
Figure 1. Multi linked list in traditional (structured) form

Figure 2. Multi linked list in object-oriented form

Multi linked lists: an object-oriented approach
Đorđe Stojisavljević*, Eleonora Brtka**, Vladimir Brtka**, Ivana Berković**

* University of Banja Luka/Faculty of law, Banja Luka, Republika Srpska
** University of Novi Sad/Technical faculty “Mihajlo Pupin”, Zrenjanin, Serbia

djordje.pfm@gmail.com, eleonorabrtka@gmail.com, brtkav@gmail.com, berkovic@tfzr.uns.ac.rs

Abstract — The paper deals with the approach to multi
linked lists while teaching. Object oriented paradigm is
used, so that multi linked lists are implemented in C++.
Simple example presented in this paper cover the usage of
structures inside classes and template classes. Basic concepts
of understanding object oriented multi linked lists are
defined, and five groups of students are singled out. The
main contribution of this research is in the domain of
education: the specification of student's understanding of
these concepts is given, as well as guidelines how to recover
to full understanding of multi linked lists.

I. INTRODUCTION
Linked lists are widely known and exhaustively

described in literature. An elaborate discussion of linked
lists can be found in e.g. [1], while more detailed
discussion about multi linked lists and their
implementation in C language can be found in e.g. [2].

Each node of a multi linked list (Fig. 1) has a complex
structure; it contains:

 Data field – represents the useful data, usually
realized in structure form;

 One link field that points to the next node in the
multi linked list (like in singly linked list). The
last node points to NULL; and

 Two or more link fields who are pointing to
another lists called sublists. Sublist has a
structure like singly linked list.

The entry point into a linked list is called the head of
the list. It should be noted that head is not a separate
node, but the reference to the first node. If the list is
empty then the head is a NULL reference.

As we can see from Fig. 1 there are two structures:
 subnode which contains data field and link to the

next subnode, and
 node which contains data field, link to the head

of sublist and link to the next node.

These concepts are often hard to understand and
implement in practice. Object Oriented (OO)
programming paradigm is most common contemporary
programming paradigm, so it is necessary to implement
multi linked list in OO manner. The OO approach to
multi linked list is even more confusing if not presented
properly to the students. So, main questions are

• How to deal with OO C++ multi-linked list while
teaching?

• What are the basic concepts?
• What to do with students who do not understand

some of basic concepts?

This paper is organized as follows: Section II deals
with OO approach to multi linked lists. Simple example
in C++ programming language is used to declare multi
linked list, as well as constructor method, destructor
method and some operations on multi linked lists. Section
III presents the methodological approach to multi linked
lists; six basic concepts were defined, while students were
classified to five distinctive groups according to their
understanding of six basic multi linked list concepts.
There is no point to consider students who understand all
basic concept in full extents, so neither of these five
group covers them. Section IV is the conclusion of this
research where some guidelines on how to recover to
fully understanding of OO multi linked lists are given, for
each group of students.

II. OBJECT – ORIENTED APPROACH

A definition of object-orientation is that an entity of
whatever complexity and structure can be represented by
exactly one object [3]. If we apply this definition on multi
linked list we get an object-oriented multi linked list (Fig.
2). In object-oriented programming we treat a multi linked
list as an object. That means that we will view a multi
linked list as an object that stores data as a list, that allows

ICIST 2015 5th International Conference on Information Society and Technology

Page 391 of 522

Figure 4. Adding a new node into the multiList object

Figure 3. Multi linked list class diagram

the list to be manipulated using a set of methods provided
by the multi linked list interface. An important element to
good object-oriented programming is good object-oriented
design. This means that we need to design a good
interface for a multi linked list object that provides the
operations that a programmer wants. Design of a multi

linked list is shown on UML class diagram in Fig. 3.
As we can see, internal structure of a list is hidden. List

can be manipulated only through the interface.

A. Multi linked list class
Implementation of a multi linked list will be hidden so

that it can be modified without affecting the programs that
use it. In particular, we will not let the programs that use
it, to have access to its internal representation. Therefore,
we will declare a multi linked list in C++ as shown in
Listing 1.

Listing 1. Declaration of a multi linked list in C++

As we can see from Listing 1. multiList class is realized
as template class, because the class should be able to
handle different types of data fields. While using a multi
linked list and operating on a particular data type, only the
data type needs to be specified when the template class
object is defined or declared, e.g. multiList<int> mList.

B. Constructor and destructor
MultiList class has one constructor and destructor.

Constructor multiList() has no arguments. Its function is to
initialize multiList object by setting head to NULL.

