
Business Requirement Negotiation based on
Generalized Requirement Approach (GRA)

Aleksandar Bulajic*
* LANB, Kongens Lyngby, Copenhagen, Denmark

LANB@45.dk

Abstract—Business software development is based on the
specific business requirements that are collected during
requirement negotiation process. Gathering business
requirements, when final product requirements are dictated
by known client, can be a difficult process. An idea about
new business product can be obscure, and described by
general terms that contributes very much common
misunderstandings. Business requirement verification
accomplished by using text and graphics, and manual
review processes, can be slow, error prone and expensive.
Misunderstandings and omitted requirements affect future
software product. This research work proposes new
approach to requirement negotiation, the Generalized
Requirement Approach (GRA) and is focused on
demonstration of business requirement during requirement
negotiation process. The process of the business requirement
negotiation is guided by the set of predefined objects that
store requirement description in the common repository, in
the structured text format. The objects attributes and
properties are guidelines for specifying sufficient level of
requirement details for generating source code that is used
for requirement demonstration. The source code and
executables are generated without manual programming.

I. INTRODUCTION
Business requirement specification is one of the most

important documents for software development project.
The contract signing, budget, time scheduling and
resource allocation depends hardly on the correct business
requirement specification. Omitted and misunderstood
requirement can cause huge revision and code refactoring
in late software development phases and affect project
budget and duration.

Gathering business requirements, when final product
requirements are dictated by known client, can be a
difficult process. An idea about new business product can
be obscure, and described by general terms that
contributes very much common misunderstandings.
Business requirement verification accomplished by using
text and graphics, and manual review processes, can be
slow, error prone and expensive.

Research studies show that issues related to
requirements that are discovered in later project phases
produce even greater costs and delays. Discovering or
modifying requirements in the Design Phase could be
three to six times more expensive. In the Coding Phase it
is up to 10 times more expensive, and in the Development
Testing Phase it is 15 to 40 times more expensive. In the
Acceptance Phase, it is 30 to 70 times more expensive,
and in Operation Phase it could be 40 to 1000 times more
expensive. [1]

The IBM Project Management presentation use the
Meta Group study to illustrate that 70% of large IT
projects failed or did not meet customer expectation. [2]

This research work proposes new method for business
requirement negotiation process called Generalized
Requirement Approach (GRA). The GRA requires
demonstration of business requirements during
requirement negotiation process. To be able to
demonstrate requirement, the GRA requires the GRA
Framework. The GRA Framework is implementation of
the GRA method. The GRA method is described in the
“Generalized Requirement Approach (GRA)” section. The
GRA Framework is described in the “GRA Framework
(GRAF)” section.

The GRAF guides process of the business requirement
negotiation by a set of predefined objects that store
requirement description in the structured text format in the
common repository. The object attributes and properties
are guidelines for specifying sufficient level of
requirement details for generating source code [3].
Automated build is using source code to create
executables and demonstrate requirement on fly. The
source code and executables are generated automatically
without manual coding by the Generic Programming
Units (GPU). The GPU is a class or module responsible
for generating source code. The GPU is based on the
parameterized methods. The GPU is setting method
parameters to the values stored in the structured text
format before generating source code. Besides changing
parameters and generating methods, the GPU is able to
generate user interface, classes, SQL statements and
configuration files. The GPU is described in the “GRA
Framework (GRAF)” section.

The GRA addresses requirement management
syndromes, specification of Insufficient Details Level [3],
the IKIWISI (I’ll know it when I see it) syndrome,
the “Yes, but’ syndrome (‘that is not exactly what I
mean’) and the ‘Undiscovered Ruin’ syndrome (‘Now that
I see it, I have another requirement to add’).

II. RELATED WORK
Traditional requirement management approach is often

identified by the Waterfall [4][5] software development
method, where comprehensive requirement analysis and
documenting is completed before a start of the next
project phases. On the contrary, the Agile Requirement
Management [6] does not wait that all requirements are
specified, neither is waiting that a whole requirement is
specified. A development starts as soon as a part of the
requirement is understood [7]. The project is developed by
using an iterative and incremental approach. The Agile
software development process is based on the short

Page 4 of 478

ICIST 2014 - Vol. 1 Regular papers

mailto:LANB@45.dk

development iterations. Each of iteration implements a
limited number of requirements. The next iteration is
planned on the user feedback and experience collected
during iteration testing process [7]. Short iteration
advantage is early discovering of the requirement
misunderstanding. However, if requirement is
misunderstood, then time spend for code development can
be waste and affects project scheduling and budget.
Requirements that are implemented in the next iteration
can require code refactoring. Huge code refactoring can
affect project budget and scheduling.

