ICIST 2015 5th International Conference on Information Society and Technology

PyTabs: A DSL for simplified music notation

Milo$ Simi¢, Zeljko Bal, Renata Vaderna, Igor Dejanovi¢

Faculty of Technical Sciences, Novi Sad, Serbia
{milossimicsimo, zeljko.bal}@gmail.com, {vrenata, igord}@uns.ac.rs

Abstract—In this paper we present pyTabs - a
DomainSpecific Language (DSL) for simplified music
notation. In pyTabs it is possible to describe a composition
that consists of multiple sequences which can be specified in
the form of a tablature or chord notation. One notable
feature of pyTabs is the capability to play a musical piece
written in it. We describe some major issues in simplified
music notations (tablatures and chords) and propose a
solution implemented in pyTabs project as a way of
standardizing them into a formal language. puTabs is a free
and open source project implemented in python
programming language.

It is available at: https://github.com/E2Music/pyTabs

L INTRODUCTION

pyTabs is a DSL for simplified music notation and
composition description. Domain-Specific Languages
(DSLs) [1], in contrast to general-purpose languages
(GPL), offer, through specific notations and abstractions,
the power of expression focused on, and usually restricted
to, a particular problem domain. DSLs are classified by
Martin Fowler [2] on the basis of their construction as:

- External DSLs - built from scratch, with their syntax
carefully tailored for the domain in question. Often called
little languages.

- Internal DSLs - built on top of an existing GPL,
extending their syntax to add support for domain-specific
constructs. pyTabs is an external DSL. Another
classification of DSLs is [3]:

- Technical DSL - used by programmers and

- Non-technical or application domain DSL used by
non-programmers. pyTabs is an application domain DSL
(sometimes also called business DSL or vertical DSL)
meant to be used by music players/compositors.

This language is developed for the people who are not
experts in writing and/or playing music. Because tablature
and chord notations are relatively simple and intuitive,
they are easy to learn and understand.

Therefore a lot of people who decide to start playing
music usually first start with them. pyTabs language
extends the basic form of chords and tablatures, trying to
enrich them and fix some of the major problems in these
notations. Also, at the same time it tries to stay easy and
intuitive to the people who are used to the standard
notations. pyTabs goes a little bit further, and allows
playback of compositions written in this way. Fixing
major problems with the standard notation, composition
playback and also knowing that more than 800 000 songs
are available in tablature notation online [4], means that
pyTabs can really help with learning.

The paper is structured as follows: Section 2 describes the

tablature notation; In Section 3 we give the current
problems with the existing tablature notation; Section 4

gives a description of the pyTabs language, while section
5 describes the architecture of the project; Section 6
describes the tools that were used in the project; In Section
7 related work has been presented. In Section 8 we
conclude the paper.

II. ABOUT TABLATURE NOTATION

Tablature [5] (or tablature, or tab for short) is a form
of musical notation indicating instrument fingering rather
than musical pitches (figure 1). While standard
notation represents the rhythm and duration of each note
and its pitch relative to the scale based on a twelve tone
division of the octave, tablature is instead operationally
based, indicating where and when a finger should be
placed to generate a note, so pitch is denoted implicitly
rather than explicitly.

e [i

- 1 l 1
[N 3 j i | J

| || | | |

¥ Py
- N ———
HB—a
Sy

Figure 1: standard musical notation above, tablature notation below

III. CURRENT PROBLEMS IN TABLATURE NOTATIONS

There are two major problems with the current
tablature notation. The first one would be a visual
problem. Tablatures have not been fully standardized so
far and anyone can write them as they like, making their
own variations of the notation. This brings some visual
problems, especially when a line is not well-formed. Do
we want to play more than one note, or just one note per
string? What if it is a two digit number on one line and a
one digit number on another, how many dashes should
there be between the numbers, and so on (figure 2).

e|--—0---1---3--—-
B|---0---1---0---
Gl-——-— 10-2---0---
D|---2---3---0--—-
BA|-——2---3-—-2-—-
E[---0---12---3--—-

Figure 2. Tablature visual problem

The second problem is that there is no standard way of
specifying the note duration in a tablature or chord
notation. It is usually implicitly inferred by the player

Page 439 of 522

ICIST 2015 5th International Conference on Information Society and Technology

who knows the rhythm of the song, but it is impossible
for someone to play the song properly without first
knowing the rhythm.

IV. PYTABS LANGUANGE

pyTabs language is designed to improve quality and to
bring some form of standardization to the tablature
notation.