Destructor gets called when multiList object needs to be
deleted. Through while loop destructor runs-cross each
node of a multiList object and deletes it by calling
removeNode() method.

C. Methods
In order to make the multiList as universally usable as

possible, we want to define a set of essential, primitive
operations that programmers can use to assemble more
complex operations. In other words, rather than trying to
imagine every conceivable use for a multiList and placing
an operation in the multiList's interface that supports that
use, we try to envision a set of basic building block
operations that can be used to create these more
complicated operations.

To add a new node in the list, first thing to do is
allocate memory space for the node, then we assign data
to data field [4]. When node is created, it has no subnodes;
therefore head of sublist is NULL. Next, we concatenate
the new node with the original list and make the newly
created node the first one of the list (Fig. 4).

Method for adding a subnode is given in Listing 2.

Listing 2. Method that adds a new subnode into the multiList object

template <class T>

class multiList{

private:

 struct subnode{

 T value;

 subnode *next_sub;

 subnode(T value1,subnode

*next_sub1=NULL){

 value=value1;

 next_sub=next_sub1; } };

struct node{

 T value;

 subnode *head_sub;

 node *next;

 node(T value1, subnode *head_sub1=NULL,

 node *next1 = NULL){

 value = value1;

 head_sub=head_sub1;

 next = next1; } };

node *head;

public:

multiList() { head = NULL; }

 ~multiList();

void addNode(T value);

void addSubnode(T n, T value);

void removeNode(T value);

void displayList();

};

template <class T>

void multiList<T>::addSubnode(T n, T value){

 node *nodePtr=head;

 // check if node exists

// if exists then add subnode

 if(nodePtr->head_sub==NULL)

 nodePtr->head_sub=new subnode(value);

 else {

 subnode *subnodePtr=nodePtr->head_sub;

 while(subnodePtr->next_sub!=NULL)

 subnodePtr=subnodePtr->next_sub;

 subnodePtr->next_sub=new subnode(value);

 }

}

ICIST 2015 5th International Conference on Information Society and Technology

Page 392 of 522

Removing a node from a multiList means to modify the
list in such a way that the node is no longer connected to
its predecessor and successor, while bridging the removed
node to maintain the connection of the other nodes. After
bridging, programmer explicitly frees the memory
occupied by those nodes that are not needed anymore [2].

Method that removes the first element of a list is given
in Listing 3.

Listing 3. Method that removes a node from the multiList object

To perform an operation on all nodes of a list, we have
to reach each node starting from the first one, by
following the next references. The simplest way of doing
this is through iteration [5].

In Listing 4. we give an example of using object-
oriented multi linked list. Because the multiList class is a
template class, in our example we will define it as a
string.

Listing 4. Test example of using multiList class

III. METHODOLOGICAL APPROACH
Methodological approach used to explain multi linked

lists in the case when object oriented programming is
applied is based on six concepts. These are basic
concepts, arguably minimal number of basic concepts
needed to practically understand object oriented multi
linked lists. Basic concepts are:

1. Pointers and memory allocation.
2. Object-oriented paradigm.
3. Linked list basics.
4. Creating nodes.
5. Creating sub-nodes.
6. List operations.
The importance level of basic concepts is crucial for

students to understand multi linked lists.
(The order of basic concepts is crucial for students to
understand multi linked lists. These concepts were chosen
after extensive research of literature references. In [6]
was presented a "pointer-safe" object oriented paradigm
including physical addresses, placements of objects, etc.
in addition, in [7] the context-insensitive pointer analysis
was described; this is based on applying cycle elimination
to context-sensitive pointer analysis and refers to some
advanced techniques. Object oriented paradigm is widely
used in practice, so that there is no lack of literature
references to this concept; in [3] this paradigm is
described appropriately for this research. The linked lists
concepts including basics, creating nodes and sub-nodes,
as well as operations on lists are presented in [1, 4, 5, 8],
and there is no lack of literature on this matter as well.

In contrast to a large number of literature references
dealing with these concepts in the domain of software
engineering, there is a lack of information about
implementing these concepts in teaching. It is hard to
assess the understanding of some concept, so we are not
particularly sure if student understand these concept, and
even less are we able to objectively assess the extent to
which student understands a particular concept. The
application of the scale (e.g. from 5 to 10 or from 1 to 10)
is often used, as well as the measure of understanding in
percents, but arguably more "rough" scale is better, so we
are using just three values in this investigation: low (0),
medium (1) and high (2). Instead of three-point scale, five
or seven point scale is often used.

Still, there are some disagreements about basic
concepts, so we had applied Fuzzy Screening method (R.
Yager) and the Rough Sets Theory (Z. Pawlak). In both
cases, we needed a data sample.

