
28

A code generator for building front-end tier of

REST-based rich client web applications

Nikola Luburić, Goran Savić, Gordana Milosavljević, Milan Segedinac, Jelena Slivka

University of Novi Sad, Faculty of Technical Sciences, Computing and Control Department

{nikola.luburic, savicg , grist, milansegedinac, slivkaje}@uns.ac.rs

Abstract – The paper presents a code generator for creating

fully functioning front end web application, as well as a

JSON-based DSL with which to write models which the

generator uses as input. The DSL is used to describe both

the data model and the UI layout and the generated

application is written in AngularJS, following the current

best practices. Our goal was to produce a code generator

which is simple to create, use and update, so as to easily

adapt to the climate of technologies which are prone to

frequent updates. Our code generator and DSL are simple

to learn, offer quick creation of modern, feature rich, web

applications with customizable UI, written in the currently

most popular technology for this domain. We evaluate our

solution by generating two applications from different

domains. We show that the generated applications require

minor code changes in order to adapt to the desired

functionality.

INTRODUCTION

In recent years classical desktop applications have been
replaced by internet-based applications where a server
provides core functionalities that are accessed from client
applications. In software engineering the terms “front
end” and “back end” are distinctions which refer to
separation of concerns between a presentation layer and a
data access layer respectively. A recent trend in the
implementation of internet-based applications is to
separate the logic in two independent applications, a back
end application which runs on a remote server and a front
end application which runs on the browser.

Communication between client applications and the
server is mostly done over HTTP, based on the REST
software architecture [1]. REST-based services provide
clients with a uniform access to system resources, where a
resource represents data or functionalities, where each
resource is identified by its uniform resource identifier
(URI). A client interacts with such services through a set
of operations with predefined semantics. REST-based
services typically support CRUD operations which, in the
context of internet-based applications, map to HTTP
verbs.

In the recent years there has been an expansion of new
technologies for developing front end applications and
from year to year the growth of available frameworks and
libraries is exponential [2-4]. Likewise, the vast majority
of those technologies are volatile and tend to differ
significantly from version to version. While few
frameworks and libraries have proven to be more than
hype, like AngularJS and Bootstrap, even those are prone
to upgrades that break legacy software (which is rarely
more than a year old). One thing to note is that while the

backend technologies are constantly improving, the
improvements made in this field revolve around
performance or making the developer’s lives easier, while
the features, visual appeal and ease of use of front end
applications are what bring users in and influence profit
[5]. This, in turn, means that there is more to be gained
from updating the user interface, than the underlying
server application.

Regardless of the technology being used, most
information systems contain a standard set of features and
functionalities. Features like CRUD (create, read, update,
delete) forms or authentification are part of most
applications, which is why it is possible to create tools
which will generate these features automatically. One
thing to keep in mind is that the tool would need to change
as frequently as the underlying technology, and when
talking about technologies which are prone to change and
frequent updates, both the generator and its input need to
be simple enough in order to be useful.

This paper presents a code generator for generating the
front end tier of rich client web applications that rely on
REST services as a back end technology. Our generator
uses a simple DSL based on JSON as input, which is
presented as well. The DSL describes a business
application and the generator uses that description to
generate an application. We use this code as a starting
point of the implementation, giving a head start to the
development process. The generated client application is
written in AngularJS, using the current best practices [6].
In order to evaluate our solution we have performed two
case studies. Using our code generator we have
automatically generate implementations for two
applications from different domains: a registry of cultural
entities and a web shop for a local board game store. We
show that the generated applications need minimal
modifications in order to be customized according to the
specific requirements. While the DSL is technology
agnostic, the AngularJS framework [7] was chosen for the
generator as it is currently the most popular framework for
developing front end web applications. The reason behind
its popularity lies in its ability to extend HTML through
directives, while offering dependency injection in
JavaScript which reduces the number of lines of code
written. It also provides two way data binding between the
view (HTML) and model (JavaScript) and offers many
more features that increase the quality of web applications
while minimizing the amount of written code.

