
22

Extendable Multiplatform Approach to the

Development of the Web Business Applications

Vladimir Balać*, Milan Vidaković**
* Faculty of Technical Sciences/Computing and Control Engineering, Novi Sad, Serbia

** Faculty of Technical Sciences/Computing and Control Engineering, Novi Sad, Serbia

sermasint@gmail.com, minja@uns.ac.rs

Abstract—We present the OdinModel framework - an

extendable multiplatform approach to the development of

the web business applications. The framework enables the

full development potential of the application’s model

through the platform independent abstractions. Those

abstractions allow the full code generation of the application

from a single abstract model to the multiple target

platforms. The model covers both the common and the

platform specific development concepts of the different

target platforms, which makes it unique. In addition, we can

extend the model with any existing development concept of

any target platform. The framework with such model

provides both the generic and custom modeling of the

complete Model, View and Controller parts of the

application. OdinModel uses existing development tools for

the implementation of the application from the model. It

does not force any development technology over some other.

Instead, the framework provides a hub from which the web

application developers can choose their favorite approach.

Currently, the framework covers the development for Java,

Python and WebDSL platforms. Support of these three

platforms and the extendibility of the framework guarantee

the framework support for any development platform.

I. INTRODUCTION

The development of the Model-View-Controller

(MVC) web business applications with the general-

purpose programming languages, like Java and Python,

means that the realization of the domain problem solution

is on the level of the programming language details. This

means that, if we want to develop the same application on

the Java and Python platforms, we outline the one same

solution, yet write the code for it twice, for each platform.

Java and Python platforms have various development

support tools that simplify the development as much as

possible by doing the grunt work for the developers.

These tools, however, produce the code that covers

specific application’s components, while the code outside

those components the developers write manually. These

tools also produce the code only for their target platform.
The development with the general-purpose

programming languages generally has two main parts [1,

2]. In the first part, the developers create the models of

the applications in textual and diagram forms. In the

second part, the developers deal with the programming

implementation of the models from the first part i.e. code

writing. In practice, the developers give more importance

to the code, than to the models [1, 2]. Consequently,

when there are new changes to the application, the

developers make the changes to the code, but not to the

models, thus leaving the models inconsistent with the

implementation of the application. This renders models

practically useless for the further development cycle, and

the invested work to make the models in the beginning a

waste of time and effort [3].

To use the full development potential of the models,

the developers may adopt one of Model-Driven

Engineering (MDE) paradigms for the application

development [2]. MDE offers higher levels of models

abstraction, code writing automation, portability,

interoperability and reusability than the programming

languages [4]. MDE development principles propose use

of the models as formal, complete and consistent

abstraction of the applications [5]. From those models,

the developers can generate the target application’s code

automatically. The abstraction improves the development

process by allowing the developers to shift their focus

from the programming languages to the models of the

problem domain [2, 6]. The generation of the complete

code of the application removes manual writing of the

code during the implementation, hides complexity of the

development and improves the quality of the application

and its code [7, 8, 9].

We propose an extendable multiplatform MDE

approach to the development that we call the OdinModel

framework. What sets apart our framework from other

solutions is that it encapsulates common features of three

application’s parts in a platform independent manner. We

can develop the Model, the View and the Controller part

of the application through the one platform independent

model that we call Odin model. Our framework currently

encapsulates common features of Java, Python and

WebDSL [10] applications.

With the OdinModel framework, we write only the

solution specific code, from which the accompanying

Java, Python or WebDSL code the framework

automatically generates. The OdinModel framework

produces the complete code and eliminates the manual

code writing. By using automation through the

generators, we avoid direct work with any tool on any

platform. However, the OdinModel framework

recognizes that the use of the programming languages

and their respective supporting development tools

increases the developer’s productivity by four hundred

percent [11, 12]. In the light of that, the OdinModel

framework combines MDE principles and use of proven

6th International Conference on Information Society and Technology ICIST 2016

mailto:sermasint@gmail.com

23

development tools with goal to improve the overall

productivity, quality and amount of time needed for the

development process.
With the OdinModel framework, we aim to make the

application development more efficient with the right
level of abstraction. We want to describe solutions
naturally and to hide unnecessary details, as stated in [13].
Since there are many details in the application’s code, we
try to automate everything that is not critical, without loss
of the expressiveness. We show that this concept can work
for Java, Python and WebDSL platforms. Support of these
three platforms and the extendibility of the framework,
guarantees the framework support for any development
platform.