In this particular investigation we used data sample
collected from multiple sources in mid-term exams. We
have students, and each of them have a certain number of
points ranging from 55 to 100 for each of this six
attributes. Having in mind that this data sample is small
and gathered from multiple sources we have discretized
our data so that we have three values: low, medium and
high: from 55 points to 70 points is low, from 76 to 85 is
medium and from 86 points up to one hundred points is
high. After discretization step, each row represents one or
more students, Table I.

template <class T>

void multiList<T>::removeNode(T value){

 node * nodePtr; node *previousNodePtr;

 if (!head) return;

 // find the node that needs to be removed

 while(subnodePtr!=NULL){

 // remove his subnodes

 }

 head = head->next;

 delete nodePtr; }

 else {

 nodePtr = head;

 // update links

 }

 if (nodePtr){

 previousNodePtr->next=nodePtr->next;

 delete nodePtr; }

}

int main(){

 multiList<string> list;

 string name;

 string value;

 cout << "Add 3 names to the List:\n";

 for (int i = 0; i < 3; i++){

 cout << "Name #" << i + 1 << ": ";

 getline(cin, name);

 list.addNode(name);

 }

 cout<<"Add subnode to name: ";

 getline(cin,name);

 cout<<"\nEnter value: ";

 getline(cin,value);

 list.addSubnode(name,value);

 list.displayList();

 cout<<"\nEnter a name to delete: ";

 getline(cin, name);

 list.removeNode(name);

 list.displayList();

 list.~multiList();

return 0;

}

__

ICIST 2015 5th International Conference on Information Society and Technology

Page 393 of 522

TABLE I
DATA SAMPLE

1. Pointers and
memory

allocation.

2. Object-
oriented

paradigm.

3. Linked
list basics.

4. Creating
nodes.

5. Creating
sub-nodes.

6. List
operations.

High (2) High (2) High (2) High (2) High (2) High (2)

High (2) High (2) High (2) High (2) High (2) High (2)

High (2) High (2) Medium (1) Medium (1) High (2) High (2)

Medium (1) High (2) High (2) Medium (1) High (2) High (2)

Medium (1) High (2) High (2) High (2) Medium (1) High (2)

… … … … … …

High (2) Medium (1) High (2) Medium (1) Medium (1) Medium (1)

High (2) Low (0) Medium (1) High (2) High (2) Medium (1)

Medium (1) Medium (1) Medium (1) High (2) Medium (1) High (2)

Medium (1) High (2) Medium (1) High (2) Medium (1) low (0)

High (2) Medium (1) Medium (1) Medium (1) Low (0) Medium (1)

High (2) Medium (1) Medium (1) Low (0) Low (0) Medium (1)

Medium (1) Low (0) Low (0) Medium (1) High (2) Medium (1)

High (2) Medium (1) Low (0) Medium (1) Low (0) Medium (1)

Low (0) Medium (1) High (2) Low (0) Medium (1) Medium (1)

High (2) High (2) Low (0) Low (0) Low (0) Medium (1)

Medium (1) High (2) Medium (1) Low (0) Low (0) Medium (1)

Low (0) High (2) Medium (1) Low (0) Medium (1) Low (0)

… … … … … …

After Table I was obtained, we are able to calculate the

score by (1) and sort table rows in descending order by
score value.

}2,1,0{],1,0[,
1

ii

n

i
ii ppscore (1)

For n = 6 and 6 ≤ score ≤ 8, we have a "window"
marked in Table I, by thick rectangle. By changing the
values that constrain the score, we are able to slide the
window up or down. We have three groups of students:
the group above the window are students that are almost
there and, usually they are able to figure it out by
themselves, while the group of student below the window
are students who need to study harder. So, desired
position was to find a group that needs a "little push" to
understand these concepts.

Except for the case when the student knows concepts
to the maximum extent, by "window" we singled out five
cases of cumulative understanding of these six concepts.
These five cases are presented in form of "radar maps"
that are easy to understand and read. The concepts are
arranged in a clockwise direction, which corresponds to
their order. Fig. 5 presents the case when students
understand the concept of Pointer and memory allocation
in maximal extend (high), while they are not able to
understand how to create sub-nodes (low), while there is

a lack of maximal understanding of all other concepts
(medium).

Figure 5: Pointer and memory allocation

Fig 6. represents students that are able to understand
OO paradigm, as well as Creating nodes in the maximal
extent, but understanding of the List operations is lacking
(low).

