
Orchestrating Music Queries via the Semantic
Web

Milos Vukicevic, John Galletly
American University in Bulgaria

Blagoevgrad 2700
Bulgaria

+359 73 888 466
milossmi@gmail.com, jgalletly@aubg.bg

1st
Abstract - This paper describes the design and implementation
of a Semantic Web application that allows queries and
inferences to be made on a music knowledge base using
Semantic Web technologies such as RDF, OWL and SPARQL.
Additionally, the paper explains how these technologies were
blended together to develop the application that illustrates the
principles of the Semantic Web.

I. INTRODUCTION
The Semantic Web has been heralded by the W3C as the

future web – a web that relies heavily on the software
implementation of knowledge bases and inference mechanisms
[1]. The Semantic Web has several standards recommended by the
W3C with, currently, varying levels of functionality and usability
[2]. It is still heavily under development and evolution, with the
latest standard coming out in 2014. The Semantic Web software
stack [3] is illustrated in Figure 1

The application described in this paper is a Semantic Web
application that allows music queries and inferences to be made
on a music knowledge base. The word “knowledge” is important –
a traditional database approach would not give the breadth and
scope for queries and inferences that a knowledge base (expressed
as an RDF ontology) would.

The design and implementation of a fully-fledged music
ontology was beyond the scope of this work. Rather than rely on a
large, ready-built music ontology (e.g. mucicontology.com), the
application described here was developed with a much narrower
ontology, namely one for rock music and bands. But, given
enough time and effort, the design described here could be
extended to cover different types of music and artists. Information
about artists, tracks, etc. in this ontology, is represented as RDF
statements.

The use of the Semantic Web technologies in the music
industry is not new. For example, the BBC’s Music Project is an
effort by the BBC to build semantically-linked and annotated web
pages about artists and singers whose songs are played on BBC
radio stations [4].

II. DEVELOPMENT ENVIRONMENT
Apache Jena [5], in conjunction with the Eclipse IDE, was

used as the basic programming environment. Jena is a Java-based
API for Semantic Web development. It provides extensive Java
libraries for handling RDF, OWL and SPARQL in line with the
published W3C recommendations. Jena includes a rule-based
inference engine to perform reasoning based on OWL and RDFS
ontologies, and a variety of storage strategies to store RDF triples.

Figure 1 – Semantic Web software stack

The Stanford Protégé ontology editor [6] was used to build
the application’s ontology, as this editor provides an easy-to-use
environment for developing ontologies. The ontology was
developed using OWL Description Logic (OWL DL). Once built,
the ontology was then loaded into Jena. Jena’s generic inference
mechanism was used to make inferences between the ontology
classes. Additionally, the Jena SPARQL query engine allows for
expressive SPARQL queries. However, it does not contain the full
implementation of SPARQL as it is envisioned by the W3C. It is
impossible for the user to create resources or add properties, only
to search for already existing graph patterns.

III. DESIGN

A. Design Overview
From the outset, the design of the software was made to be

scalable, and is essentially developed with an MVC pattern, where
the GUI is the View, the ontology is the Model, and the Jena
inference engine and SPARQL query engine are the Controller [7,
8].

Basically, the ontology is used as the basis for executing
SPARQL queries, and making inferences using the Jena inference
mechanism. The ontology had to be extensible in terms of having
the ability of adding new ontologies to it and expanding the
ontology itself, while also providing a scalable ground for adding
new instances of ontology classes, etc.

With the limits imposed by the current standards, and by the
architecture of Jena, the SPARQL queries had to be created
programmatically to fit the ontology. The queries had to be
designed in such a way that they would operate with the
architecture of the ontology in question, making full use of the

ICIST 2015 5th International Conference on Information Society and Technology

Page 413 of 522

data and logic provided by it. Moreover, the application’s
SPARQL interface had to be designed in such a way that it would
handle additions to the ontology, and ensure that the program
would still work correctly, even with these additions.

The GUI is the front end, and is able to accept four types of
queries: queries for a track, album, artist or band. The results are
shown in three screen text panels, one containing basic data
inferences, the other containing basic relationship inferences (such
as Artist X plays in Band Y), and advanced inferences linking
independent nodes together semantically (Figure 2).

As the application was designed with scalability in mind,
adding more query types to the list would not be too difficult, but
the ontology, as is designed currently, requires no further
subtypes.

The ontology consists of several top-level classes. These
classes all have instances of themselves, in some case multiple
instances. The semantic web allows for a dynamic addition of
other instances of these classes, even of other classes. The
ontology class design can be seen in the Figure 2.

Figure 2 – Ontology top-level classes

The relationships between classes are defined using object
properties. Figure 3 is a list of all object properties in the
ontology.