The paper is organized as follows. Work related to this
paper is presented in the next section. The section „Input
DSL“ presents the DSL we use to create our input model
for the generator. The section „Code Generator“ describes
our code generator. The section after that, titled „Case

6th International Conference on Information Society and Technology ICIST 2016

29

Study“, presents two applications which were created
using our generator as a starting point and shows the
amount of code that was generated which required no
modification, as well as the amount of code which
required some modification or which had to be manually
writen.

RELATED WORK

Before developing our solution we considered both the
current research in the scientific community and the
current industry standards (the popular open-source tools).

In [8] Dejanović presents a complex DSL which is used
for the generation of a full stack web application using the
Django framework. The DSL covers many different
scenarios in order to automatically generate as much code
as possible, including defining corner case constraints,
custom operations, etc. The resulting DSL is a complex
language that requires time and effort to learn. Code
generators based on this language are complex and require
a lot of time to be implemented if every part of the
language is to be covered, which means that such a
solution can’t be used in a climate where every new
project works with a different technology, or at least a
significantly different version of the same technology.
Paper [9] presents a mockup driven code generator, which
is easier to use and requires less effort on the part of the
developer, while also offering a significant amount of
configuration as far as the user interface is concerned.
However, the tool is also far too complex for the group of
technologies being examined. The likely scenario is the
long development of the code generator itself. With fast
changing technologies this has a consequence in
generation of already deprecated code. It should be noted
that both [8] and [9] are aimed at generating enterprise
business applications, which require mature and stable
technologies. It should be noted that while both solutions
take a MDE (model-driven engineering) approach, our
generator focuses on creating a starting point for the
implementation of an application.

With regard to code generators for front end web
applications the Yeoman scaffolding tool [10] is a popular
tool for this area. This tool provides developers with an
improved tooling workflow, by automatically taking care
of the many tasks that need to be done during project
setup, like setting up initial dependencies, creating a
suitable folder structure and generating the configuration
for the project build tool. Most modern code generators
use the Yeoman tool for the first step of building a front
end application.

Some solutions that build on the Yeoman tool focus on
expanding the scaffolding process, initially creating more
folders and files based on some input. While no real
business logic is generated, the files are formed with
sensible defaults and best practices. The angular generator
[11] by the Yeoman Team and Henkel’s generator [12] are
the most popular solutions from this group of generators.
While the use of these tools is easy and usually requires
only strings as input, the resulting code isn’t runnable, as
it’s mostly boilerplate code.

A second group of solutions that build on the Yeoman
tool try to produce fully functioning applications based on
some input, and this is where our generator and DSL fit in.
The most popular tool in this area by far is JHipster [13].
Using the command line or XML as input, JHipster

creates a fully functioning application (both back end and
front end) written using Spring Boot and AngularJS.
While JHipster does offer a lot of useful features (built-in
profiling, logging, support for automatic deployment, etc.)
and the back end application is well implemented, the
disadvantage of this tool is the lack of a fully developed
front end application. The generated front end application
lack important features (GUI elements for many-to-one
relationships and lacks any customization of the layout
during code generation, which means that every generated
application looks exactly the same.

Aforementioned solutions are either too simple and
generate only boilerplate code and/or only take the data
model into account when building the user interface
and/or are too complex for building cutting edge front end
web applications. When comparing our solution with
solutions produced by the scientific community, we found
that the DSLs and code generators were far too complex
for our problem domain of generating applications in
technologies prone to frequent updates. Using our DSL
users can describe not only the required model properties
but also the layout which the generator uses to create a
custom, well-designed GUI. In the next chapters we
present our DSL and the code generator that uses it as
input. Our goal here was to create a tool which solves the
problems that the previously mentioned solutions have.

INPUT DSL

When constructing our DSL we aimed for simplicity.
With that in mind we created a DSL which uses JSON as
the underlying format primarily because our assumption is
that a front end developer must know JSON and therefore
doesn’t need to spend time learning the syntax of the DSL.