Mc Connell [8] pointed to importance of software
project proper preparation and prerequisites such us
planning, requirements, architecture and design.

The Test Driven Development (TDD) is Extreme
programming method based on the test first approach. The
test is created before implementation code [9]. The TDD
improved test coverage and promotes testing culture [10].
While low test coverage can mean that test was not
properly executed, high test coverage guarantee
nothing [11].

The Microsoft Solutions Framework (MSF) is
Microsoft best practice method for delivering software
according to specification, on time and on budget. [12]
“The MSF philosophy holds that there is no single
structure or process that optimally applies to the
requirements and environments for all projects. It
recognizes that, nonetheless, the need for guidance exists.”
[12]

Hewlett-Packard experimented by implementation of
the Evolutionary Development method (EVO) “to
improve software development process, reduce number of
late changes in the user interface and reduce number of
defects found during system testing” [13]. The first and
second attempt that used two weeks delivery cycles and
four to six delivery cycles over more than year and half
failed to delivery expected features and expected results.
[13] The third attempt that used first month to prototype
after 4,6 months of implementation delivered world class
product. [13]. These experiments on the full scale
industrial projects confirmed importance of prototyping as
a tool for requirement clarification.

The Unified Software Development Process, an
iterative and incremental component based software
development method that is case driven, architecture
centric and risk focused has been created in 1999. [14]

Road map in the Unified Process method is described
as The problem domain, Stakeholder needs, Moving
Toward the Solution Domain, Features of the System,
Software requirements.[14] A Problem Domain is
identified by Needs, while Features and Software
Requirements belong to the Solution Domain.[14]. The
most known implementation of the Unified Process (UP)
is IBM Rational Unified Process (RUP) component-based
process.

However, the first step in the software development
process is requirement description and clarification.
Collecting and describing requirements in the
Requirement Specification document can be a difficult
job. The natural language is subject of different
interpretation and cause ambiguities.

The IEEE 1998b standard describes characteristics of a
good requirement specification such as correct,

unambiguous, complete, consistent, traceable, verifiable
[15].

The Unified Approach [14] added to this list next
characteristic “understandable”.

Other authors, such as Wiegers, describe characteristics
of excellent requirement by requirement statements
characteristics such as complete, correct, feasible,
unambiguous, and verifiable [16].

 Wiegers makes differences between Requirement
Description and Requirement Specification description
and a good Requirement Specification describes as
complete, consistent, modifiable and traceable [16].

Requirements verification is a process of improving
requirement specification according to recommendation of
good requirement description practice.

Wiegers [16] favor technique for requirement
verification is formal inspection of requirements
document accomplished inside of the small teams where
are represented different views, such as analyst view,
customer view, developer and tester view. This technique
is supported by testing requirements by developing
functional test cases and specifying acceptance criteria
[16].

Rational Unified Process [14] use traceability matrix for
requirement verification. A requirement or a need in RUP
terminology is linked to a feature. A Feature is linked to a
Software requirement and Use Case. Use Case is linked to
Test Cases. If some of the links is missing it is considered
an indication that requirement is not properly verified.
Requirement verification in this case is considered done if
a link to a Use Case and a Test Case exists [14].

Sommerville [17] for requirement verification process
specifies requirement reviews, test case generation and
automated consistency analysis in case when requirements
are specified “as a system model or formal notation”.

 Prototyping technique is used for requirement
validation. Sommerville see prototyping as a requirement
verification technique [17]

Requirement validation is a process of “evaluating of
software component during or at the end of development
process” [18]

Prototyping is an effective method for requirements
clarification, proof of concept and reducing a risk that
final product is significantly different than expected [16].

Requirement verification accomplished by using text
and graphics, and manual review processes, can be slow,
error prone and expensive.

Omitted and misunderstood requirements can cause
huge revision and code refactoring in late software
development phases and affect project budget and
duration.

