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Abstract — This paper describes the model that captures a 

variety of features important for code readability: visual, 

structural and textual. Code readability can be defined as a 

measure of how easy it is to understand the logical context of 

the source code, work on it collaboratively and maintain the 

same. Successful classification of code as readable or 

unreadable is a prevalent problem in today AI’s world. By 

the automatic discovery of unreadable code, we could 

significantly reduce the time needed for software 

development and maintenance, enforce best practices and 

potentially discover bugs in the code. Current solutions for 

the measurement of code readability are still unsatisfactory 

from the aspect of accuracy. To build an accurate code 

readability model, an appropriate dataset is needed. All 

existing solutions use a set of structural and/or textual 

features, but none of them use a visual component. 

Accordingly, this work represents an improvement in the 

described problem, introducing visual component. The 

visual features in our model serve to express the visual focus 

of the person while reading a piece of code with the 

hypothesis that a person will pay more attention to the more 

complex and penitentially less readable parts of the 

programming code. On the other side, the structural features 

are used to express the key programming concepts of the 

target programming language and describe the impact of 

code’s general structure on its readability, as well as the 

impact of some rarely used concepts in contrast to often used 

ones. Finally, the textual features, extracted from comments 

and identifiers, describe the semantics of software's logic and 

in that way contribute to a higher degree of code 
comprehension and readability. 

I. INTRODUCTION 

Keeping code readable is of crucial importance for the 
success of every software project. Readability is one of the 
key preconditions for easy and quick understanding of the 
written code, which is necessary for every phase of  the 
software’s life cycle. The degree in which the code 
satisfies readability criteria determines the speed of 
development, as well as maintenance of the software [1].  

The main goal of the model introduced trough this paper 
is a formal description of aspects that have the most 
significant impact on code readability. As such, this model 
has a dual purpose, in software development, as well as in 
the educational domain. Regarding software development, 
this model could be an appropriate base for the 
development of a tool that measures code readability. The 
tool like this one with its assessment of code readability 
would make it easier and faster to write code. Also, its use 
would enable software engineers the insight into good and 
bad practices and teach them to organize their code in a 
better, clearer way. This would also improve the quality of 
the software by reducing the number of potential bugs and 
decrease the time it takes to maintain the final software. 

Another benefit of the model of code readability features 
would be an improvement in software engineering 
education. By analyzing the features that turned out to be 
critical for code readability from the aspect of students, we 
can gain insight into concepts that require the highest level 
of student attention, as well as identify concepts that are 
obstacles to overcome individual problems in 
understanding code. 

The main goal of this work is the formal specification 
of system for creating the dataset that is used for the 
development of the code readability classifier. This system 
relies on three main components: (1) visual data extractor, 
used for extracting visual features by filtering the data that 
the eye tracker device collects while a person reads a 
programming code; (2) static analyzer, used for extracting 
structural features; (3) textual analyzer, used for extracting 
textual features. 

The first section, Structural component, describes a set 
of structural features considered in our model of code 
readability features, as well as how they are extracted from 
code snippets. In the second section, Textual component, 
is given a description of code readability features, 
analyzed from the textual aspect. The third section, Visual 
component, represents the novelty introduced through this 
work, which gives a detailed description of visual features. 
The last section gives a short review of existing models of 
code readability features and also describes future work. 

II. STRUCTURAL COMPONENT 

The structural features are used to describe how the 
source code is constructed, i.e., which particular concepts 
from a set of key concepts of the target programming 
language are used. Most of the programming languages 
have a lot of concepts in common, but there are also 
structural and semantic peculiarities characteristic to every 
particular programming language.  

