):
2. words_count = {}
3. for word in words:
4. words_count[word] = 1 if word not in words_count else words_count[word]+1

Figure 1: Inline layout (ternary operator) of if-else structure in Python

1. def func(l1):
2. all = {}
3. for el_1 in l1:
4. if not(el_1 in all):
5. all[el_1] = 1
6. else:
7. all[el_1] = all[el_1] + 1

Figure 2: Block layout of if-else structure in Python

a very clear way the condition of branching and operations
that should be executed in every single branch. In contrast,
a ternary operator takes programmers more time for
recognizing condition and actions per every branch.

The set of structural features that our model captures
represents a modified set of structural features given in [2].
In [2] target programming language was Java, which is the
main reason why some of these features are not considered
in our model since the model described through this paper
is developed for snippets written in Python programming
language. From the structural model in [2], several
irrelevant features are removed: the average number of
commas and spaces per code line, the maximal number of
occurrences of any character and feature that describes
indentation (preceding whitespace). The main reason why
these features are not considered in the described model is
their low impact on code readability assessment, proven in
[2].

On the other side, some new features, that complement
a set of concepts characteristic for Python, are added.
Table 1 shows all features that structural component
includes. The first column in the table describes features,
as well as a way how they are determined (number of
characters; observing each line of code or scope of the
entire snippet). All new structural features, introduced
through this paper, are marked with * in front of their
name. Other features (without * in the name) are
references from [2]. For each feature is marked which
value is calculated, average and/or maximal. For features
which values are determined based on the entire snippet
(e.g., number of if constructions, number of loops…), only
maximal value is calculated.

The module used for static code analysis performs an
analysis of the Abstract Syntax Tree (AST) of the input
code, considering the set of Python’s concepts needed to
get information about the values of defined structural
features. A code snippet that represents the input in this
module can be any syntactically correct Python code. The
output of this module is a static report that includes all
structural features in our model with concrete values that
uniquely describe the analyzed snippet. Furthermore, this
report can be used for generating an observation that
represents corresponding Python snippet in dataset
instance that is based on this feature model.

III. TEXTUAL COMPONENT

The textual features capture the domain semantics of the
software and add a new layer of semantic information to
the source code, in addition to the programming language
semantics [2]. Lines of code with comments that describe
their purpose using natural language, which is more
understandable to human (Fig. 3 and Fig 4), as well as

carefully chosen identifiers (Fig. 5 and Fig. 6) could
improve code understanding, even though it is one of the
less readable examples, from the structural point of view.

In contrast, poorly defined identifiers (e.g., meaningless
abbreviations or identifiers that contain only one letter) or
inconsistent identifiers can cause wrong understanding of
code and thus result in a change of assessment of its
readability, from a human perspective. Another
perspective for analyzing the impact of natural language
on code readability is the degree of how specific terms
(words that are used in identifiers) are. For example, if the
term has multiple meanings, this can be the reason of
misunderstanding of code’s purpose, but, in case a term
has a very specific meaning, the difference between the
programmers intended meaning and cognitive model of
someone who reads the code is minimal.

1. def func(number):
2. """Make list of squares of integer values fr

om specified range"""
3. result_list = []
4.
5. number <<= 2 >> 1
6. for num in range(1, number):
7. result_list.append(num*num)
8.
9. return result_list[:3]
10.
11. result = func(4)

Figure 3: Snippet example written with a comment that describes the
purpose of the code

1. def func(limit):
2. result_list = []
3.
4. limit *= 4 / 2
5. numbers = range(1, limit)
6. for num in numbers:
7. result_list.append(num**2)
8.
9. return result_list[0:3]
10.
11. result_list = func(4)

Figure 4: Snippet example written without a comment that describes the
purpose of the code

1. def func(l1):
2. all = {}
3. for el_1 in l1:
4. if not(el_1 in all):
5. all[el_1] = 1
6. else:
7. all[el_1] = all[el_1] + 1
8.
9. res = list()
10. l = all.items()
11. while len(res) <= 3:
12. for k, v in l:
13. res.append(k*v)
14.
15. return res[::-1]
16.

17. l = func(['a', 'b', 'ab', 'c', 'ab', 'b', 'ab'])

Figure 5: Snippet example written with meaningless identifier

161

1. def func(words):
2. words_count = {}
3. for word in words:
4. words_count[word] = 1 if word not in words_count else words_count[word]+1
5.
6. multiplied_words = list()
7. all_words = words_count.items()
8. counter = 0
9. while counter <= 3:
10. for key, value in all_words:
11. multiplied_words.append(key*value)
12. counter += 1
13. else:
14. return multiplied_words[::-1]
15.
16. words = ['b', 'a', 'b', 'ab', 'c', 'ab', 'ab']
17. result = func(words)

Figure 6: Snippet example written with meaningful identifiers

The set of textual features considered by this model is the
same as in [2], and it contains the following features:

1. Comments and identifiers consistency - represents
the overlap between unique terms extracted from
comments and unique terms extracted from
identifiers. Before calculation, set of terms extracted
from comments is expanded with a set of synonyms,
for each particular comment term. Synonyms are
determined using WordNet [3] corpus.