Our DSL needs to meet the following requirements:

 It describes browser-based applications that
receive/send data through the network from/to
RESTful web services contained within the server-
side application. It describes not only the entities
that the application handles (data model), but also
the user interface (layout, components, etc.)

 It is simple so that developers can learn it quickly
and its associated code generators can be
developed efficiently, as we are targeting an area of
software engineering known for its many
frameworks which change rapidly [2-4]

 There is no redundancy in the description, known
as the DRY (don’t repeat yourself) principle

 It is extensible, so that domain specific UI
components can be built and used in the generating
process.

Since an instance of our DSL is actually a JSON object,
we can describe the constraints of our DSL using the
JSON Schema [14].

Our code generator creates two components, a page for
viewing multiple entities of a given type (list view, fig. 3),
which supports paging, filtering and sorting of the list, and
a form for creating a new entity, or viewing and possibly
editing an existing one (detail view, fig. 4). The generator
takes a JSON document for each entity that we want to
generate components for. The list and detail view are
generated for each such entity, as well as the entire
underlying infrastructure needed for the aforementioned
views to work and retrieve data from the server.

6th International Conference on Information Society and Technology ICIST 2016

30

We take several factors into account when describing
our views – will the table have standard pagination or will
it use infinite scroll, will our complex forms be segmented
by collapsible sub-forms, using a wizard-like UI with next
and finish or have no segmentation, etc. Listing 1 shows
the part of the schema that describes the entity object.
Note that only the identifier (id) and the groups
element is required, while the rest are either generated
using the identifier (label, plural), or have predefined
values (pagination, groupLayout).

Listing 1. JSON schema for entity object

The groups attribute is an object which contains an id,
optionally a label and an array of attributes and
optional subgroups. By grouping attributes and subgroups
we can separate complex forms into smaller, more
manageable sub-forms.

An item of the attributes array contains information
regarding the identity of the item (id, optional label),
attributes which describe the type of UI component (type,
ref, object and extension), and information regarding
the list view (table).

Listing 2 shows the part of the schema related to
defining the type of UI component for the given attribute
of the entity. None of the listed attributes are required and
if the type is missing it will default to string. If the type

of attribute is one of the last three listed (ref, object,
extension), another attribute is needed (which has the
same name as the value of the type attribute) which will
further describe the UI component. In case the type is ref
the ref object describes a relationship with another entity,
as well as how to form the UI component (which is
defined in the presentation attribute). In case our REST
back end returns an object that contains an inner object,
we use the object attribute along with setting the type to
the previously defined object we need. Finally, we use
extension attribute to define custom components, by
supplying a simple string which the generator will process
in its own way. As far as our generator is concerned,
strings listed in the extension attribute are angular
directives.

The table object, not presented in the listings, is related
to the functionality and UI of the list view. Three flags are
placed in this object, show which signifies whether the
attribute should be displayed in the table, search and sort

which enable/disable the search and sort functionality of
the table for the given attribute.

Listing 2. JSON Schema for attribute type definition

CODE GENERATOR

Our code generator uses instances of our JSON schema
presented above to create components for a fully
functional front end web application.

The code generator uses the Freemarker template
engine. The generator uses the input model writen using
our DSL and template files to produce the resulting
application. The template files are closely related to the
chosen technology, and our templates are created for the
latest version of the popular AngularJS framework, along
with the Bootstrap CSS library in order to provide a rich,
responsive modern front end web application.

Apart form the code generator, a framework was
developed which acts as the infrastructure for the
generated code. Other than a few input strings (e.g.
application name, remote server location) the framework
doesn't require any additional information. The generated
applications are written using the current best practices for
project structure and angular coding styles, contains
inbuilt support for internationalization and use visually
appealing and intuitive UI components. If a new entity
needs to be added into the system, one would only have to
supply the generator with the appropriate JSON and copy
the resulting folder into the components folder. Fig. 1
shows the folder structure of a generated application with
three entities. The content of the components folder is
what the code generator produces, while everything else is
part of the framework.