III. SOFTWARE DEVELOPMENT METHODOLOGY (SDM)
The Software Development methodology is software

development process that can be described by following
development phases and activities:

 Analysis – system requirements management,
 Architecture & Design –system design,
 Development – internal design and coding ,
 Test – test and validation,
 Deployment – operation and maintenance.

Page 5 of 478

ICIST 2014 - Vol. 1 Regular papers

The SDM is a structured approach to software
development. The SDM purpose is production of high-
quality software in a cost-effective way [17]. The
structuring process purpose is to enable process planning
and controlling. The SDM process structure is
implemented in the different software methodologies,
sequential and iterative, incremental and evolutionary,
rapid application development and prototyping

History of the Software Development Methodology
(SDM) started in the 1956 when Herbert D. Benington
presented his paper “Production of Large Computers
Programs” at "Symposium on advanced programming
methods for digital computers: Washington, D.C., June
28, 29, 1956" by [19].

Dr. Winston W. Royce in 1970 presented his personal
view about managing large software developments in his
paper "Managing the Development of Large Software
Systems" at “Proceedings of IEEE WESCON 26 “ [20].
While Herbert D. Benington called the first phase, where
broad requirements are defined, the Operational Plan
phase, Dr. Winston W. Royce called the first software
development phase the System Requirements phase.

The process of the requirement specification,
verification and validation is described in the Figure 1
“Traditional Requirement Management Approach”:

Figure 1 “Traditional Requirement Management
Approach”

The requirement verification is understood as a process
of the initial requirement evaluation, executed during
requirement gathering, elicitation and specification. [18]
The requirement validation is understood as a process of
the requirement evaluation after completing of the
development phase. [18]

The output from the Traditional Requirement
Management is Requirement Specification document. The
Requirement Specification document is used as reference
document for further software development planning’s’
and activities, Design Specification, Code Writing and
Testing & Validating, even it is well known that a written
texts as well as graphics are ambiguous and subject of
different interpretations.

The choice of software development method affects
time distance between requirement specification and
requirement validation. In case of the Agile development
methods this time distance can be a week or weeks long.

In case of more traditional approaches, this can be a
month or months long.

Traditional requirement management, Waterfall like
method, is most appropriate for a project where
requirements are stable and do not change during software
development process. However, analysis shows that an
average of 25 % of requirements change in the typical
project, and change rate can go even higher to 35% to
50% for large projects [21].

If time difference between requirement specification
and requirement validation is longer, then is most likely
that requirement will be changed.

This process can be improved by introducing
requirement demonstration as early as possible to avoid
waste of time and resources on implementation and
modification of misunderstood requirements.

IV. GENERALIZED REQUIREMENT APPROACH (GRA)
The Generalized Requirement Approach (GRA)

solution proposes requirement validation prior to creating
Requirement Specification. Requirement validation
requires creating of the executables that are created from
the source code. Writing source code manually can be
slow and error prone process.

The GRA method proposes automatic source code
generation from structured textual descriptions that are
expressed by customer native language. The process of
describing requirements, generating source code and
requirement demonstration is called Requirement
Normalization process. The Figure 2 “Generalized
Requirement Approach Overview” illustrates proposed
solution:

Figure 2 “Generalized Requirement Approach (GRA)
Overview”

The Requirement Normalization process is responsible
for:

 Guiding user to specify sufficient level of
details [3] by using customer native language,

 Storing requirement description in the
structured text format,

 Automatic source code and executables
generation.

Page 6 of 478

ICIST 2014 - Vol. 1 Regular papers

Besides requirement description, the Requirement
Normalization primary goal is to clarify obscure
customer’s requirements. The Requirement Normalization
process is considered complete when requirement is
possible to describe by sufficient level of details from
which is possible generate source code and build
executables. The outputs from the Requirement
Normalization are generated Requirement Specification
and source code. The source code can be used in the next
project phases.

While traditional requirement management writes
Requirement Specification document, the Requirement
Specification in case of the GRA method is stored in the
central repository and can be generated on demand. It is
not recommended direct update of the Requirement
Specification. Updates should be accomplished though
Requirement Normalization process.

