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Abstract — Increasing of processors' frequencies and 
computational speed with components scaling is slowly 
reaching its saturation with current MOSFET technology. 
From today's perspective, the solution lies either in further 
scaling in nanotechnology, or in parallel and distributed 
processing. Parallel and distributed processing have always 
been used to speedup the execution further than the current 
technology had been enabling. However, in parallel and 
distributed processing, dependencies play a crucial role and 
should be analyzed carefully. The goal of this paper is the 
analysis of dataflow and parallelization capabilities of 
Hadoop, as one of the widely used distributed environment 
nowadays. The analysis is performed on the example of 
matrix multiplication algorithm. The dataflow is analyzed 
through evaluation of the execution timeline of Map and 
Reduce functions, while the parallelization capabilities are 
considered through the utilization of Hadoop's Map and 
Reduce tasks. The implementation results on 18-nodes 
cluster for various parameter sets are given.  

I. INTRODUCTION 
The current projections by the International Technology 
Roadmap for Semiconductors (ITRS) say that the end of 
the road on MOSFET scaling will arrive sometime 
around 2018 with a 22nm process. From today's 
perspective, the solution for further scaling lies in 
nanotechnology [1]. However, parallel and distributed 
processing have always pushed the boundaries of 
computational speed, through history of computing, 
further than it had been enabled by the current chip 
fabrication technology. Two promising trends nowadays, 
which enable applications to deal with increasing 
computational and data loads, are cloud computing and 
MapReduce programming model [2]. 
Cloud computing provides transparent access to the large 
number of compute, storage and network resources, and 
provides high level of abstraction for data-intensive 
computing. There are several forms of cloud computing 
abstractions, regarding the service that is provided to 
users, including Infrastructure-as-a-Service (IaaS), 
Platform-as-a-Service (PaaS), and Software-as-a-Service 
(SaaS) [3]. 
MapReduce is currently popular PaaS programming 
model, which supports parallel computations on large 
infrastructures. Hadoop is MapReduce implementation, 
which has attracted a lot of attention from both industry 
and research. In a Hadoop job, Map and Reduce tasks 
coordinate to produce a solution to the input problem, 
exhibiting precedence constraints and synchronization 

delays that are characteristic of a pipeline communication 
between Maps (producers) and Reducers (consumers) [4]. 
In distributed processing in general, as well as in the 
MapReduce, the crucial problems that lie in front of 
designers, are data dependency and locality of the data. 
While data dependency influence is obvious, data locality 
has indirect influence on execution speed in distributed 
systems due to the communicational requirements. One 
of the roles of the Hadoop is to automatically or semi-
automatically handle the data locality problem.  
There are several models and simulators that can capture 
properties of MapReduce execution [2], [5]. The 
challenge to develop such models is that they must 
capture, with reasonable accuracy, the various sources of 
delays that a job experiences. In particular, besides the 
execution time, tasks belonging to a job may experience 
two types of delays: (1) queuing delays due to the 
contention at shared resources, and (2) synchronization 
delays due to the precedence constraints among tasks that 
cooperate in the same job [4]. 
The goal of this paper is the analysis of dataflow and 
parallelization capabilities of Hadoop. The analysis will 
be illustrated on the example of matrix multiplication 
algorithm in Hadoop, proposed in [6]. The dataflow will 
be analyzed through evaluation of the execution timeline 
of Map and Reduce functions, while the parallelization 
capabilities will be considered through the utilization of 
Hadoop's Map and Reduce tasks. The results of the 
implementation for various parameter sets in distributed 
Hadoop environment consisting of 18 computational 
nodes will be given. 
The paper is organized as follows: Section 2 gives a brief 
overview of MapReduce programming model. In Section 
3 dataflow of MapReduce phases for matrix 
multiplication algorithm is presented, and data 
dependencies are discussed. Section 4 is devoted to the 
analysis of the parallelization capabilities of the matrix 
multiplication algorithm, as well as to the implementation 
results, while in Section 5 the concluding remarks are 
given. 