Object properties act as predicates between individuals but
no literals. Predicates for literals are data object properties and
they are illustrated in Figure 4.

Figure 3 – Ontology object properties

Figure 4 – Ontology data object properties

Figure 5 shows the GUI, the SPARQL engine and ontology
packages with their dependencies. The GUI relies on the SPARQL
engine to populate it with data. The GUI package has various
elements and functions that allow it to display the data properly
and also capture button click events. The SPARQL Engine has all
the necessary data structures and functions to run queries, process
them, and perform advanced inference.

Figure 5 – UML package diagram

Figure 6 illustrates the deployment of the packages.

Figure 6 – UML deployment diagram

B. Design Details
The ontology is stored as a separate file using the RDF/XML

standard, and it is then imported into the Java application using
the Jena ModelFactory pattern. The ontology contains the
ontological specifications, i.e. all the classes, object properties and
data properties available for the specific ontology, along with all
the individual instances of the classes and their predicates. It is
designed so it is extensible, i.e. new classes can be added, as well

ICIST 2015 5th International Conference on Information Society and Technology

Page 414 of 522

as new ontologies, and it is also scalable, i.e. new individuals can
be added without negatively impacting the execution of the entire
software solution.

The Jena inference and SPARQL query engines operate on
the ontology. After being loaded into the application, the inference
engine is run on the ontology and an “inferred” model is created.
This is an extended, in-memory version of the ontology, providing
advanced inferences about the classes and properties. This inferred
model is then used as a basis for various SPARQL queries.

The Semantic Web can essentially allow for an extremely
large amount of semantic queries (such as “Who played the guitar
at concert X?”) and therefore needs some kind of query parsing or
translation mechanism to allow the application to “understand”
what exactly it is that the user is looking for. This is
programmatically a challenge in its own right, and there was not
enough time to implement such an input parser. However, having
the ontology in mind, the interface to the SPARQL engine was
constructed in such a way that it is able to return complex
inferences from the ontology itself for a particular set of search
strings.

While the user is able to perform basic semantic querying,
the SPARQL interface takes the particular query of the user and
retrieves additional advanced semantic inferences about the
particular object the user is looking for. This was accomplished by
generating inferred assertions using Protégé’s inference engine
operating on the ontology, as the ontology was built.

C. The SPARQL Interface
This is the “heart” of the application. This part revolves

around reading the user input, and then trying to match it to a list
of all albums, artists, bands, or tracks, depending on what the user
has selected. If there is a match, this is then processed and a query
is created that can be run against the ontology. This module is also
responsible for loading the ontology, creating an inferred model
using the Jena inference mechanism and then running queries on
the inferred (in-memory) model.

There are several operations that need to be performed before
doing so. The most straightforward function is the URI
dereferencing. All entities in the ontology have a URI namespace
prefix. For example, the Pink_Floyd instance of the class Band
always has the entire namespace prefixed to it, so it would be:

http://www.semanticweb.org/milos/ontologies/2014/3/music
#Pink_Floyd

Before an entity can be searched for, the namespace must be
removed.

Similarly, there is an algorithm that prepares an entity for
output based on its type, i.e. Artist, Band, Album, Track, etc. This
turns Pink_Floyd into “Pink Floyd,” for example.

The SPARQL query is built functionally. The example below
demonstrates the SPARQL query interface. It takes in the query
type, which would be SELECT in most cases, the string pattern
which is the subject of selection, the subject of the WHERE
clause, the predicate of the WHERE clause, and the object of the
WHERE clause. This returns a distinct result set which is passed
onto a globally declared variable called resultArray. The
resultArray is an ArrayList of type string that stores all the
information a SELECT query returns. The main application then
deals with the returned data in some way.

The code below illustrates the second part of query
execution, where the query is formulated and executed using
the functions provided by the Jena ModelFactory. Both
resources and literals are retrieved in this fashion with proper
formulation of queries. However, the advanced inference
relies on a programmatically use of several query calls,
relating individuals that are not usually directly related -
more on this in the implementation section.

D. The GUI

The GUI accepts and parses user input data, and displays the
results of the query and the relevant basic and advanced inferences
on the screen. The front end was simplified to provide scope-
limited queries, in the sense that the user could query for specific
information while the inferences were prebuilt into the ontology
itself. That is to say, the user could query to find an artist, and the
artist would be found, while advanced inferences about the artist
are displayed in the information boxes. The screen itself is split
into five panels (Figure 7). The top panel is the search box and it
does not change. It contains a combo box allowing the user to
select the type of query he/she wants to perform (Find artist,
album, track or band), a textbox for the actual query string, and a
button to initiate the query. The other four panels are used to
display the data retrieved. The first and top left panel of the four
displays the relevant image associated with the query. The second
panel contains basic data inferences, such as data properties. The
third panel contains subject assertions, i.e. the correlation of the
searched subject with all the other subjects that the searched
subject is immediately connected to in terms of the semantic
graph. The fourth panel contains the advanced queries, linking
multiple nodes that are not directly correlated, or performing
operations on existing data.