Based on discussion in this section are identified
following GRA features:

 Document and store requirements in the
structured text format described by customer
native language,

 Generate source code without manual
programming,

 Demonstrate working software during
requirement negotiations process,

V. GENERALIZED REQUIREMENT APPROACH
FRAMEWORK (GRAF) OVERVIEW

The Generalized Requirement Approach Framework
(GRAF) is implementation of the Generalized
Requirement Approach (GRA) method. The GRAF
contains code, classes, objects and libraries that are
guiding user during requirement negotiation process to
provide detailed requirements specification that is
sufficient to generate source code and executables. The
GRAF is responsible for implementation of the GRA
features.

The Figure 3 “The Generalized Requirement Approach
Framework Design” illustrates the GRA framework high
level design:

Figure 3 “The GRA Framework Design”

The GRAF is organized around central repository. In
the central repository are stored requirement descriptions
and used by Code Generator when necessary.

Designer is responsible to store structured text format
descriptions in the Database and for guiding a user to
specify sufficient amount of details. Omitting sufficient
number of details during requirement specification can
affect project duration and increase overall cost expenses
[3].

Code Generator is responsible for generating source
code by using structured text data stored in the Database.
The source code is generated in the standard programming
language, for example C# or Java. The generated source
code is executed in the Runtime Environment. The
Runtime Environment depends of the generated source
code. For example, if the C# source code is generated by
Code Generator the Runtime Environment needs
Microsoft .NET and CLR installation. If the Java source
code is generated by Code Generator the Runtime
Environment needs JRE installation.

The Test & Validation process validate requirements by
using code that is executed in the Runtime Environment.
If requirement does not satisfy expectations the process
can be repeated and retuned back to Designer.

The GRA method can be implemented by using
different technologies, such as Microsoft .NET, Java or
JavaScript. In this paper the GRA Framework is
implemented by using the Microsoft .NET and C#
language. Each implementation can be based on the
different object types.

The GRA Framework used in this paper identifies
following groups of objects that are used by Designer
during requirement negotiation process:

 Objects responsible for requirement description
and documenting such as Requirement, User
Story, Use Case, and Test Case.,

 Objects responsible for storing data in structured
text format that are used to generate source code
such as Forms, Data Sources, Application
Objects and Interfaces.

Each of the GRA Framework object is mapped to one
or more corresponding database entities that are used for
storing data in the structured text format and for retrieving
data when the GRA Framework need it.

Objects responsible for requirement description and
documenting are designed according to best practice [22].

Objects responsible for storing data in structured text
format are business application building blocks and in this
particular GRAF implementation are used following
objects:

 Form object is describes entry fields and other
predefined User Interface (GUI) controls that
enable user and software application
interactions,

 Data Source object is responsible for creating
database tables and relations,

 Application Object is responsible for backend
and batch job processing,

Page 7 of 478

ICIST 2014 - Vol. 1 Regular papers

 Interface object is in the same time Application
Objects, but for this kind of objects is specific
communication with sources of data external to
application.

Objects responsible for storing data in structured text
format are used to generate source code. Code Generator
designed for this paper is illustrated in the Figure 4 “The
GRA Framework Source Code Generation”:

Figure 4 “The GRA Framework Source Code
Generation”

The source code is generated from the structured text
descriptions, the GRA Libraries and Templates. The
structured descriptions are stored in the Database tables.
The GRA Libraries are containing parameterized methods
and templates. These methods and templates are adapted
to requirement specifics, and inserted in the generated
source code. The Templates contains controls and controls
attributes that are specific to implementation technology.
For example if it is generated ASP.NET source code, the
Templates are adapted to the ASP.NET controls such as
Textbox, Button or Dropdown list, as well as to the
ASP.NET language specific syntax. The methods and
templates are used as building blocks to create source
code. The process of source code generation is initiated
externally from Actor by sending a name of the object that
needs to be generated.

The Generic Programming Unit (GPU) is a code, a
method, a class or a module that is able to generate source
code. One example of the GPU is a GPU that can generate
form. The form can be described by form’s name, field
name, field type, data type, data length and number of
decimal places, and form’s control type, such as text field,
drop down list, check box, button, etc. The GPU from this
data shall be able to create form that can insert, modify
and delete entries, and execute action code that is assigned
to the form fields.