Structural features are important when assessing the 
readability of the source code. For example, the try-catch 
block is a prevalent concept in languages such as Java or 
C#, but not in Python, where catch keyword is replaced 
with except keyword. Also, one of the concepts in Python, 
that, based on our previous educational experience, is 
relatively rarely used and a potential reason for the 
confusion is for loop with else clause. Programmers new 
to Python think that this structure is wrong from syntax 
aspect, which is why they tend to assess examples with this 
structure as unreadable. Another example is the 
importance of the code layout. The example that illustrates 
this in the best way is a well known if-else structure, which 
can be written using an inline or block layout (Fig. 1 and 
Fig. 2). Block layout is used in 90% of the time, while 
inline layout (ternary operator) is used only in 10% of the 
time. The reason for this is that the block layout shows in 
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1. def func(words):   
2.     words_count = {}   
3.     for word in words:   
4.         words_count[word] = 1 if word not in words_count else words_count[word]+1 

 
Figure 1: Inline layout (ternary operator) of if-else structure in Python 

1. def func(l1):   
2.     all = {}   
3.     for el_1 in l1:   
4.         if not(el_1 in all):   
5.             all[el_1] = 1   
6.         else:   
7.             all[el_1] = all[el_1] + 1    

  
Figure 2: Block layout of if-else structure in Python 

 

a very clear way the condition of branching and operations 
that should be executed in every single branch. In contrast, 
a ternary operator takes programmers more time for 
recognizing condition and actions per every branch. 

The set of structural features that our model captures 
represents a modified set of structural features given in [2]. 
In [2] target programming language was Java, which is the 
main reason why some of these features are not considered 
in our model since the model described through this paper 
is developed for snippets written in Python programming 
language. From the structural model in [2], several 
irrelevant features are removed: the average number of 
commas and spaces per code line, the maximal number of 
occurrences of any character and feature that describes 
indentation (preceding whitespace). The main reason why 
these features are not considered in the described model is 
their low impact on code readability assessment, proven in 
[2]. 

On the other side, some new features, that complement 
a set of concepts characteristic for Python, are added. 
Table 1 shows all features that structural component 
includes. The first column in the table describes features, 
as well as a way how they are determined (number of 
characters; observing each line of code or scope of the 
entire snippet). All new structural features, introduced 
through this paper, are marked with * in front of their 
name. Other features (without * in the name) are 
references from [2]. For each feature is marked which 
value is calculated, average and/or maximal. For features 
which values are determined based on the entire snippet 
(e.g., number of if constructions, number of loops…), only 
maximal value is calculated.  

The module used for static code analysis performs an 
analysis of the Abstract Syntax Tree (AST) of the input 
code, considering the set of Python’s concepts needed to 
get information about the values of defined structural 
features. A code snippet that represents the input in this 
module can be any syntactically correct Python code. The 
output of this module is a static report that includes all 
structural features in our model with concrete values that 
uniquely describe the analyzed snippet. Furthermore, this 
report can be used for generating an observation that 
represents corresponding Python snippet in dataset 
instance that is based on this feature model. 

III. TEXTUAL COMPONENT 

The textual features capture the domain semantics of the 
software and add a new layer of semantic information to 
the source code, in addition to the programming language 
semantics [2]. Lines of code with comments that describe  
their purpose using natural language, which is more 
understandable to human (Fig. 3 and Fig 4), as well as 

carefully chosen identifiers (Fig. 5 and Fig. 6) could 
improve code understanding, even though it is one of the 
less readable examples, from the structural point of view. 

In contrast, poorly defined identifiers (e.g., meaningless 
abbreviations or identifiers that contain only one letter) or 
inconsistent identifiers can cause wrong understanding of 
code and thus result in a change of assessment of its 
readability, from a human perspective. Another 
perspective for analyzing the impact of natural language 
on code readability is the degree of how specific terms 
(words that are used in identifiers) are. For example, if the 
term has multiple meanings, this can be the reason of 
misunderstanding of code’s purpose, but, in case a term 
has a very specific meaning, the difference between the 
programmers intended meaning and cognitive model of 
someone who reads the code is minimal. 