II. BACKGROUND 
The challenge that big companies are facing lately is 
overcoming the problems that appears with big amount of 
data. Google was the first that designed a new system for 
processing such data, in the form of a simple model for 
storing and analyzing data in heterogeneous systems that 
can contain many nodes. Open source implementation of 
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this system, called Hadoop, became an independent 
Apache project in 2008. Today, Hadoop is a core part of a 
lot of big companies, such as Yahoo, Facebook, 
LinkedIn, Twitter, etc [7]. 
The Hadoop cluster consists of collection of racks, each 
with 20-30 nodes, which are physically close and 
connected. The cluster consists of three types of nodes 
depending on their roles: (1) Client host - responsible for 
loading data into the cluster, forwarding MapReduce job 
that describes the way of processing data, and collecting 
the results of performed job at the end; (2) Master node - 
in charge of monitoring two key components of Hadoop: 
storage of big data, and parallel executions of 
computations; (3) Slave node - used for performing actual 
data storage and computing. 
There are two main components of Hadoop system: (1) 
Distributed File System - Hadoop DFS (HDFS), used for 
big data storage in cluster; (2) MapReduce - framework 
used for computing big data stored in HDFS. 
The HDFS lies as a layer above existing file system of 
every node in the cluster, and its blocks are used for 
storing input data in the form of the input splits (Figure 
1). Large files can be split into a group of small parts 
called blocks, which have default size of 64MB. The size 
of these blocks is fixed, due to the simplification of 
indexing [9]. Usually, HDFS workflow consists of 4 
parts: (1) transferring input data from Client host to 
HDFS, (2) processing data using MapReduce framework 
on the slave nodes, (3) storing results by Master node on 
HDFS, and (4) reading data by Client host from HDFS. 
There are two transformations in MapReduce technique 
that can be applied many times on input files: Map 
transformation, which consists of MT Mappers or Map 
tasks, and the Reduce transformation, which consists of 
RT Reducers or Reduce tasks. The parameters MT and RT 
are specified in system configuration of Hadoop, RT 
explicitly, and MT implicitly through specification of the 
blocksize. In the Map transformation, each Map task 
processes one small part of the input file and forwards the 
results to the Reduce tasks. After that, in the Reduce 
transformation, Reduce tasks gather the intermediate 
results of Map tasks and combine them to get the output, 
i.e. the final result, as shown in Figure 1. 
The Mappers, during theirs execution, executes MF Map 
functions to perform required computations. One Map 
function transforms input data, according to input (keyin, 
valuein) pairs, into the set of intermediate (keyim, valueim) 
pairs (Figure 1). Let us note that the number of executed 
Map functions MF is equal to the number of different 
keys keyin, and that this number doesn't need to be equal 
to the configured number of Map tasks MT. 
In the phase between Map and Reduce, called Shuffle and 
Sort, all intermediate data with the same key keyim are 
grouped and passed to the same Reduce function (Figure 
1). The number of executed Reduce functions RF is equal 
to the number of different keys keyim. It doesn't need to be 
equal to the configured number of Reduce tasks RT. In the 
end, all data from the Reduce tasks are written into 
separate output. 

 
Figure 1. MapReduce data and process flow 

MapReduce inherits parallelism, fault tolerance, data 
distribution and load balancing from Hadoop system 
itself [8]. As mentioned before, it consists of two main 
phases, namely, Map and Reduce, each one implemented 
by multiple tasks (MT+RT) running on multiple nodes (N) 
[4]. 
Figure 2 shows a simple example of a timeline 
representing the execution of a Hadoop job composed of  
MT=2 Mappers and RT=1 Reducer, running on N=3 nodes. 
The number of Map functions in algorithm shown in 
Figure 2 is MF=4, and the number of Reduce functions is 
RF=4. There is one additional Reducer RM that collects 
outputs from all Reduce functions. The notation used for 
particular Map functions within Map tasks is MF

i, where i 
represents the number of the function. The order at which 
the Reduce functions RF

i, i=1,2,3,4, begin their execution 
is defined by the order at which the Map functions MF

i, 
i=1,2,3,4, finish theirs. Precisely, Reduce function RF

i 
should start as soon as Map function MF

i finishes and the 
node that executes Reduce task is idle. At the end, the 
merge task (RM) can start only after all Reduce tasks 
finish. 
 