II. RELATED WORK

Model-Driven Architecture (MDA) is MDE paradigm

where the developers rely on the standards, primary

Unified Modeling Language (UML) and Meta-Object

Facility [14, 15]. At first glance, the approaches that

adopt MDA are very similar to the OdinModel

framework. Analyzing works such as MODEWIS [4, 11],

UWA [3], UWE [16, 17], MIDAS [18], ASM with

Webile [19], Netsilon [20] and Model2Roo [1], we

recognize the same ideas as in the OdinModel

framework. However, in MDA approach, the developers

use UML to define the three distinct abstract platform

independent application’s models according to Meta-

Object Facility principles [11, 15]. With the OdinModel

framework, the developers use a custom modeling

language to define one platform independent model. This

is the key difference between MDA and OdinModel

approach.

Another difference is that UML is not a domain-

specific modeling language [21]. Since UML is not a

domain-specific, the developers manually program the

missing domain-specific semantics or use UML profiles,

limited extensions of the language [5]. With the

OdinModel framework, the abstract concepts are domain-

specific.

With UML, the models and the underlying code are on

the same level of abstraction [21]. The same information

is in the model and the code i.e. visual and textual

presentation. In contrast, OdinModel’s modeling

language has a higher level of abstraction and each

symbol on the model is worth several lines of the code.

Domain-Specific Modeling (DSM) is MDE paradigm

where the primary artifact in the application development

process is the one abstract platform independent model

and the full application’s code generation from that

model is obligatory [2]. In DSM approach, the focus is on

the development in the one specific domain and the

developers specify the domain problem solution using the

domain concepts. In other words, the modeling language

takes the role of the programming language. A modeling

language, which directly represents the problems in the

specific domain, is a Domain-Specific Language (DSL)

[13, 15]. DSL is the integral part of DSM approach, along

with the domain-specific code generator and the domain

framework [2]. The OdinModel framework adopts DSM

paradigm. We recognize the related works that adopt

DSM paradigm in the next approaches: DOOMLite [22],

WebML [23, 24], and WebDSL.

The main difference between our OdinModel

framework and the related DSM approaches is that

OdinModel provides the full code generation for the

multiple platforms from the start. Odin model abstracts

not just common features of the applications on a single

platform, as the related approaches do, but common

features of the applications with the different underlying

platforms. Therefore, our model abstracts and covers both

similarities and differences of the different platforms,

which, to our knowledge, makes it unique. Other

significant differences between OdinModel and the

related DSM approaches we present in Table 1.

III. ODINMODEL SPECIFICATION

The key of OdinModel specification is Odin meta-

model. It provides the specification of the abstractions of

the features needed for the development of the Model, the

View and the Controller parts of the applications. These

abstractions are the result of the analysis of all the

development concepts that the developers must define for

each application’s part separately. Odin meta-model is,

essentially, union of these separate abstractions. Since we

focus on multiplatform development, the abstractions

cover both intersection and complement sets of the

development features from different platforms. These two

sets of features are a foundation for the specification of

Odin DSL.
The OdinModel framework adopts the four-layered

architecture of Meta-Object Facility standard. Essentially,
this standard is a specification for definition of DSL [13].
Table 2 shows OdinModel’s four-layered architecture.
Odin DSL, in this stage, provides concepts that are
abstractions of Java, Python and WebDSL features. There
are two types of the features: common for all three
platforms, and the platform specific. The Platform specific
features are important because they allow customization
and do not force the use of the generic solutions.
However, we offer the generic solutions too.

The Model part of the application manages data access
and persistence. With the OdinModel framework, we
encourage the use of the tools, which automatically
manage most of the database persistence. This means that
the Model part of our meta-model only needs to cover the
specification of entities, their attributes and their relations.
Fig. 1 shows our definition of the Entity class. The meta-
model class EntityModel is the root class and it contains
the main domain classes i.e. all the other elements of the
meta-model.

TABLE I.
Comparison of DSM approaches

Approach Multiple
target

platforms

Custom
user

code

Custom
user

interface

Visual
editor

Full
MVC

model

DOOMLite

WebML * * * *

WebDSL * * *

OdinModel * * * * *

6th International Conference on Information Society and Technology ICIST 2016

24

TABLE II.