The Generic Programming Unit (GPU) is glue that
connects database structured text descriptions, library
methods and templates, and creates source code. The GPU
is reading data stored in the Database for each particular
object and creates source code according to requirement
description by using GRA Libraries and Templates. The
GRA Libraries contains templates and methods. The
outputs from the GPU are HTML Web Page, Code Behind
Class, Data Object Class and SQL. The Data Object Class
is responsible for data mapping from relational database to
objects and is a part of the Data Access Object pattern

implementation. The generated SQL statements are used
in the implementation of CRUD database operations. The
GPU shall be able to generate other source code if there
are available sufficient details of information and if
implementation technology can support it.

The Runtime Environment is responsible for execution
of the generated source code and is using Database for
storing and retrieving application data.

VI. EXPERIMENT
The GRA Framework implementation is tested on the

Retail Store application. The Retail Store is a fictive E-
Commerce application described by following Retail
Store User Story:

“As the Retail Store we want to sell our products on-
line through Internet in order to increase product
availability, get in touch with more customers and
increase sale and profit”. From the Retail Store User
Story is possible to identify:

 ProductComponent object,
 Sales Operation.

The Product Component requirements are described in
the Salesman User Story as “a need to add, update and
remove product from the product list”. The Sales
Operation requirements are further elaborate in the Buyer
User Story as “a need to select product, add product to
shopping cart, create order and enable online payment by
credit card”.

The source code is generated according to the process
described in the Figure 4 “The GRA Framework Source
Code Generation generated source code. The source code
has been generated from description of the Product,
Shopping Cart, Order and Payment forms. Each form is
described by forms name, field name, field type, data type,
data length and number of decimal places, and forms
control type, such as text field, drop down list, check box,
button, etc. The GPU from this data generates forms that
can insert, modify and delete entries, and execute action
code that is assigned to the form fields. The Figure 5
“Product Form” illustrates generated Product form:

Figure 5 “Product Form”

Other forms are generated the same way and the GPU
generates the fully functional application that is able to
demonstrate Product and Sales Operation components.
The user of generated application is able to enter, store,

Page 8 of 478

ICIST 2014 - Vol. 1 Regular papers

update and browse data, add data to Shopping Cart,
change selected quantity and review Order before
executing payment operations. To the Order form are
assigned calculations for calculating items price, handling
fee and VAT amount, and for calculating Order total
amount. The limited space in this paper does not allow full
presentation of the generated application.

VII. CONCLUSION
The result of the experiment, E-Commerce fictive

application, demonstrates feasibility of proposed solution,
and shows that the predefined set of the framework
objects and code that uses data defined during requirement
negotiation process is sufficient to generate source code
and generate application without a need for writing code
manually.

The Generalized Requirement Approach (GRA)
proposed in this paper can improve software development
productivity, and improve the quality of the final product.

However, effective use of the GRA method requires
implementation of the GRA Framework (GRAF). The
GRAF objects attributes are guidelines for specifying
requirement and providing sufficient details level. While
in the existing Software Development Methodology
source code is written by programmers manually, the
GRAF generates source code from the requirement user
descriptions stored in the central repository.

The proposed solution can contribute to:
 Clarify requirements and improve requirement

understandings,
 Address IKIWISI, “Yes, but”, “Undiscovered

Ruin” and “Insufficient Details Level”
requirement syndromes,

 Closing a gap between requirement
specification and requirement validation,

 Producing of an environment where
requirements can be executed, analyzed,
observed, and validated,

 Promote customer active participation.
The generated source code and executables are fully

functional application that can be executed and tested. The
Retail Store demo application can demonstrate workflow,
data, algorithms, and can be used for ad-hoc testing.

According to the currently collected experience, the
critical part of this approach is providing sufficient
amount of the features that are in the GRAF represented
by Application Object. Application Object represents
classes and generic methods that solve particular
programming issue. For example it can be testing of
unique Id, moving rows from one relation table to other or
creating new entities that are combination of the existing
entities. In the Retail Store demo application example
such example is the addRowToDataSource generic
method. The addRowToDataSource method is able to add
current data source row to any other data source. In this
GRAF implementation, the target data source is specified
during requirement negotiation and is stored in the
requirement description.