ICIST 2015 5th International Conference on Information Society and Technology

Page 415 of 522

Figure 7 – Finding an artist

Figure 7 and Figure 8 illustrate the functionality for finding
a particular named artist and a particular named track.

Figure 8 – Finding a track

The last element of the GUI is the “Play Track” button
which is hidden at the bottom of the page and is only displayed
once a track is searched for. If clicked, it will open a new frame
which opens a relevant YouTube link to the track in question
(Figure 9).

Figure 9 – YouTube link frame

E. Semantic Web Implementation

RDF is the Semantic Web notation for modelling application
domain information. The information is actually represented in the
form of a graph database. “Pieces” of information are represented
in the form of assertions called statements and each statement is
made out of three parts (or triples): a subject, a predicate and an
object.

Each subject and object represents either a resource or
literal, while the predicate illustrates the relationship between
subjects, objects, and literals.

While RDF allows the description of domain resources and
relationships using domain vocabularies, it does not support
semantics. RDF Schema (RDFS) is an extension to RDF that
allows the description of semantics in terms of classes, instances
of classes, hierarchies, etc. RDFS allows the creation of disjoint
properties, the specifications of types, domains and ranges, as well
as indicating the type of properties in terms of their being
functional, reflexive, and transitive, etc. This permits a simple
implementation of semantics that is used as the basis for the
powerful Web Ontology Language, OWL.

W3C developed OWL as a standardized way of expressing
higher-level data semantics in Semantic Web applications. Like
RDF and RDFS, OWL has an XML-based syntax. It comprises
several sections. The first section is a header section where
appropriate OWL namespaces are referenced. This section is
followed by class declarations, object properties and data
properties. After these declarations comes the individual
specifications section, which declares instances of the classes and
uses the aforementioned object properties to link different
individuals together, while the data properties are used to link
individuals with literals.

The following is an example of an OWL expression used to
declare an individual of class Artist.

SPARQL is in many ways similar to SQL but it is for the
Semantic Web. For example, the SELECT command specifies the
result set and its name, while FROM clause indicates which file or
SPARQL endpoint will be queried for the result. A WHERE
statement specifies the graph pattern to be searched for, while
ORDER can be used for data result formatting.

ICIST 2015 5th International Conference on Information Society and Technology

Page 416 of 522

The above diagram illustrates a simple SPARQL query. The

PREFIX statements define various namespaces, with “music”
being the namespace for the ontology. The query SELECTs a
subject (?Track) that fits into the graph pattern subject-predicate-
object (music:Roger_Waters - music:composes - ?Track). This
query will return a list of all Tracks composed by artist
Roger_Waters. The program iterates through all top-level entity
object properties and appends them to the basic inferences text
area.

The advanced inferences rely on multiple levels of
connection and making further inferences. For example, the
inference “Roger Waters has played with Pink Floyd, the album
“Wish You Were Here” at the concert “Wish Live” in Sofia”, is
deduced in this way. A number of special algorithms were
developed to make these inferences for artists, tracks, bands, etc.
For example, the algorithm for the above inference is

IV. CONCLUSION
The design and implementation of a Semantic Web

application, that handles music queries for a limited domain, has
been described. In principle, the application could be further
extended as a comprehensive, semantically-organized music
knowledge base with support for all types and genres of music,
ranging from modern rock and roll and pop, to classical music and
classical pieces of music.

REFERENCES
[1] W3C Semantic Web:

http://www.w3.org/standards/semanticweb/
[2] W3C Semantic Web Standards:

http://www.w3.org/standards/semanticweb/
[3] Wikipedia: Semantic Web:

http://en.wikipedia.org/wiki/Semantic_Web
[4] BBC Music Project

http://readwrite.com/2009/01/21/bbcs_semantic_music_proje
ct

[5] Apache Jena Documentation:
https://jena.apache.org/documentation/

[6] Protégé Wiki:
http://protegewiki.stanford.edu/wiki/Main_Page

[7] Strategies for Building Semantic Web Applications:
http://notes.3kbo.com/sparql

[8] Semantic Web Programming:
https://code.google.com/p/ia1213/downloads/detail?name=se
mantic-web-programming.9780470418017.47881.pdf

ICIST 2015 5th International Conference on Information Society and Technology

Page 417 of 522

	VOLUME 2
	Orchestrating Music Queries via the Semantic Web