OdinModel’s four-layered architecture

Level Layer Implementation

M3 Meta-meta-model Ecore meta-model

M2 Meta-model Odin meta-model (Odin DSL)

M1 Model Odin model

M0 Real world objects Instance of Odin model

The meta-model classes NumberField, StringField,

EmailField, DateField and Fields represent the attributes
of the programming language classes i.e. entity fields. Fig.
2 shows the four types of the fields that OdinModel
framework currently supports. Since the all field classes
have some common attributes, we define those as the
attributes of the super class Fields. We define the specific
attributes of each field type in their own the meta-model
class.

The Class NumberField defines the fields with the
numerical values. This class can define the three types of
the field: ordinary number, primary key and interval of
numbers. When we define the primary key field, we can
also define the type of the primary key generation through
the attribute generationType. The same goes for the
interval field where we can also define the type of interval
through the attribute intervalType.

The Class StringField defines the fields with a string of
characters as a value. It has five specific attributes, where
two of them represent the constraints, and the other three
define the combo box, a special type of the textual field.

The meta-model classes OneToMany, ManyToOne,

OneToOne, ManyToMany and Relations specify the all

four possible types of the relations between entities. The

super class Relations specifies the common attributes of

the relations.

The View part of the applications manages visual

presentation. Through the code generation, the

OdinModel framework provides the default Create-Read-

Update-Delete (CRUD) user interface forms. The entities

are the base for the generation of the CRUD forms. The

CRUD forms contain the entity attributes as the input or

the output form fields. The OdinModel framework

provides navigation between these CRUD forms, through

the default application’s menu.

Figure 1. Entity class

Figure 2. Field classes

The OdinModel framework also allows the

customization of the content and the visual presentation of
the CRUD forms and the application’s menu. We can
customize which CRUD operations will be visible on the
forms and their visual style. The visual style covers the
combinations of buttons, links, tables and fields. We
define two meta-model classes with purpose to enable the
menu customization, which we present in Fig. 3.

The Controller tier of the applications manages the page
navigation, the input validation and the operations. The
Odin meta-model specifies two sets of the operations. One
set includes CRUD operations. The other set, which
extends the CRUD set, includes the user’s custom
operations. We define the custom operations through the
custom method classes. Through those classes, we define
the control flow of the operation. We can declare the
variables, assign the values to the variables, define IF
conditions and define WHILE loops.

Figure 3. Custom menu classes

6th International Conference on Information Society and Technology ICIST 2016

25

IV. ODINMODEL IMPLEMENTATION

The OdinModel framework provides the development

environment, which contains Odin DSL, a visual editor

for Odin DSL and the code generators. The developers

through the visual editor use DSL to create the platform

independent Odin model, which specifies the application.

The code generators produce the complete application’s

code from the Odin model.

We now present the implementation of the OdinModel

framework through the case study. In Fig. 4, we display

the Odin model of a Sport center, which has five

persistence objects and covers all four possible types of

the relations between those objects.

The use of the OdinModel framework reduces the

developer's work to the modeling of the domain concepts

that exist in the Odin DSL. The Sport center model has

all that is necessary for the specification of the Sport

center application. Behind this model, there is an

Extensible Markup Language (XML) code, not the

programming language code. The code generators use

that XML syntax to produce the application’s code. In

Fig. 5, Fig. 6, and Fig. 7, we present the generated code

for the Member entity on the all target platforms.

OdinModel generators produce the code from the

symbols, the arguments and the values of the symbols,

and the relations between the symbols. If we make

changes in the model, those generators apply changes to

the all generated files. The generators are extendable.

This means that whenever we define, for example, some

new Java or Python domain concept in the meta-model,

we adapt the corresponding generator. Java generator

ignores Python and WebDSL specifics and vice-versa. In

other words, if we specify the model with Java specifics,

and then choose Python generator, the generator will

generate Python application without problems. The

generated application is ready-to-deploy. In Fig. 8, Fig. 9,

and Fig. 10, we present the CRUD forms, which

correspond to the generated codes.

