Knowledge base driven pipelines for security
enforcement

, 1[0000-0002-0223-1756]

*Andela Trajkovi¢"

1[0000-0002-0602-0606 ., 1[0000-0001-8646-

, Milan Stojkov], Milo$ Simié

1569] 2[0000-0002-0691-7392]

], and Goran Sladi¢

The University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
{trajkovic.andjela, stojkovm, milos.simic, sladicg}@uns.ac.rs

Abstract. A lack of security controls in the system may be a potential point
of attack to exploit the system's vulnerability. Unfortunately, security
controls are added as an afterthought when all functionalities are
implemented, which leads to difficulties adapting to the software's rigid
policies, decreased performance, and increased costs. Furthermore, even
after adjusting those policies, using an application that only partially fulfills
some desired security requirements is difficult. The solution for decreasing
time on adapting security mechanisms and minimizing weak points in the
system becomes integrating security as a building block of development and
maintenance, known as the DevSecOps concept. In this paper, we illustrate
the importance of continuously providing protection in containers and
reducing the risk of unwanted application attacks by integrating a secure
pipeline in the earliest stage. The proposal is to automate the pipeline by
combining security tools with database knowledge in a development
process. The database knowledge will provide security policies that can be
applied to a specific pipeline stage. This paper presents an approach to
minimize vulnerabilities and code flaws by practicing DevSecOps, which
also requires collaboration and communication between development,
security, and operations teams, which increases the software's overall
development efficiency.

Keywords: DevSecOps, security pipeline, vulnerability, container, security
policies, database knowledge.

1 Introduction

In the business world, increased demand for automatization is caused by the
need to make software development more customer-oriented. As a result, user

feedback becomes one of the principal criteria of software quality. Likewise,
adaptation to a large audience has increased the number of users of the application.
That requires more space for data stored and managed on a remote server. Remote
servers are just remote physical machines whose hardware capacities can be
distributed to multiple environments or users. The process of partitioning remote
servers into virtual servers to efficiently organize hardware usage is called
virtualization. Virtualization allows applications to be hosted on remote servers due
to the lack of physical resources [1].

Two types of technologies provide server virtualization: hardware-level and
operating system virtualization. Hardware-level virtualization involves a hypervisor
that creates and virtualizes server resources across multiple virtual machines. Each
piece of hardware, a virtual machine (VM), runs its operating system, own libraries,
and dependencies. In contrast, operating system virtualization virtualizes resources
only at the OS level. It encapsulates the standard process of the operating system
and its dependencies to create containers managed by the host OS kernel [2]. In
addition, they enable virtualization at low costs and better performance compared
to virtual machines. Containers gained their popularity with the use of Docker [3].

Containers, with their efficiency, contribute to more easily transferring data and
programs. As previously mentioned, user feedback is one of the main criteria for
software quality. That requires continuous communication with the client. The best
practices for frequent communication are continuous integration and delivery of
software with agility, namely Development and Operations (DevOps) [4].

In opposition to VM, the container is efficient regarding data transfer [5].
However, the efficiency of securely deploying software with containers has
declined significantly. Building security from the beginning of software
development can reduce the space for security attacks. Augmenting the software
with tools for scanning, monitoring security aspects, and updating features in the
earliest stages makes it easier to maintain security in the application.

Considering the increased violation of sensitive data and ways of applying
security in the industry, we want to define a minimum set of security requirements
to improve protection of the whole system build cycle. This research describes the
significance of continuously providing security in containers and reducing the risk
of attacks by adding knowledge database with security policies [6] to the pipeline.
Continually adding safety measures to software is automated by the DevSecOps
pipeline [7].

In the pipeline, security tools and rules are used. Tools can automate testing and
scan for vulnerabilities. Rules can enforce security policies and ensure that
applications and systems are designed and deployed securely. Security policies can
be enforced by blocking, notifying, or allowing specific actions based on the
defined rules. Combining tools and rules in the software life cycle development
makes adopting security easier and faster.

The research in this paper aims to answer two questions:

= Is it possible to make a support system for security-related activities in DevOps
by relying on previous research and best practices?

= If so, can the security be applied using a rule-based system in the pipeline
where domain knowledge is stored as formally defined rules?

The methodology consists of the following:

* Review of related work concerning the DevSecOps pipelines and expert
systems designed to automate solving the security problems during the system
development.

= Checking tool deficiencies to create and combine rules to complete the pipeline.