1. def func(number):   
2.     """Make list of squares of integer values fr

om specified range"""   
3.     result_list = []   
4.    
5.     number <<= 2 >> 1   
6.     for num in range(1, number):   
7.         result_list.append(num*num)   
8.    
9.     return result_list[:3]   
10.    
11. result = func(4) 

Figure 3: Snippet example written with a comment that describes the 
purpose of the code 

1. def func(limit):   
2.     result_list = []   
3.    
4.     limit *= 4 / 2   
5.     numbers = range(1, limit)   
6.     for num in numbers:   
7.         result_list.append(num**2)   
8.    
9.     return result_list[0:3]   
10.    
11. result_list = func(4)  

Figure 4: Snippet example written without a comment that describes the 
purpose of the code 

1. def func(l1):   
2.     all = {}   
3.     for el_1 in l1:   
4.         if not(el_1 in all):   
5.             all[el_1] = 1   
6.         else:   
7.             all[el_1] = all[el_1] + 1   
8.    
9.     res = list()   
10.     l = all.items()   
11.     while len(res) <= 3:   
12.         for k, v in l:   
13.             res.append(k*v)   
14.    
15.     return res[::-1]   
16.    

17. l = func(['a', 'b', 'ab', 'c', 'ab', 'b', 'ab']) 

Figure 5: Snippet example written with meaningless identifier 
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1. def func(words):   
2.     words_count = {}   
3.     for word in words:   
4.         words_count[word] = 1 if word not in words_count else words_count[word]+1   
5.    
6.     multiplied_words = list()   
7.     all_words = words_count.items()   
8.     counter = 0   
9.     while counter <= 3:   
10.         for key, value in all_words:   
11.             multiplied_words.append(key*value)   
12.             counter += 1   
13.     else:   
14.         return multiplied_words[::-1]   
15.    
16. words = ['b', 'a', 'b', 'ab', 'c', 'ab', 'ab']   
17. result = func(words)  

Figure 6: Snippet example written with meaningful identifiers

The set of textual features considered by this model is the 
same as in [2], and it contains the following features: 

1. Comments and identifiers consistency - represents 
the overlap between unique terms extracted from 
comments and unique terms extracted from 
identifiers. Before calculation, set of terms extracted 
from comments is expanded with a set of synonyms, 
for each particular comment term. Synonyms are 
determined using WordNet [3] corpus.  

2. Identifier terms in the dictionary - represents the 
percentage of terms that are full-words, i.e., exist in 
the appropriate dictionary, e.g., WordNet corpus. 
Also, the percentage of nonexistent terms is 
calculated, but here we didn’t consider one-letter 
identifiers. 

3. Narrow meaning identifiers - represents how specific 
are terms used in identifiers. The particularity of each 
term is determined through observing hypernym tree 
of that term, considering the number of steps 
necessary to come from the current node (a node that 
contains concrete term) to the root node in the tree 
structure. For this purpose, as well as for the previous 
two features, WordNet corpus is used, since inside it 
word relations such as hypernyms and hyponyms are 
defined.  

4. Comments readability - determines the readability of 
comments using Flesch-Kincaid [4] index, 
commonly used to assess the readability of natural 
language texts.  

5. The number of meanings - determines the polysemy 
of a snippet, analyzing the number of meanings of 
terms used in identifiers. This value, the number of 
meanings, is derived from WordNet corpus since 
inside it exists at least one definition of each word. 
From the aspect of this feature, maximal and average 
values are considered as relevant. 

6. Textual coherence - represents the number of 
“concepts” implemented by a source code snippet 
[2]. To estimate the number of concepts, snippet’s 
AST is used to detect syntactic blocks. Each syntactic 
block is individually processed to extract a set of 
unique terms used in identifiers. After that, 
vocabulary overlap is computed for each pair of 
blocks. Relevant values from the aspect of this 
feature are minimal, maximal, as well as average 
overlap.  