Figure 4. Sport center Odin model

… left out code …

@Entity

@Table(name = "members")

public class Member implements Serializable{

 @Id

 @GeneratedValue(strategy= GenerationType.IDENTITY)

 @Column(name = "id")

 private int id;

 @NotNull

 @Size(min = 3, max = 30)

 @Column(name = "first_name")

 String firstName;

 @NotNull

 @Size(min = 3, max = 30)

 @Column(name = "last_name")

 String lastName;

 @ManyToOne(cascade={CascadeType.REFRESH})

 public Section section;

 @ManyToMany(cascade={}, fetch=FetchType.EAGER)

 private Collection<Course>courses = new ArrayList<Course>();

 @OneToMany(cascade = {CascadeType.ALL},

 fetch=FetchType.EAGER, mappedBy = "member")

 @Fetch(value = FetchMode.SUBSELECT)

 public Collection<Membership> memberships;

 @OneToOne(cascade = {CascadeType.ALL})

 public Detail detail;

… left out code …

Figure 5. The generated Java class for Member entity

class Member(models.Model):

 id = models.AutoField(primary_key=True)

 first_name = models.CharField('First name',

 validators=[RegexValidator(regex='^.{3}$',

 message='Length has to be 3 ', code='nomatch')], max_length=30)

 last_name = models.CharField('Last name',

 validators=[RegexValidator(regex='^.{3}$',

 message='Length has to be 3 ', code='nomatch')], max_length=30)

 detail = models.OneToOneField('Detail')

 section = models.ForeignKey(Section)

 courses = models.ManyToManyField(Course)

 class Meta:

 db_table = "members"

 … left out code …

Figure 6. The generated Python class for Member entity

… left out code …

 entity Member{

 firstName :: String(length = 3)

 lastName :: String()

 name :: String := " " +firstName +" " +" " +lastName +" " +" "

 //1-1 relation

 detail <> Detail

 //m-m relation

 courses -> Set<Course> (inverse=Course.members)

 //m-1 relation

 section -> Section

 //1-m relation

 memberships -> Set<Membership> (inverse=Membership.member)

 }

… left out code …

Figure 7. The generated WebDSL class for Member entity

6th International Conference on Information Society and Technology ICIST 2016

26

Figure 8. Java CRUD form Member

Figure 9. Python CRUD form Member

Figure 10. WebDSL CRUD form Member

V. CONCLUSION

The OdinModel framework improves productivity,

portability, maintainability, reusability, automation and

quality of MVC web business applications development

process. The framework provides the visual modeling of

the abstractions of the domain concepts in an original

DSL. It provides the full multiplatform code generation

from a single abstract model. We validate Odin model’s

level of abstraction by generating Java, Python, and

WebDSL applications, directly from the model,. The

incorporation of the proven development technologies

shows openness and the extensibility of the approach. In

addition to the default code generation, we provide the

modeling of the custom user operations and the modeling

of the custom user interface. The OdinModel framework

does not force any development technology and approach

over some other. Instead, it provides a hub from which

the developers can choose their favorite development

approach. Since the development tools incorporate best

practices to produce code, we build on them.

The uniqueness of the OdinModel framework lies in its

DSL, which covers both the similarities and the

differences of the different target platforms. More

precisely, it covers the common and the specific features

of the target platforms relevant to the development. Odin

DSL does not discard the specifics, but it does not force

them either, which makes the Odin model platform

independent, as well as composite. The DSL provides the

developers with the abstract concepts and the platform

specific details.

REFERENCES

[1] Castrejón, Juan Carlos, Rosa López-Landa, and Rafael Lozano.
"Model2Roo: A model driven approach for web application
development based on the Eclipse Modeling Framework and
Spring Roo." In Electrical Communications and Computers
(CONIELECOMP), 2011 21st International Conference on, pp.
82-87. IEEE, 2011.

[2] Kelly, Steven, and Juha-Pekka Tolvanen. Domain-specific
modeling: enabling full code generation. John Wiley & Sons,
2008.

[3] Distante, Damiano, Paola Pedone, Gustavo Rossi, and Gerardo
Canfora. "Model-driven development of web applications with
UWA, MVC and JavaServer faces." In Web Engineering, pp. 457-
472. Springer Berlin Heidelberg, 2007.

[4] Fatolahi, Ali, and Stéphane S. Somé. "Assessing a Model-Driven
Web-ApplicationEngineering Approach."Journal of Software
Engineering and Applications 7, no. 05(2014): 360.