This framework version is developed for research and
experiment purposes. The further development can create
a product that besides requirement negotiation can be used
for estimation, and generally speaking for project
management purposes

REFERENCES
[1] DragonPoint, Inc (2008), Company Newsletter issue No. 3,

“Requirements Capture: Keys 6 Through 10 to a Successful
Software Development Project”, available at
http://www.dragonpoint.com/CompanyNewsletters/Requirements
CaptureKeys610.aspx

[2] IBM (2007), “IBM Project Management”, available at
http://facweb.cs.depaul.edu/yele/Course/IS372/Guest/Dawn%20G
oulbourn/IBM%20PM%20presentation%20for%20DePaul.ppt

[3] Bulajic, Aleksandar, Stojic, Radoslav, Sambasivam, Samuel
(2013), “Gap Between Service Requestor and Service Provider”,
"Applied Internet and Information Technologies" ICAIIT2013 ,
Zrenjanin, Serbia, October 26, 2013

[4] Benington, Herbert D. (1956), “Production of Large Computers
Programs”, Symposium on Advanced Programming Methods for
Digital Computers sponsored by the navy Mathematical
Computing Advisory Panel and the Office of Naval Research,
June 1956,

[5] Royce, Winston W. (1970), “Managing The Development of
Large Software Systems”, Proceedings of IEEE WESCON 26,
August 1970,

[6] Beck Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim
Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
Dave Thomas (2001), “Manifesto for Agile Software
Development”, available at Internet http://agilemanifesto.org/

[7] Beck, Kent (2002), “ Introduktion til Extreme programming”,
IDG, 30-05-2002

[8] Mc Connell, Steve, “Code Complete 2: A Practical Handbook of
Software Construction“, Microsoft Press, 2004

[9] Beck, Kent (2002a), “Test Driven Development by Example”,
Addison-Wesley , November 18, 2002

[10] Bulajic, Aleksandar, Sambasivam, Samuel, Stojic, Radoslav
(2012), “Overview of the Test Driven Development Research
Projects and Experiments”, Informing Science and Information
Technology Education 2012 Conference (InSITE) in Montreal,
Canada, June 22-27, 2012

[11] Cornett, S. (2011). “Minimum acceptable code coverage”,
Bullseye testing Technology, 2006-2011

[12] “Microsoft Solution Framework 3.0 Overview“ (2003),
“Microsoft Solution Framework White Paper”, Microsoft, 2003

[13] May, Elaine L., Zimmer, Barbara A. (1996), “The Evolutionary
Development Model For Software”, Hewlett-Packard Journal,
August 1996

[14] Leffingwell, Dean, Widrig, Don (2000), “Managing Software
Requirements : A Unified Approach”, Addison-Wesley,2000

[15] “IEEE Recommended Practice for Software Requirements
Specification” (1998), Software Engineering Standards Committee
of the IEEE Computer Society

[16] Wiegers, Karl E. (2003), “Software Requirements”, Microsoft
Press, A Division of Microsoft Corporation, One Microsoft Way,
Redmond, Washington, 2003

[17] Sommerville, Ian (2001), Software Engineering 6th Edition”,
Pearson Education Limited

[18] “IEEE Standard Glossary of Software Engineering Terminology”
(1990), IEEE-Std 610.12, IEEE Standard Board, September 28,
1990

[19] Benington, Herbert D. (1956), “Production of Large Computers
Programs”, Symposium on Advanced Programming Methods for
Digital Computers sponsored by the navy Mathematical
Computing Advisory Panel and the Office of Naval Research,
June 1956,

[20] Royce, Winston W. (1970), “Managing The Development of
Large Software Systems”, Proceedings of IEEE WESCON 26,
August 1970

[21] Larman, Craig (2005), “Applying UML and Patterns”, Pearson
Education, 2005

[22] Cockburn, Alistair(2001), “Writing Effective Use Cases”,
Addison-Wesley

Page 9 of 478

ICIST 2014 - Vol. 1 Regular papers

http://www.dragonpoint.com/CompanyNewsletters/RequirementsCaptureKeys610.aspx
http://www.dragonpoint.com/CompanyNewsletters/RequirementsCaptureKeys610.aspx
http://facweb.cs.depaul.edu/yele/Course/IS372/Guest/Dawn%20Goulbourn/IBM%20PM%20presentation%20for%20DePaul.ppt
http://facweb.cs.depaul.edu/yele/Course/IS372/Guest/Dawn%20Goulbourn/IBM%20PM%20presentation%20for%20DePaul.ppt
http://agilemanifesto.org/

	Vol.1
	Business processes modelling and management
	1. Business Requirement Negotiation based on Generalized Requirement Approach