A. Tablature

A tablature in a textual format consists of one or more
rows (6 for a standard guitar, 4 for a standard bass guitar
and so on). Each row starts with a symbol representing a
row (i.e. string letter for a guitar tab) and contains a
number of symbols, usually representing notes, divided
by one or more dashes (“-”). A break is represented by a
single dash (figure 3).

el--0---1---3---

Figure 3. Tablature row example

All the symbols are organized into columns which
represent the notes that should be played in an instance of
time. If one symbol in a column consists of more
characters than the others, the other columns must be
padded with dashes so that the symbols that follow can be
placed in the same column. In order to create a formal
language that can be parsed with a text parser we've
accepted a set of rules that are common to most tablature
formats. Figure 4 shows an example of a tablature written
in pyTabs.

e|-0----10-3-1|
B|-0----1--1-]|
G|-12pm-—--6-] |
D|-2----5--0-1|
A|-2--—-3--2-] |
E| - N

Figure 4. Tablature example in pyTabs

The main problem with parsing a tablature in this format
is the fact that the interpretation of a symbol is dependent
on the length of the other symbols in the same column. A
dash could be interpreted as a break or as a padding. Thus
a linear text parser cannot be used in this case. The
solution to this problem implemented in pyTabs is to
parse the tablature column by column taking into account
the length of every symbol in a column. This is achieved
by recognizing the tablature as a set of rows and later
recognizing the individual symbols column by column
while removing the padding dashes. The number of
padding dashes in each row is determined by the longest
symbol in the current column.

Since there are different tablature notations for various
instruments and they all share some common rules it was
useful to extract the logic about parsing a tablature into a

generic tablature parser. Parsing rules that are specific to
each instrument could later be defined in a concrete
implementation.

After parsing a tablature in this way a set of row models
is obtained. Each row has a symbol denoting the row and
a set of symbols that represent the contents. The
semantics of the individual symbol can then be
determined by the row mark and the note symbol itself.
The generic tablature processor performs the parsing
column by column and delegates the individual symbol
recognition to a note processor provided at initialization.
A note processor takes two arguments (a row mark and
an actual note symbol) and returns an object representing
the note semantics (i.e. for a guitar a row mark ‘e’ and a
symbol 0 are translated into ‘e’ string with fret 0). The
objects returned by a note processor are then packed into
container objects column by column (where each
container object represents a time instance) which are
then packed into a resulting list (the container object type
can also be provided on initialization). At the end the list
of container objects is returned as a result.

This way the only thing required for creating a tablature
processor for a new instrument is to create a note
processor for that instrument and pass it to the generic
tablature processor. The generic tablature parser uses
textX (see section 6.1) to obtain a tablature model based
on a generic tablature grammar and passes it to the
generic tablature processor that returns a resulting list.
The processor can be used independently which is the
case when the tablature model is obtained through a textX
composition model. The guitar note processor for
example uses a separate textX grammar for individual
note parsing. A significant shortcoming of tablature
notation is the lack of a standard way to specify the note
duration. This makes it impossible to properly render a
song written in it, so since one of the main purposes of
pyTabs is to play the music according to tablatures, a
standard way of specifying the note duration had to be
defined. The solution implemented in pyTabs is to add a
row marked with the letter ‘R’ (for rhythm) which
contains numbers denoting the column duration (i.e. 4 for
1/4, 8 for 1/8 and so on). This additional column behaves
the same way as the others (separated and padded with
dashes) and can be recognized by a generic tablature
processor and therefore is easily implemented in a note
processor.

B. Chords

Chord in music, by definition [6] is three or more
musical notes played at the same time. This group of
tones usually has a name given by the major tone in the
sequence and by that name musicians know which chord
exactly to play. This is shorter to write and easier to
remember. This notation usually represents a rhythm part
of'a composition. Figure 5 shows various chords.

Page 440 of 522

ICIST 2015 5th International Conference on Information Society and Technology

C Cm Cc7 D Dm D7
E Em E7 F Fm F7
G Gm G7 A Am A7

Figure 5. Various chords diagrams

In pyTabs every chord construction starts with one of
twelve basic tones. These tones are C, C#, D, D#, E, F,
F#, G, G#, A, A#(B), H(B), where tones in parentheses
represent the difference between North American, and
European naming conventions. After the main chord tone
may come a number that represents the specific tone from
a scale that has been added to the chord (C5, C7, ...)ora
decoration that changes the scale of the chord (m, maj,
sus, ...). After the decoration there may also be a number
that is added from the scale (Cmaj7, Csus4). These two
parts can be combined into one and/or separated with a
“/” sign (A/G chord) to build more complex chords. If
there is nothing after the main tone name, then that is a
major chord. To fix the lack of a way to specify the note
duration in the standard notation, every chord comes with
its time duration (whole tone, half tone ...). For this
purpose chords grammar is extended with time duration
inside parentheses.

If a chord is “G minor seven” and we want that chord to
continue for the whole tone, that construct is Gm7(4).