"title": "Entity",

"type": "object",

"required": ["id", "groups"],

"properties": {

 "id": { "type": "string" },

 "label": { "type": "string" },

 "plural": { "type": "string" },

 "pagination": {

 "enum": ["default", "infiniteScroll"]

 },

 "groupLayout": {

 "enum": ["collapsible", "wizard",

 "none"]

 },

 "groups": {

 "$ref": "#/definitions/groups"

 }}

"type": { "enum": [

 "string", "textArea", "number", "email",

 "date", "ref", "object", "extension"

]},

"ref": {

 "type": "object",

 "required": ["entity", "relation"],

 "properties": {

 "entity": { "type": "string" },

 "relation": {

 "enum": ["oneToMany", "manyToOne",

 "oneToOne"]

 },

 "independant": { "type": "boolean" },

 "presentation": {

 "enum": ["inline", "link", "none"]

 }

 }

},

"object": {

 "type": "object",

 "required": ["id", "attributes"],

 "properties": {

 "id": { "type": "string" },

 "attributes": {

 "$ref": "#/definitions/attributes"

 }

 }

},

"extension": { "type": "string" }

6th International Conference on Information Society and Technology ICIST 2016

31

Figure 1. Generated application package structure

The assets folder contains resources which our

application uses. This includes external JavaScript files
(including angular and its plugins), styling sheets and
fonts and images. The src folder contains the actual code
of the application and it is separated into two
subdirectories, the components folder and the shared

folder. The components folder contains packages which
represent various entities in our application and are, for
the most part, independent modules which can be taken
out of our application and placed into any other angular
application where minimal work would be needed to adapt
the module to work in the new context. The core package
contains items that define the application layout, like the
homepage, sidebar, header and footer HTML files and the
underlying controllers. The shared folder contains
directives, services and other components which are used
throughout the application. This folder, along with the
core package of the components folder, makes up the
infrastructure of our generated application. The
components located in shared are reusable pieces of code
which can be used in other applications with virtually no
adaptation required. This package includes support for
internationalization, a directive for displaying one-to-
many relationships and a modal dialogue which prevents
accidental deletion. Finally the generator provides files for
tracking bower and npm dependencies, which list
dependencies of our application and development tools
(gulp for managing the build process, karma and
protractor for running unit and end-to-end tests)
respectively, and a gulp file which contains a set of
commonly used tasks.

The code generator creates specific UI elements for
associations. The many-to-one relationship is represented
using an autocomplete textbox, which offers a list of
results that are filtered using the user input. The one-to-
many relationship is displayed using an inline table.

Coming back to the generation process, the second
phase of application generation takes all the JSON files
written in accordance with our schema to produce
modular, independent components, which include a list
view page and detail view page described in the previous
chapter, underlying angular controllers for both pages, a
routing configuration file for application state transitions
and a service which communicates to the REST endpoints
on the remote server. Fig. 2 shows the content of a folder
for one of our entities, where the previously described
files are listed.

Figure 2. Generated component based on the input DSL

 CASE STUDY

This section presents two applications, a registry of
cultural entities and a web shop for a local board game
store. The first system works with 56 entities, but doesn’t
require animations or other forms of highly interactive
interface. The second system deals with a few entities, but
requires a dynamic interface with a lot of animations.
Both applications have subsystems which aren’t covered
by our code generator and have to be implemented
manually.

The registry of cultural entities is an information system
which records information about cultural institutions,
artists, cultural events, domestic and foreign foundations
and endowments in AP Vojvodina. Each one of these
entities has over ten entities related to them, and some of
these entities are shared between the primary five. When
speaking in the context of a relational database, the data
model consists of over seventy tables, which include
tables for recording multilingual information, as well as
tables for tracking changes of various entities of the
system.

Fig. 3 shows the generated application, localized to
Serbian, and its basic layout, where the header and sidebar
are mostly static, while the workspace containing the list
of institutions changes. The displayed list view is
generated for the cultural institution entity. Since this
entity has over thirty fields (counting related entities) only
a small subset was chosen to be presented in the table. The
table offers support for pagination, sorting and filtering
based on the displayed attributes. Whenever we want to
display multiple entities of a given type we use a table
similar to the one displayed in the figure.