 

The module used for extraction of textual features 
performs a syntactical analysis of the input code, 

considering comments and identifiers. Before starting with 
textual analysis of the code, the input must be 
preprocessed to extract the textual content of the input 
code and get single terms prepared for textual analysis. 
Preprocessing steps are:  

• Remove non-textual tokens: programming language 
keywords, special symbols, and operators;  

• Split the remaining tokens into separate words 
(according to one of two naming conventions - camel 
case notation and underscore notation); 

• Remove stop-words from comments (e.g. articles, 
adverbs); 

• Extract stems from comments words using Snowball 
algorithm [5]. 

 

Similar to the output of the first described module, the 
static analyzer, the output of this module is also in the form 
of a report that includes all specified textual features with 
concrete values that uniquely describe the analyzed 
snippet, from the textual aspect. This report can be used to 
complement the existing observation that represents the 
analyzed code in dataset instance with the values that 
describe snippet from a textual perspective. 

IV. VISUAL COMPONENT 

The visual features are important from the aspect of 
analysis how people read the code: what people consider 
to be more or less important parts, whether they read 
keywords, whether they read code from top to bottom or 
trace actions backward, starting from the end of the code, 
i.e., function call. During code analysis, the human focus 
is more often on complex or unreadable parts than on 
keywords, readable and familiar concepts or structures. An 
example that explains this claim is the if-else construction. 
In the case of the inline layout (e.g., the code example 
shown in Fig. 1), keywords are built-in in one line, so that 
we can’t skip them. On the contrary, we read them to 
determine the boundaries of if and else branches and their 
respective actions. 

The set of visual features, considered in this model, 
includes features that describe the path of evaluation of a 
piece of code by a human. These features express the 
average and maximal time (in seconds) of observation for 
all of the considered Python’s concepts (identifier, 
function call, arithmetic/comparison/bitwise/logical 
operator, assignment/augmented assignment statement, if 
construction, loop…), that have been already mentioned 
and explained above, in section about structural features. 
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Table 1: Structural features 

Feature Average Maximal 

* Snippet length  

(number of lines) 
+ + 

Code line length  

(number of characters) 
+ + 

Identifier length 

 (number of characters) 
+ + 

Number of identifiers 

(per code line) 
+ + 

* Number of occurrences of the most frequent identifier 

(on snippet level) 
 + 

Number of keywords 

(per code line) 
+ + 

Number of blank lines 

(on snippet level) 
 + 

Number of comment lines 

(on snippet level) 
 + 

* Comment length 

(number of characters) 
+ + 

Number of numerical constants 

(per code line) 
+ + 

* Number of textual constants 

(per code line) 
+ + 

Number of parentheses 

(per code line) 
+ + 

Number of assignments 

(on snippet level) 
 + 

* Number of augmented assignments  

(on snippet level) 
 + 

* Number of function calls 

(per code line) 
+ + 

* Number of occurrences of the most frequent function call 

(on snippet level) 
 + 

Number of branches (if, elif) 

(on snippet level) 
 + 

Number of loops (for, while) 

(on snippet level) 
 + 

* Number of break points 

(on snippet level) 
 + 

* Number of continue points 

(on snippet level) 
 + 

* Number of try blocks 

(on snippet level) 
 + 

* Number of except blocks 

(on snippet level) 
 + 

* Number of raise expressions 

(on snippet level) 
 + 

* Number of finally blocks 

(on snippet level) 
 + 

* Number of return statements 

(on snippet level) 
 + 

Number of arithmetic operations 

(per code line) 
+ + 

* Number of logical operations 

(per code line) 
+ + 

Number of comparison operations 

(per code line) 
+ + 

* Number of bitwise operations 

(per code line) 
+ + 

* Number of list comprehensions 

(on snippet level) 
 + 

* Number of dictionary comprehensions 

(on snippet level) 
 + 

* Number of set comprehensions 

(on snippet level) 
 + 

* Number of lambda functions 

(on snippet level) 
 + 

* Number of identity operators (is, is not) 