[5] Voelter, Markus, Sebastian Benz, Christian Dietrich, Birgit
Engelmann, Mats Helander, Lennart CL Kats, Eelco Visser, and
Guido Wachsmuth. DSL engineering: Designing, implementing
and using domain-specific languages. dslbook. org, 2013.

[6] Calic, Tihomir, Sergiu Dascalu, and Dwight Egbert. "Tools for
MDA software development: Evaluation criteria and set of
desirable features." In Information Technology: New Generations,
2008. ITNG 2008. Fifth International Conference on, pp. 44-50.
IEEE, 2008.

[7] Tolvanen, Juha-Pekka. "Domain-specific modeling for full code
generation." Methods & Tools 13, no. 3 (2005): 14-23.

[8] Hemel, Zef, Lennart CL Kats, Danny M. Groenewegen, and Eelco
Visser. "Code generation by model transformation: a case study in
transformation modularity." Software & Systems Modeling 9, no.
3 (2010): 375-402.

[9] Rivero, José Matías, Julián Grigera, Gustavo Rossi, Esteban
Robles Luna, Francisco Montero, and Martin Gaedke. "Mockup-
Driven Development: Providing agile support for Model-Driven
Web Engineering." Information and Software Technology 56, no.
6 (2014): 670-687.

[10] Groenewegen, Danny M., Zef Hemel, Lennart CL Kats, and Eelco
Visser. "Webdsl: a domain-specific language for dynamic web
applications." In Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages
and applications, pp. 779-780. ACM, 2008.

[11] Fatolahi, Ali. "An Abstract Meta-model for Model Driven
Development of Web Applications Targeting Multiple
Platforms."PhD diss., University of Ottawa, 2012.

[12] Iseger, Martijn. "Domain-specific modeling for generative
software development." IT Architect (2005).

[13] Kosar, Tomaž, Nuno Oliveira, Marjan Mernik, Varanda João
Maria Pereira, Matej Črepinšek, Cruz Daniela Da, and Rangel
Pedro Henriques. "Comparing general-purpose and domain-
specific languages: An empirical study." Computer Science and
Information Systems 7, no. 2 (2010): 247-264.

[14] Selic, Bran. "The pragmatics of model-driven development." IEEE
software 20, no. 5 (2003): 19-25.

[15] Cook, Steve. "Domain-specific modeling and model driven
architecture." (2004).

[16] Kroiss, Christian, Nora Koch, and Alexander Knapp. Uwe4jsf: A
model-driven generation approach for web applications. Springer
Berlin Heidelberg, 2009.

[17] Kraus, Andreas, Alexander Knapp, and Nora Koch. "Model-
Driven Generation of Web Applications in UWE." MDWE 261
(2007)

[18] Cuesta, Alejandro Gómez, Juan Carlos Granja, and Rory V.
O’Connor. "A model driven architecture approach to web

6th International Conference on Information Society and Technology ICIST 2016

27

development." In Software and Data Technologies, pp. 101-113.
Springer Berlin Heidelberg, 2009.

[19] Corradini, F., D. Di Ruscio, and A. Pierantonio. "An ASM
approach to Model Driven Development of Web applications.",
2004.

[20] Muller, Pierre-Alain, Philippe Studer, Frédéric Fondement, and
Jean Bézivin. "Platform independent Web application modeling
and development with Netsilon." Software & Systems Modeling 4,
no. 4 (2005): 424-442.

[21] Perisic, Branko. "Model Driven Software Development–State of
The Art and Perspectives." In Invited Paper, 2014 INFOTEH
International Conference, Jahorina, pp. 19-23. 2014.

[22] Dejanovic, Igor, Gordana Milosavljevic, Branko Perišic, and Maja
Tumbas. "A domain-specific language for defining static structure
of database applications." Computer Science and Information
Systems 7, no. 3 (2010): 409-440.

[23] Wimmer, Manuel, Nathalie Moreno, and Antonio Vallecillo.
"Systematic evolution of WebML models by coupled
transformations." In Web Engineering, pp. 185-199. Springer
Berlin Heidelberg, 2012.

[24] Ceri, Stefano, Piero Fraternali, and Aldo Bongio. "Web Modeling
Language (WebML): a modeling language for designing Web
sites." Computer Networks 33, no. 1 (2000): 137-157.

6th International Conference on Information Society and Technology ICIST 2016

	Volume 1
	Extendable Multiplatform Approach to the Development of the Web Business Applications