* Combining existing rules with existing deficiencies to complete the security
requirement.

The following section provides an overview of related works with the research
questions and methodology. The third section provides CI/CD pipeline and
database knowledge. The security pipeline is described in the fourth chapter. The
discussion is in the fifth chapter. The conclusion of this paperwork is presented in
the last chapter.

2 Related work

This chapter presents a comparative analysis of the related and similar works.
Bernardo and Giovanni [8] suggest a holistic approach and framework for the
development and execution of trustworthy Infrastructure as Code (IaC), being
secure, integral, and self-healed. The holistic approach mentions the challenges in
the DevSecOps pipeline using database knowledge. It suggests using this pipeline
in various areas of information technology.

Andel and Bill [9] describe the power of the DevSecOps pipeline by providing a
way to optimize the application development process. In that publication, the
authors focus on tools for each process, analyzing the pipeline and their advantages
and disadvantages. The following processes are considered: Static Application
Security Testing (SAST), Software Composition Analysis (SCA), Container
Security, Dynamic Application Security Testing (DAST), and Interactive
Application Security Testing (IAST).

Ramaj et al. [10] recommend automating the preparation of documentation using
a DevSecOps pipeline so that documentation is created and updated whenever code
or configuration changes are made. The process consists of using the tools to gather
data from a system's settings and code and then updating the documentation with
that data.

The authors discuss the difficulties in maintaining compliance in DevSecOps.
They recommend using a systematic literature review to find the best ways to
include compliance needs in a DevSecOps process. They identified several
techniques that can assist organizations in maintaining compliance while
implementing DevSecOps, including embedding compliance requirements into the
design, automating compliance checks, utilizing compliance frameworks and
standards, and adopting a risk-based approach [11].

Authors in [12] conducted a systematic literature review of 54 peer-reviewed
studies. They apply the thematic analysis method to analyze the extracted data to
find a balance between the speed of delivery and security, significant issues

practitioners face in the DevSecOps paradigm. Also, they mention some of the
DevSecOps pipeline challenges.

Rahman et al. [13] consider the system architecture in three areas: continuous
integration, continuous deployment, and continuous compliance with security
requirements. Each of these areas encompasses a separate target for DevSecOps
implementation. This study points out any gaps that would require further
investigation.

Authors in [14] systematically explore experiences in utilizing security practices.
They state the importance of introducing security in the earlier stages.

All these papers present some of the security requirements. A large part of the
publications systematizes the shortcomings and vulnerabilities in the system. We
used that kind of paper to gather knowledge in our knowledge base. Principally,
they focus on one aspect of the security pipeline (authorization, authentication, etc.).
In our work, we show how to connect the DevSecOps pipeline with rules (database
knowledge), using all researched security weaknesses highlighted in the following
chapters. After adding tools in DevSecOps, we add database knowledge for some
features that tools do not support. We are aware that we cannot solve all security
problems through a custom project, and therefore, in the end, we propose
generating and shipping Software bills of material (SBOM) as a mandatory step.
SBOM identifies and lists software components, information about those
components, and supply chain relationships between them [15].

3 CI/CD pipeline and database knowledge

DevOps is a set of practices for automating software development processes. The
most famous DevOps practices are CI/CD, Continuous Testing, Continuous
Monitoring, Continuous Security, and Continuous Feedback. DevSecOps is an
ideology for improving software development practice DevOps by integrating
security, known as “shifting security on the left”.

The CI/CD pipeline is a part of the DevSevOps pipeline that actually represents
the automation of the entire software development. The DevSevOps pipeline is
composed of many sets of activities that a developer needs to perform to deliver a
new version of a software product. Each set of activities is considered a stage (or
phase) of the pipeline. Stages are planning, developing, building, testing, releasing,
delivering, deploying, operating, monitoring, and feedback Figure 1.

Rule-based systems can supplement security best practices by following the
standards and system gaps. Possible gaps in internal components are insufficient
configuration and vulnerable code, whereas in external components are known
vulnerabilities that have not been resolved, but the developer should know that they
exist and that they can be avoided. More extensive security pipeline and the
database knowledge is presented in the following chapter.

Earlier, it was mentioned that we would talk about virtualized applications,
where we can use containers or virtual machines. Because of the prevalence of
usage containers, we narrow the research to the security in the containers.