 
Figure 2. Execution timeline of Hadoop job 

In Figure 2, Map tasks are denoted as MT
i, where i 

denotes the number of particular Mapper. As shown in 
Figure 2, two Map tasks, MT

1 and MT
2, start execution 

immediately at the beginning of the job execution, on 
separate nodes, while the Reduce task (RT

1) is blocked 
and, therefore, waits. As soon as the first Map function 
(MF

1) finishes, the first Reduce function (RF
1) can begin 

its execution. Also, another Map function MF
3 is assigned 

to the task MT
1 that was executing MF

1. This point in time 
is shown in Figure 2 with a dotted vertical line. It also 
represents a synchronization point when the set of 
functions executing in parallel changes. From this point 
in time, MF

3, MF
2 and RF

1 are executing. Since MF
3

 starts 
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executing only after MF
1 finishes, there is a serial 

precedence between them. 
 
The execution of a Hadoop job represents a set of 
synchronization points, and each one of them delimits the 
parallel execution of different sets of functions. In order 
to maximize performance due to the synchronization 
characteristic of Hadoop system, and to utilize 
parallelization capabilities of Hadoop, the number of Map 
tasks, Map functions, Reduce tasks and Reduce functions 
should be carefully planned in accordance to the available 
number of computational nodes.  

III. DATAFLOW OF MATRIX MULTIPLICATION IN 
HADOOP ENVIRONMENT 

We will illustrate parallelization capabilities of Hadoop 
on the example of matrix multiplication algorithm 
proposed in [6]. Let us briefly discuss the dataflow 
timeline of the algorithm from [6], and allocation of 
computations onto Map and Reduce functions MF and RF. 
Let A and B be matrices of order IxK and KxJ, 
respectively, and let C be their product as 

 
(1) 

According to the matrix multiplication algorithm 
proposed in [6], the value of the key keyin that 
distinguishes the Map functions is common index k from 
(1). In this case, the total number of Map functions MF, 
that are executed by Map tasks, is equal to MF=K, i.e. to 
the number of columns in matrix A and the number of 
rows in matrix B. Map function Mk obtains all partial 
products ci,j

k=ai,k∙bk,j, where i=1,2,...,I, and j=1,2,...,J. 
The example of the multiplication of matrices A and B of 
order 2x3 and 3x4, respectively, is shown in Figure 3 and 
Figure 4. 

 
Figure 4. The example of Matrix multiplication C2,4=A2,3∙B3,4 

According to (1), all elements of the first column of the 
matrix A, i.e. a00 and a10 in Figure 4, are needed for the 
multiplication with all elements of the first row of the 
matrix B, b00, b01, b02 and b03. The same holds for other 
columns of the matrix A, and the rows of the matrix B, as 
it is shown with dashed lines in Figure 4.  
From the above, every Map function Mk will get k-th 
column of matrix A and k-th row of matrix B, as shown 
in Figure 3. Within each Map function Mk, every element 
ai,k, i=1,2,...,I, of matrix A will be multiplied with every 
element bk,j, j=1,2,...,J, of matrix B, producing partial 
products ci,j

k=ai,k∙bk,j. For example, within Map function 
M1, the element a00 will be multiplied by b00, producing 
partial result c00

0, as denoted with gray circles and arrows 
in Figure 3. The same stands for all other elements from 
M1. As a result, Mapper M1 will produce first 
intermediate results for all elements in the resulting 
matrix C. On the other hand, while the Mappers are 
responsible for multiplying, Reducers are responsible for 
summarizing intermediate results ci,j

k for every element 
ci,j in the resulting matrix C. In the example given in 
Figure 3, c00

0, c00
1 and c00

2 are summarized into c00.  
According to the computations allocation of the particular 
matrix multiplication algorithm, there is no data 
dependency between Map functions, and all Map 
functions can be executed in parallel. The same holds for 
the Reduce functions. 
On the other hand, each Reduce function can start its 
execution only when all Map functions finish their 
computations. Therefore, in this algorithm, there is no 
overlapping between Map and Reduce phase (Figure 3).  