Rhythm sections can be on a pause for a while and then
start playing again, or they can be constructed into a riff’
which is a repeating pattern of chords and pauses. For this
reasons the chords grammar is also extended with pause
parts. Pause parts are represented by brackets with a
number that represents the pause duration ([8],[4],[2]...).

C. Composition

Composition is divided into five parts and its role is
to create a composition model ready to be played. The
first part is some basic data about the song: author, name,
tempo and beat. The second part is the import section
where the name and location of the sound font that
contains the sound samples are given in form of key-
value pairs. This is usually a list of key-value pairs
because more than one instrument can play in a
composition. Third part is the sequence list. Every
sequence starts with a ‘sequence’ keyword followed by
the type (guitar-rhythm, guitar-solo, bass, drums, etc.),
the name and the contents of the sequence. The contents
hold tablature or chord elements. After the sequence list
comes the segment list. Its job is to connect the sequence
name to the instrument name in order to know which

sound font is played by which sequence. Segment part
begins with a ‘segment’ keyword followed by the
segment name and a list of sequence name and import
name pairs separated with a “:”. This part represents parts
of the song (Chorus, Solo, Bridge, Verse ...). Last part of
a composition is a timeline. Its job is to connect segments
into one song. It starts with a keyword ‘timeline’ and
inside curly brackets we put a list of segment names in
order that we want them to be played in, separated by a
“” (Intro, Verse, Chorus ...). Figure 6 shows an example
of a song written in pyTabs language.

[

Mame "Dim na wodi™ song
Author “Timl" meta
Beat 4/4 data
Tempo 128
1 -
-
import import

bass "instruments/Soundfont BassFing.sf2"
guitar "instruments/Saber_S5ths_and_3rds.sf2"

section

sequence guitar-solo bass_tabs

R|-8-8-8-8---8-8-8-8-8-8-----8-8-8-8---8-8-8-2-|

sequences
section

|
E|-@-8-0-2-8-8-0-9-8-8-3-2-1-8-8-3-3-5-5-3-3-0-|

¥
sequence guitar-rhythm guitar_chords

A(4) B(4) C(4) D(4) E(4) F(4) G(4)

segment Chorus
song
segments
section

bass_tabs : bass

guitar_chords @ guitar

timeline
song

Chorus timeline

Figure 6. An example of a composition written in pyTabs

V. ARCHITECTURE

pyTabs is composed of two parts: 1) the editor which is
responsible for editing, syntax highlighting and sending a
model to the engine and 2) the engine which knows how
to process the model data.

A. Editor

The editor is developed using QT library and PySide
wrapper for Python (details in the next chapter). The
main component is SyntaxHighlighter.

Its job is to highlight the language syntax, and also to
help user with writing. This is accomplished by a regular
expression and/or with a list of reserved words connected
with color.

This task is done by HighlightingRule class which maps
the reserved words and color. Since, this class is
connection with reserved word and color, it must be
created as many different instances as there are different
parts of the language.

Figure 7 presents the editor user interface, with a
composition example and text highlighting.

Page 441 of 522

ICIST 2015 5th International Conference on Information Society and Technology

Name "Dim na vodi"
Anthor "Timl"

Beat 4/4

Tempo 120

import
bass "instruments/Soundfont BassFing.sf2"
gunitar "instrume ntsfSaber_.E ths and 3rds.sf2"

sequence guitar-solo guitar_tabs
i

R|-B-8-8B-B---8-8-8-8-B-B-—--—B-8-B-B--—-B-8-8-2- |
e]

| Tekst Nkielection LbE|
. Figure 7. Editor window
B. Engine
pyTabs engine is separated in two major parts,
Composition and Player. Figure 8 presents pyTabs engine

class diagram.
GuitarNoteProcessor

TablatureProcessor

GuitarChordParser

GuitarChordProces sor GuitarTabProcess or

PlayerThre ad

i i - n

|
ﬁiiiiiﬁii

leuse»
|
o g el

ause»

|
|
|
|

Figure 8. Engine class diagram

The player module uses FluidSynth (via a wrapper
provided by the Mingus library, see sections 6.2 and 6.3)
to play the composition based on the composition model.
The tracks are played sequentially. Each segment in a
track is played in a separate thread simultaneously since
FluidSynths play methods are blocking.

The composition module uses textX and composition
grammar to parse a composition description and obtain a
composition model. It registers textX object processors
for sound font imports and song sequence processing.
The first one organizes the instrument imports into a map
(instrument name to sound font file path) and the second
one processes the sequences based on their input type
(tablature, chords etc.). The value of each sequence is
replaced by a Mingus Track object that is created using a
specific input type processor. The Track object is created

based on the information in the sequence model (note
pitch, duration etc.). The resulting model is suitable for
later use with the Mingus library (i.e. playing the song
using FluidSynth).