2. Identifier terms in the dictionary - represents the
percentage of terms that are full-words, i.e., exist in
the appropriate dictionary, e.g., WordNet corpus.
Also, the percentage of nonexistent terms is
calculated, but here we didn’t consider one-letter
identifiers.

3. Narrow meaning identifiers - represents how specific
are terms used in identifiers. The particularity of each
term is determined through observing hypernym tree
of that term, considering the number of steps
necessary to come from the current node (a node that
contains concrete term) to the root node in the tree
structure. For this purpose, as well as for the previous
two features, WordNet corpus is used, since inside it
word relations such as hypernyms and hyponyms are
defined.

4. Comments readability - determines the readability of
comments using Flesch-Kincaid [4] index,
commonly used to assess the readability of natural
language texts.

5. The number of meanings - determines the polysemy
of a snippet, analyzing the number of meanings of
terms used in identifiers. This value, the number of
meanings, is derived from WordNet corpus since
inside it exists at least one definition of each word.
From the aspect of this feature, maximal and average
values are considered as relevant.

6. Textual coherence - represents the number of
“concepts” implemented by a source code snippet
[2]. To estimate the number of concepts, snippet’s
AST is used to detect syntactic blocks. Each syntactic
block is individually processed to extract a set of
unique terms used in identifiers. After that,
vocabulary overlap is computed for each pair of
blocks. Relevant values from the aspect of this
feature are minimal, maximal, as well as average
overlap.

The module used for extraction of textual features
performs a syntactical analysis of the input code,

considering comments and identifiers. Before starting with
textual analysis of the code, the input must be
preprocessed to extract the textual content of the input
code and get single terms prepared for textual analysis.
Preprocessing steps are:

• Remove non-textual tokens: programming language
keywords, special symbols, and operators;

• Split the remaining tokens into separate words
(according to one of two naming conventions - camel
case notation and underscore notation);

• Remove stop-words from comments (e.g. articles,
adverbs);

• Extract stems from comments words using Snowball
algorithm [5].

Similar to the output of the first described module, the
static analyzer, the output of this module is also in the form
of a report that includes all specified textual features with
concrete values that uniquely describe the analyzed
snippet, from the textual aspect. This report can be used to
complement the existing observation that represents the
analyzed code in dataset instance with the values that
describe snippet from a textual perspective.

IV. VISUAL COMPONENT

The visual features are important from the aspect of
analysis how people read the code: what people consider
to be more or less important parts, whether they read
keywords, whether they read code from top to bottom or
trace actions backward, starting from the end of the code,
i.e., function call. During code analysis, the human focus
is more often on complex or unreadable parts than on
keywords, readable and familiar concepts or structures. An
example that explains this claim is the if-else construction.
In the case of the inline layout (e.g., the code example
shown in Fig. 1), keywords are built-in in one line, so that
we can’t skip them. On the contrary, we read them to
determine the boundaries of if and else branches and their
respective actions.

The set of visual features, considered in this model,
includes features that describe the path of evaluation of a
piece of code by a human. These features express the
average and maximal time (in seconds) of observation for
all of the considered Python’s concepts (identifier,
function call, arithmetic/comparison/bitwise/logical
operator, assignment/augmented assignment statement, if
construction, loop…), that have been already mentioned
and explained above, in section about structural features.

162

Table 1: Structural features

Feature Average Maximal

* Snippet length

(number of lines)
+ +

Code line length

(number of characters)
+ +

Identifier length

 (number of characters)
+ +

Number of identifiers

(per code line)
+ +

* Number of occurrences of the most frequent identifier

(on snippet level)
 +

Number of keywords

(per code line)
+ +

Number of blank lines

(on snippet level)
 +

Number of comment lines

(on snippet level)
 +

* Comment length

(number of characters)
+ +

Number of numerical constants

(per code line)
+ +

* Number of textual constants

(per code line)
+ +

Number of parentheses

(per code line)
+ +

Number of assignments

(on snippet level)
 +

* Number of augmented assignments

(on snippet level)
 +

* Number of function calls

(per code line)
+ +

* Number of occurrences of the most frequent function call

(on snippet level)
 +

Number of branches (if, elif)

(on snippet level)
 +

Number of loops (for, while)

(on snippet level)
 +

* Number of break points

(on snippet level)
 +

* Number of continue points

(on snippet level)
 +

* Number of try blocks

(on snippet level)
 +

* Number of except blocks

(on snippet level)
 +

* Number of raise expressions

(on snippet level)
 +

* Number of finally blocks

(on snippet level)
 +

* Number of return statements

(on snippet level)
 +

Number of arithmetic operations

(per code line)
+ +

* Number of logical operations

(per code line)
+ +

Number of comparison operations

(per code line)
+ +

* Number of bitwise operations

(per code line)
+ +

* Number of list comprehensions

(on snippet level)
 +

* Number of dictionary comprehensions

(on snippet level)
 +

* Number of set comprehensions

(on snippet level)
 +

* Number of lambda functions

(on snippet level)
 +

* Number of identity operators (is, is not)