F '\/)ﬁlwer

DEV OPS Operate

Figure 1 DevSecOps stages

//\ SEC A,,
T4 Lo =1

The container represents the running image. Image is defined by the packages,
source code, dependencies, and libraries it uses. It consists of a series of steps that
the OS executes to run the application. The steps are interdependent and represent a
step-by-step guide for building the software from the most basic to the most
complex configuration. The containers are the focus of our proposed pipeline
described in the next section.

4 Security Pipeline

Table 1 presents the overview of our proposed pipeline. The table has three
columns: stage, security approach, and rule. The stage column represents all stages
in the pipeline. The security approach represents a security strategy that can be
applied at a certain stage, and the last column is a rule that can be triggered to solve
or warn about issues in the system.

Rule-based systems can encompass the knowledge of the entire DevSecOps in
one place. They enable the integration of the best security practices with tools and
software. They are based on rules, which represent knowledge for detecting or
solving security problems. Rules can be chained. We use forward chaining, where
the rules are chained in the appropriate order, and respectively the output of one
rule will represent the input of another rule. The database is located on a remote
server. Used rule engine in the system is Drools [17]. The knowledge base with
pipeline can be stacked in several ways, and one of the most commonly used is
CI/CD pipeline.

Threats and solving security issues will be reasoned with a chained set of rules.
The main chain represents the entire pipeline, which triggers an IMAGE
VULNERABILITY side chain for reasoning.

Traditional DevSecOps involves integrating security practices into the
development and deployment process, and all stages are listed in Table 1. The

Table 1 DevSecOps pipeline

Security
approach

plan Threat The beginning (PLAN phase) proposes to find bottlenecks using Threat modeling.
model Threat Model can envision the attack scenario and help to prevent most lacks and risks

from the attack. The first rule triggers the tool for Threat modeling to identify the threats
in the source code and environment. Output from this rule must be solved manually due
to the poor compatibility of existing automation tools. As the Threat Model is the
foundation of security by design, this can be tolerated for now.

Input: Access to network and code (requirements).
Check Network model and source code.
Output: Warn admin about outputs.

sdevelo | Static This rule setup a quality gate for a number of vulnerabilities and code smells, above
p and | analysis which, if the number of violations exceeds, it is not possible to proceed to the next
build phase. The focus is on the security rules, and it can be enriched with clean code rules,

code style and conventions, bug detection, performance and efficiency, test coverage,
documentation and comments, architecture and design, etc. Trigger on every week.
Run SAST tool.

Output: Warn about output; if it exceeds the upper threshold of the quality gate, then it
cannot proceed to the next stage.

Trigger on every week.

Run SCA tool.
Output: Code quality. Warning.

Input: Images
Run a tool for updating image vulnerability to check if known vulnerabilities are solved.

Output: If the vulnerability is resolved in the National Vulnerability Database
(NVD)[16], the image will be recovered from the vulnerability.

Trigger on every week.

Input: Images
Run Container scanner tool, to identify and address a vulnerability in the container.

Output: Show all vulnerabilities. Run next rule.
Input: Vulnerability image (output from the previous rule)

1. If vulnerability is in base image.

Output: Warn about existing risks, for explicit libraries.

Input: Vulnerability image (output from the previous rule)
1. If vulnerability is not in base image.

Output: Warn about existing risks and recommend commands to DevOps team
members to change or remove the layer(s). This step is up to the developer to consider
the needs of the software.

IMAGE VULNERABILTY side flow end

Input: Configuration.
Run script with commands for checking all the orchestrators.

Output: If none of them are not triggered, trigger the rule for setup orchestrator, in
order to setup and verify orchestration environment.

Input: Configuration.

Check if configured the least privileges, with script for checking statuses of Capabilities,
Seccomp, SELinux, and AppArmor.

Output: If they are not, this rule automatically setup profiles in the orchestrator:
Capabilities, Seccomp, SELinux, and AppArmor [18].

Input: Request.
If DNS is on the blocklist.

Output: Block request and user, then alarm admin.

Input: Request.
Run the tool for analyzing the packets (Wireshark)

Output: Captured packets. Manual check for encrypted communication (HIP, TLS/SSL,
SSH...). If not exist, warn as insecure communication.

Security as
Code

Input: Configuration.
Run command for checking is image run in the privileged mode.

Output: Warn if it is run in privileged mode.

Input: Container.
Check mode of the running container.

Output: Warn if it is run in privileged mode.

test

Trigger on every week.

Run Unit, Integration, and e2e tests automate.
Output: Possible attacks.

Trigger on every week.