VI. TooLs

A, TextX

textX [7] is a meta-language for building Domain-
Specific Languages (DSLs). From a single language
description (grammar) textX will build a parser and a
meta-model (a.k.a. abstract syntax) for the language.
textX is used for language grammar construction, and
creating model from it.

B. Mingus

Mingus [8] is a package for Python used by
programmers, musicians, composers and researchers to
make and investigate music. Some important features:

- The Note class: can keep track of octaves,
dynamics and effect and also allows you to
compare Notes: eg. Note("A") <= Note("B")and
convert to and from Hertz.

- Data structures that group notes together in
blocks of notes (NoteContainers), Bars, Tracks,
Compositions and Suites.

- A MIDI sequencer which uses the container
objects and can send timed MIDI messages to an
output function. Support for fluidsynth (a
software MIDI synthesizer), so that objects can
be played in real-time.

In pyTabs Mingus is used for representing and grouping
the notes using the classes in mingus.containers package
(Note, NoteContainer, Track, etc.).

C. Fluidsynth

FluidSynth [9]is a real-time software synthesizer
based on the SoundFont 2 specifications and has reached
widespread distribution.

SoundFont is a brand name that collectively refers to
afile formatand associated technology designed to
bridge the gap between recorded and synthesized audio,
especially for the purposes of computer music
composition. SoundFont [10] technology is an
implementation of sample-based synthesis.

Sample-playback-based MIDI synthesizers
use wavetables to define the base samples that are used to
render their MIDI files. MIDI files in themselves don't
contain any sounds, rather they contain only instructions
to render them, and consequently rely on the wavetables
to render such sounds correctly. SoundFont-compatible
synthesizers allow users to use SoundFont banks to
augment these wavetables with custom samples to render
their music. The fluidsynth wrapper is used to play the
composition using sound fonts based on the composition
model.

Page 442 of 522

ICIST 2015 5th International Conference on Information Society and Technology

D. QT and PySide

Qt [11] is a cross-platform application framework
from Qt Software (owned by Nokia). It features a large
number of libraries providing services like network
abstraction and XML handling, along with a very rich
GUI package, allowing C++ developers to write their
applications once and run them unmodified in different
systems.

PySide [12] aims to provide Python developers access to
the Qt libraries in the most natural way. In pyTabs,
PySide is used to create user interface.

VII. RELATED WORK

Tablature notation is an alternative to standard musical
notation. It is popular among people who start learning to
play a musical instrument, especially guitar.

Guitar pro [13] is the most popular commercial software,
but it is not suitable for beginners.

Tabledit [14] is a little bit simpler but also a commercial
tool and not so beginner friendly.

Still these tools are not meant for the people who are
learning how to play an instrument.

VIIL

In this paper we have presented the pyTabs DSL for
tablature notation. We have also presented one possible
solution to fixing two major problems in current
notations, by adding duration to tablatures and chords and
formatting the tablature lines in such a way that we keep
the simplicity and intuitiveness currently available in the
notations to which people are accustomed.

CONCLUSION

We have presented a possibility of connecting different
notations in a composition, with the ability to playback

the compositions written in this way using mingus,
fluidsynth and soundfont standard.

In the further work we plan to add more instruments
andresearch the way of their integration. Also we plan to
addthe ability to generate the standard musical notations
from pyTabs and vice versa.

REFERENCES

[11 Van Deursen, A., Visser, J.. Domain-specic languages: an
annotated bibliography, ACM SIGPLAN Notices , vol. 35, pp. 26-
36,2000

[2] Fowler, M. Domain-Specific
Professional, 2010

[3] Vélter, M. DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages, 2013

[4] Ultimate-guitar website,
http://www.ultimate-guitar.com/, accessed 5. January 2015.

[5] Tablatures wikipedia article,
http://en.wikipedia.org/wiki/Tablature, accessed 9. January 2015.

Languages Addison-Wesley

[6] Elpin Systems, http:/www.elpin.com/tutorials/musicalchord.php
accessed 5. January 2015.

[7]1 textX project page, https://github.com/igordejanovic/textX,
accessed 9. January 2015.

[8] Mingus project page, https://code.google.com/p/mingus/,
accessed 9. January 2015.

[9] Fluidsynth project page, http://www.fluidsynth.org/, accessed 9.
January 2015.

[10] Soundfont wikipedia article,
http://en.wikipedia.org/wiki/SoundFont, accessed 9. January 2015.

[11] QT project page, http://gt-project.org, accessed 5. January 2015.

[12] Pyside project page, http://pyside.github.io/docs/pyside/#
accessed 5. January 2015.

[13] Guitar pro page, http://www.guitar-pro.com/en/index.php,
accessed 14 January 2015.

[14] Tabledit, http://www.tabledit.com/download/index.shtml, accessed
14 January 2015.

Page 443 of 522