ICIST 2015 5th International Conference on Information Society and Technology

Page 394 of 522

Figure 6: OO paradigm and creating nodes

Fig. 7 represents students who understand Pointers and
memory allocation and Linked lists basics, however the
understanding of other concepts is not maximal. There is
no total lack of understanding of any concept.

Figure 7:Pointers and memory allocation and List basics

Fig. 8 represents the group of students who understand
three concepts in maximal extent, but they are not able to
cope with OO paradigm.

Figure 8: Pointers and memory allocation and Nodes

Figure 9: List operations and Creating nodes

Finally in Fig. 9 is represented a group of students who
understand how to Create nodes and List operators, while
other knowledge is lacking. There is no total lack of
understanding of any concept.

IV. CONCLUSION
In this paper we show how object-oriented design can

be applied to the implementation of a multi linked lists
with a mixture of explanations, figures and sample codes.
Linked lists are useful to study for two reasons. Most
obviously, linked lists are a data structure which you may
want to use in real programs. Somewhat less obviously,
linked lists are great way to learn about pointers. Linked
list problems are a nice combination of algorithms and
pointer manipulation. Traditionally, linked lists have been
the domain where beginning programmers get the
practice to really understand pointers.

This paper is useful if you want to understand linked
lists or if you want to see a realistic, applied example that
uses structures inside classes and template classes.

We propose the exact way to estimate and visualize the
extent of student's understanding of multi linked list in
Object oriented C++ programming. This is a good
starting point for further analysis of how students
understand the basic concepts related to understanding of
C++ linked lists. Six relevant basic concepts which are
necessary for the understanding of C++ linked lists were
defined by extensive literature review, while five group
of students was formed in exact manner from empirical
data. Six basic concepts are: Pointers and memory
allocation, Object-oriented paradigm, Linked list basics,
Creating nodes, Creating sub-nodes and List operations.
The student's knowledge of basic concepts is rated as
high (2), medium (1) or low (0).

First group of students is characterized by maximal
understanding of Pointer and memory allocation, while
they do not know how to create Sub-nodes of a C++ list.
According to practical experience, they are able to
recover through understanding of List operations. Second
group of students is good in OO programming and
Crating nodes, while they do not know how to implement
List operations. These students are able to recover thanks
to understanding of Node and Sub-node creation. Third
group of students consists of students who understand
each concept, although not with the maximal measure.
Some backtracking to previous concepts is needed in
order to fully understand C++ list implementation. Fourth
group are students who lack in understanding of OO
paradigm, but they are able to understand the
implementation of C++ list, so their recover is possible
by backtracking to OO paradigm. Finally, fifth group of
students are those who understand each concept, but not
with the maximal measure, so that backtracking to
previous concepts is needed. According to our
experience, the student who belongs to any of these five
groups will be able to recover to maximal extent of C++
list understanding.

Some statistical analysis of presented approach is in
progress so, future work will include more exact methods
for student's knowledge assessment.

ACKNOWLEDGMENT
Ministry of Science and Technological Development,

Republic of Serbia financially support this research, under

ICIST 2015 5th International Conference on Information Society and Technology

Page 395 of 522

the project number TR32044 ”The development of
software tools for business process analysis and
improvement”.

REFERENCES
[1] Parlante, N. “Linked list basics”, Document #103, Standford CS

Education Library, 2001.
[2] Stojisavljević, Đ. Brtka E. “Application of multi linked lists

technique for the enhancement of traditional access to the data”,
Proceedings of the International Conference on Applied Internet
and Information Technologies, pp 403-407, Zrenjanin, Serbia,
2013.

[3] Dittrich, K. “Object-Oriented Systems – the notation and the
issues”, International Workshop in Object-Oriented Database
Systems, Pacific Grove, CA, 1986.

[4] Parlante, N. “Linked list problems”, Document #105, Standford
CS Education Library, 2001.

[5] Tanenbaum A. Augenstein M. Langsam Y. “Data structures using
C and C++”, PHI Learning, 2009.

[6] Della Penna G. “A type system for static and dynamic checking of
C++ pointers”, Computer Languages, Systems & Structures 31,
pp. 71–101, 2005.

[7] Woongsik C. and Kwang-Moo C. “Cycle elimination for
invocation graph-based context-sensitive pointer analysis”,
Information and Software Technology 53, pp. 818–833, 2011.

[8] Tüzün E., Tekinerdogan B., Kalender M. E. and Bilgen S.
“Empirical evaluation of a decision support model for adopting
software product line engineering”, Information and Software
Technology 60, pp. 77–101, 2015.

ICIST 2015 5th International Conference on Information Society and Technology

Page 396 of 522

	VOLUME 2
	Multi linked lists: an object-oriented approach