(per code line) 
+ + 

* Number of membership operators (in, not in) 

(per code line) 
+ + 

 

The visual data extractor is third and the most important 
component of this model. During the process of the code 
evaluation by a human, the persons gaze is followed by an 
auxiliary device, eye tracker. During the recording, this 
device forms a database with 30 properties that describe 

the human’s gaze and also one video record that shows the 
entire observed content. We consider 6 out of these 30 
properties to be relevant and sufficient to describe the 
captured gaze, while the rest of them represent more 
technical information that is irrelevant from the 
perspective of our model, such as position of mouse 
cursor, URL of webpage which is observed, diameter of 
left/right eye pupil in the camera image…  

Properties that are used to describe the whole process of 
eye tracking in this module are:  

• FPOGV - flag that indicates if fixation (gaze) is valid 
or not (fixation is invalid in the case of blinking or 
fast transition of the view);  

• FPOGID - fixation ID number;  

• FPOGX - the x coordinate of the fixation, as a 
percentage of the screen width (0 to 1);  

• FPOGY - the y coordinate of the fixation, as a 
percentage of the screen height (0 to 1);  

• FPOGD - the duration of the fixation expressed in 
seconds;  

• TIME - timestamp of the fixation expressed in 
seconds.  

Firstly, the module filters valid fixations according to 
appropriate flag (FPOGV) from the resulting database. 
Next step is extraction of the period of observation (from 
the properties timestamp from and timestamp to) for each 
concept that has been observed. This report is created by 
the visual data extractor by using two inputs, that represent 
products of recording with the eye tracker device:  

• filtered database (only valid fixations with a 
timestamp in a given range are kept) 

•  video record. 

The video record is used to extract the frames from the 
defined time period so that fixations from the database can 
be mapped on particular content shown on the screen. The 
video frame is processed using computer vision techniques 
to get the map that describes relative coordinates of 
boundaries (minimum and maximum x coordinate, 
minimum and maximum y coordinate) of every code line 
in the code shown on the video frame. Further, every 
fixation is mapped on the appropriate concept in the code, 
using its FPOGX and FPOGY values, as well as the 
previously mentioned map, that describes the boundaries 
of every line in the code.  

The final output of visual extractor is the structure that 
for every considered Python’s concept stores the 
information about average and maximal observation time, 
expressed in seconds.  

V. CONCLUSION 

The most significant results of code readability 
classification/measurement have been achieved and 
described in [2] and [6]. In [6] authors created a training 
dataset, which includes only the structural component, i.e., 
features obtained by static analysis of the observed codes. 
In [2], authors have significantly improved on [6] by 
creating a new dataset that, in addition to structural 
features, introduces new, textual component, i.e., features 
that are related to the textual aspect of the code. This 
extension of training dataset added a new dimension to the 
analysis of readability for different codes and significantly 
improved classification performance.  
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This paper extends the previously mentioned models by 
adding a visual component to already defined structural 
and textual components, that are used in datasets on which 
these models are trained. Accordingly, the topic of this 
work is creating a model that besides already mentioned 
components also includes a visual one, i.e., features that 
describe patterns of human attention when evaluating 
codes. This could be an improvement that can contribute 
to a more in-depth understanding of how the code 
readability is assessed and potentially in higher accuracy 
of code readability classifiers.  

Apart from the introduction of a new aspect in the code 
readability analysis process, this work also represents an 
extension and improvement regarding the number of 
concepts in the target programming language, that are 
taken into consideration during static code analysis to 
define the structural features.  

The future work is the development of the automatic 
code readability classifier, that is trained on the dataset 
based on the described model, as well as evaluating the 
significance of the visual component. Also, in case that our 

classification model shows better performance than 
current state-of-the-art models, next step in the 
development would be the extension of the model of code 
readability features so that it supports other commonly 
used programming languages because its current version 
is limited to only one programming language, Python. 
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