(per code line)
+ +

* Number of membership operators (in, not in)

(per code line)
+ +

The visual data extractor is third and the most important
component of this model. During the process of the code
evaluation by a human, the persons gaze is followed by an
auxiliary device, eye tracker. During the recording, this
device forms a database with 30 properties that describe

the human’s gaze and also one video record that shows the
entire observed content. We consider 6 out of these 30
properties to be relevant and sufficient to describe the
captured gaze, while the rest of them represent more
technical information that is irrelevant from the
perspective of our model, such as position of mouse
cursor, URL of webpage which is observed, diameter of
left/right eye pupil in the camera image…

Properties that are used to describe the whole process of
eye tracking in this module are:

• FPOGV - flag that indicates if fixation (gaze) is valid
or not (fixation is invalid in the case of blinking or
fast transition of the view);

• FPOGID - fixation ID number;

• FPOGX - the x coordinate of the fixation, as a
percentage of the screen width (0 to 1);

• FPOGY - the y coordinate of the fixation, as a
percentage of the screen height (0 to 1);

• FPOGD - the duration of the fixation expressed in
seconds;

• TIME - timestamp of the fixation expressed in
seconds.

Firstly, the module filters valid fixations according to
appropriate flag (FPOGV) from the resulting database.
Next step is extraction of the period of observation (from
the properties timestamp from and timestamp to) for each
concept that has been observed. This report is created by
the visual data extractor by using two inputs, that represent
products of recording with the eye tracker device:

• filtered database (only valid fixations with a
timestamp in a given range are kept)

• video record.

The video record is used to extract the frames from the
defined time period so that fixations from the database can
be mapped on particular content shown on the screen. The
video frame is processed using computer vision techniques
to get the map that describes relative coordinates of
boundaries (minimum and maximum x coordinate,
minimum and maximum y coordinate) of every code line
in the code shown on the video frame. Further, every
fixation is mapped on the appropriate concept in the code,
using its FPOGX and FPOGY values, as well as the
previously mentioned map, that describes the boundaries
of every line in the code.

The final output of visual extractor is the structure that
for every considered Python’s concept stores the
information about average and maximal observation time,
expressed in seconds.

V. CONCLUSION

The most significant results of code readability
classification/measurement have been achieved and
described in [2] and [6]. In [6] authors created a training
dataset, which includes only the structural component, i.e.,
features obtained by static analysis of the observed codes.
In [2], authors have significantly improved on [6] by
creating a new dataset that, in addition to structural
features, introduces new, textual component, i.e., features
that are related to the textual aspect of the code. This
extension of training dataset added a new dimension to the
analysis of readability for different codes and significantly
improved classification performance.

163

This paper extends the previously mentioned models by
adding a visual component to already defined structural
and textual components, that are used in datasets on which
these models are trained. Accordingly, the topic of this
work is creating a model that besides already mentioned
components also includes a visual one, i.e., features that
describe patterns of human attention when evaluating
codes. This could be an improvement that can contribute
to a more in-depth understanding of how the code
readability is assessed and potentially in higher accuracy
of code readability classifiers.

Apart from the introduction of a new aspect in the code
readability analysis process, this work also represents an
extension and improvement regarding the number of
concepts in the target programming language, that are
taken into consideration during static code analysis to
define the structural features.

The future work is the development of the automatic
code readability classifier, that is trained on the dataset
based on the described model, as well as evaluating the
significance of the visual component. Also, in case that our

classification model shows better performance than
current state-of-the-art models, next step in the
development would be the extension of the model of code
readability features so that it supports other commonly
used programming languages because its current version
is limited to only one programming language, Python.

REFERENCES

1. Collar Jr, E. and Valerdi, R., “Role of software readability on
software development cost.”, 2006.

2. Scalabrino, S., Linares-Vasquez, M., Oliveto, R. and Poshyvanyk,
D., “A comprehensive model for code readability”, Journal of

Software: Evolution and Process, 30(6), p.e1958., 2018.

3. Miller, G.A., “WordNet: a lexical database for English”,
Communications of the ACM, 38(11), pp.39-41., 1995.

4. Flesch, R., “A new readability yardstick”, Journal of applied

psychology, 32(3), p.221., 1948.

5. Snowball stemming algorithm documentation, [Online].
Available: http://snowball.tartarus.org/

6. Buse, R.P. and Weimer, W.R., “Learning a metric for code
readability”, IEEE Transactions on Software Engineering, 36(4),

pp.546-558., 2010.

164