By clicking on an item in the table a form for viewing and
editing the clicked item is displayed on the workspace, as
shown on fig. 4. Most of the form shown in fig. 4 is
created using the components the generator provides, like
a date picker, an autocomplete textbox for many-to-one
relationships and an inline table for one-to-many
relationships. A custom UI component which represents a
table for adding multilingual data was created as an
angular directive (marked with the red square in fig. 4)

6th International Conference on Information Society and Technology ICIST 2016

32

and was listed (using the name of the directive) in the
input DSL, under type extension. In this way we have
used the extensibility feature of our DSL.

Figure 4. Detail view of a cultural entity

The board game web shop worked with 11 entities but
required more work on the UI and UX front. Fig. 5 shows
the resulting application. The templates were slightly
modified to create a more colourful UI. The detail view
has a similar look to the previous application, only the
attributes of the entity are displayed as labels and not as
input controls and there are fewer fields.

During construction of the listed applications a portion
of the code was generated and this code required very
little or no modification. A portion of the code was
generated but required significant modification, usually by
using the generated code as a starting point.

Figure 5. Application layout and list view of web shop

Finally, a portion of the code had to be manually writen
so that the system would meet the needed requirements.
The percent of generated JavaScript and HTML code that
required no or significant modification, as well as the
percentile of manualy written code for both applications
can be found in table 1.

The front end application for the registry of cultural
subjects had about 80% of the code generated which
required no or very little modification. Another 10% of
the code was generated but required some modification,
and this included specific constrains on the forms and
custom UI which was different from what our generator
provided. The remaining 10% of the code had to be
manually written, and this included the subsystem for user
authentication, a service for contacting the server to
initialize report generation using the WebSocket protocol
[15], and a custom homepage.

Figure 3. Application layout and list view of cultural entities

6th International Conference on Information Society and Technology ICIST 2016

33

The board game web shop required more work on the
UI and UX front. While AngularJS does have good
support for animations, this wasn’t a primary requirement
of our code generator, which is the reason why almost no
animation and dynamic interface behaviour was
generated.

For the front end side of this system about 65% of the
code was generated and required no or very little
modification, while another 10% required a decent
amount of change. The remaining code had to be
manually written, and this included the subsystem for
making purchases (a shopping cart) and upgrading the UI
with animations and graphics.

CONCLUSION

The paper presents a code generator used for creating
rich front end web applications, written using the popular
AngularJS framework. The generated applications are
written following the current best practices for project
structure and angular coding styles, contain inbuilt support
for internationalization and use visually appealing and
intuitive UI components. As input, our code generator
uses a model writen in our simple DSL, based on JSON,
in order to be easy to learn and in order to avoid overly
complicated code generators which take more time to
develop than a new version of the technology used in the
generated code. Our DSL supports description of both the
data model and the user interface layout and components
in a concise manner. The code generator uses instances of
this DSL as simple JSON objects to construct fully
functional applications build with AngularJS and the
Bootstrap CSS library.

The DSL and the code generator have been evaluated
by creating two applications from different domains.
Compared to other similar solutions the generator was
either more flexible, by allowing the developer to define
both the data model and the layout of the application
and/or was easier to use, avoiding corner case constraints
and details in implementation and/or was more complete,
by generating a full application rather than just project
scaffolding.

Our current solution only takes into account the user
interface layout and the data model from the REST
endpoints. An important part of data driven applications
are constraints on user input, and this is something that
our DSL and code generator currently don't support.
Furthermore, our DSL only takes into account the data

model from the REST endpoints and makes the
assumption that all applications follow the REST-full
pattern for managing entities using a limited set of
operations with predefined semantics. This could be a
limitation for the practical use of our generator since many
systems rely on REST-like web services which do not
have a predefined set of methods for manipulating entities.