Figure 3. The dataflow timeline of the matrix multiplication algorithm 
in the MapReduce distributed environment 
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IV. IMPLEMENTATION RESULTS 
In the previous section it was shown how the partial 
computations are allocated to Map and Reduce functions. 
As mentioned before, the numbers of Map and Reduce 
functions are parameters of the algorithm, while Map and 
Reduce tasks are configured according to the capabilities 
of the cluster. 
For this particular matrix multiplication algorithm, all 
Map functions can start in parallel at the point denoted 
with Ms on the T axis in Figure 3. Ideally, the number of 
nodes N, and the number of the Map tasks MT should be 
equal to the number of required Map functions MF. 
However, as the number of Map functions MF is equal to 
the dimension K of matrices A and B, this number will 
always in practice overcome the number of available 
nodes N in the cluster. Therefore, one Map task will 
execute many Map functions. The same holds for the 
Reduce functions. All Reduce functions can start in 
parallel at the point of time denoted as Rs in Figure 3 and 
last until Re. The number of available Reduce tasks RT 
will limit the parallelization in this case, as well. 
The algorithm is implemented and executed on the 
Hadoop cluster consisting of N=18 nodes. The 
characteristics of nodes are the following: Intel(R) 
Core(TM)2Duo, CPU E4600@2.40GHz, RAM: 1GB.  
We executed the algorithm for two scenarios: (1) fixed 
number of Reduce tasks, equal to the number of nodes 
(RT=N=18), and various number of Map tasks 
(1≤MT≤2∙N=36), and (2) fixed number of Map tasks, 
equal to the number of nodes (MT=N=18), and various 
number of Reduce tasks (1≤RT≤2∙N=36). Let us note that 
in both cases square matrices of order 1.500x1.500 were 
considered. Thus, the number of Map functions is 
MF=1.500, and the number of Reduce functions is 
RF=2.250.000. 
The obtained results for the MapReduce algorithm for 
described scenarios are graphically presented in Figure 5. 
Let us note that for each result shown in Figure 5 there 
are MT+RT tasks configured. Thus, the minimum number 
of tasks for the first scenario is 1+18=19, and the 
maximum is 36+18=54, which are executed on 2∙18=36 
cores. From the results given in Figure 5 it can be seen 
that the parallelism is underutilized if the total number of 
tasks is less then 36 (value M/R=18 in Figure 5), due to 
the fact that there are unused cores. If the number of tasks 
is greater then the number of cores (Figure 5), there is 
additional overhead for synchronization that slows down 
the execution. Due to the characteristic of the matrix 
multiplication algorithm, the optimal cluster utilization is 
when the total number of tasks is equal to the number of 
cores (Figure 5). 

 
Figure 5. Execution time of MapReduce algorithm for matrix 

multiplication 

V. CONCLUSION 
 

In this paper the analysis of dataflow and parallelization 
capabilities of Hadoop is illustrated on the example of 
matrix multiplication algorithm. The dataflow is analyzed 
through evaluation of the execution timeline of Map and 
Reduce functions, while the parallelization capabilities 
are considered through the utilization of Hadoop's Map 
and Reduce tasks. The results of the implementation for 
various parameter sets in distributed Hadoop environment 
consisting of 18 computational nodes are given. It is 
shown that the optimal cluster utilization is when the total 
number of tasks is equal to the number of cores. 
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