The future plans for the DSL and code generator
include:

 Separating the current DSL into separate logical
units, one for defining the data model and its
constraints and one for describing the UI layout

 Extend the generator to support REST-like services

 Extend the code generator to support generation of
different types of applications, like mobile and
desktop and in different technologies

ACKNOWLEDGMENT

Results presented in this paper are part of the research
conducted within the Grant No. III-44010, Ministry of
Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] R. Fielding, R. Taylor (2002), Principled Design of the Modern
Web Architecture, ACM Transactions on Internet Technology
(TOIT) (New York: Association for Computing Machinery) 2 (2),
pp. 115–150, ISSN: 1533-5399

[2] A. Gizas, S. Christodoulou, T. Papatheodorou (2012),
Comparative Evaluation of Javascript Frameworks, Proc. of the
21st International Conference on World Wide Web, pp. 513-514

[3] D. Graziotin, P. Abrahamsson (2013), Making Sense Out of a
Jungle of JavaScript Frameworks, Product-Focused Software
Process Improvement, 14th International Conference (PROFES),
pp. 334-337, ISSN: 0302-9743

[4] A. Domański, J. Domańska, S. Chmiel (2014), JavaScript
Frameworks and Ajax Applications, Communications in Computer
and Information Science (CCIS) 431: 57-68, ISSN: 1865-0929

[5] C. Kuang, Why good design is finally a bottom line investment,
http://www.fastcodesign.com/1670679/why-good-design-is-
finally-a-bottom-line-investment, retrieved: 23.11.2015.

[6] J. Papa, Angular Style Guide, https://github.com/johnpapa
/angular-styleguide, retrieved: 23.11.2015.

[7] N. Jain, P. Mangal, D. Mehta (2014), AngularJS: A Modern MVC
Framework in JavaScript, Journal of Global Research in
Computer Science (JGRCS) 5 (12): 17-23, ISSN: 2229-371X

[8] I. Dejanović, G. Milosavljević, B. Perišić, M. Tumbas (2010), A
domain-specific language for defining static structure of database
applications, Computer Science and Information Systems 7 (3), pp.
409-440, ISSN: 1820-0214

[9] G. Milosavljević, M. Filipović, V. Marsenić, D. Pejaković, I.
Dejanović (2013), Kroki: A mockup-based tool for participatory
development of business applications, Intelligent Software
Methodologies, Tools and Techniques (SoMeT), 2013 IEEE 12th
Inter'l Conference on, pp. 235-242, ISBN: 978-1-4799-0419-8

[10] Yeoman Team, Yeoman, http://yeoman.io/, retrieved: 23.11.2015.

[11] Yeoman Team, AngularJS generator, https://github.com/yeoman
/generator-angular, retrieved: 23.11.2015.

[12] Tyler Henkel, AngularJS Full-Stack Generator, https://github.com
/DaftMonk/generator-angular-fullstack, retrieved: 23.11.2015.

[13] JHipster, http://jhipster.github.io/, retrieved: 23.11.2015.

[14] Internet Engineering Task Force, JSON Schema, Internet Draft v4,
http://json-schema.org/, retrieved: 25.11.2015.

[15] Internet Engineering Task Force (2011), The WebSocket Protocol,
RFC 6455, https://tools.ietf.org/html/rfc6455, retrieved:
26.11.2015.

TABLE I.
PERCENTILE OF GENERATED AND MANUALLY WRITTEN CODE

Application

Registry of

cultural
subjects

Board game

web shop

Number of entities 56 11

Number of pages 19 13

Lines of JavaScript code 7303 2105

Lines of HTML code 5508 985

Generated JavaScript with

no or little modification
75% 65%

Generated HTML with no or
little modification

90% 65%

Generated JavaScript with

significant modification
15% 10%

Generated HTML with

significant modification
5% 5%

Manually written JavaScript 10% 25%

Manually written HTML 5% 30%

6th International Conference on Information Society and Technology ICIST 2016

	Volume 1
	A code generator for building front-end tier of REST-based rich client web applications