Output: Notify security admin to run Dynamic Application Security Testing tools,
Interactive Application Security Testing tools and Penetration Testing to simulate
attacker and check the application in runtime, to detect SQL injection, APIs, user
authentication and authorization.

release

Digital Sign

Input: Image.
Sign image.
Output: Notify the image is signed image.

deliver

Secure
Transfer

Input: data, code, files.
Run Secure Transfer tool.

Output: Secure transfer.

deploy Security Input: Configuration.
configuratio Check who can pull and push source code from the repository. In terms of managing,
n and Scan who can modify and review existing code.
Output: If there is no limitation, warn the admin to ensure an appropriate access level.
operate Security Input: data, code, files.
Patch Run Secure Patch tool.

Output: Possible attacks.
monitor | Security
Monitor Run Logs tools
Output: Logs. Admin can manually analyze all events in the system.
Input: /
Run Metrics tools.
Output: Metrics. Admin can manually analyze performance in the system.
feedbac | Security Future work.
k Analysis

following is a comparison of a typical flow, with the specificities of the flow we
implemented, including their advantages and disadvantages.

The traditional PLAN phase is manual and includes implementation user and
security requirements, Data Flow Diagrams, and Threat Modeling frameworks
(vulnerability frameworks like OWASP TOP 10 vulnerabilities [19], MITRE
ATT&CK [20], or STRIDE [21]). This phase is also manual in our pipeline
implementation and requires a security expert. The specificity we introduce is
expanding the boundaries of Threat Modeling (using vulnerability frameworks like
OWASP TOP 10 vulnerabilities), including the attack vectors between hosts,
kernel, container networks, virtual machines, and physical hardware.

DEVELOP and BUILD phase requires activities such as Static Application
Security Testing (SAST), Static Composition Analysis (SCA), orchestration,
checking least privileges, and encrypted communication. In our flow, we wanted to
reduce vulnerabilities in the container's additional layers by allowing the possibility
to remove unused vulnerable packages. Still, removing the exposure in the image is
impossible because it can disrupt the system's operation (especially if it is in the
base image). The base layer represents the foundation of the Docker image and
contains the underlying operating system and any essential dependencies or
packages required by the application. The additional layers customize the base
image, and if those additional layers are not needed per system requirements, then
the developer can decide to remove them.

In this phase, at the very beginning, our pipeline triggers SAST tools
(SonarQube [22]) and SCA (snyk [23]). The SAST tool finds threats and wrong
implementation in the code, whose outputs must be solved manually or connected
to other tools. SCA tool scans for vulnerabilities, but we suggest the developer can
mitigate those vulnerabilities depending on the system requirements with the
IMAGE VULNERABILITY flow. After finishing the IMAGE VULNERABILITY
set of rules, the main flow continues, and the pipeline triggers rules for the BUILD
stage.

In the build stage, we automatically check if orchestration exists. Orchestration is
important because it provides a higher level of isolation that will help the user to
save sensitive data. After that, it enables checking and setting the least privileges by
automatic setup (declarative in the configuration) profiles such as Capabilities,
Seccomp, SELinux, and AppArmor [18]. Capabilities provide a way to divide
privileges in the container. Seccomp profiles were introduced in Docker 1.10 to
limit the system calls that can be made by the container. This feature adds another
level of security as it ensures that the container can do only what it needs to do [18].
The other two provide access control mechanism in the entire environment.

Having root privileges when running a container makes accessing the host OS
and other containers on the hosted OS easier. Accordingly, we want to ensure the
container does not have root privileges to run by warning the security admin.

Encryption is one of the main steps of secure communication and can be
conducted with a secure protocol. First, the pipeline triggers a rule for running the
tool for analyzing the packets and checking manually where admin after that rule
should answer is communication secure.

The test phase traditionally includes DAST and Penetration Testing, along with
security smoke testing, security patching, and Interactive Application Security
Testing (IAST). In this stage, we are focused only on automating e2e, integration,
and unit tests. IAST, DAST and Penetration testing are configured to notify the
security admin to test separately. Notifying an expert is currently the best option
because it is challenging to automate this expertise.

The RELEASE phase uses Runtime Application Self-Protection (RASP)
technologies to improve security. We are not adding RASP technologies, but we
are signing the image to ensure authenticity, secure communication, and integrity
of the image to enhance security, automatically with Notary tool [24].

The traditional DELIVER phase runs the Secure Transfer tool (rsync [25]), and
so do we, to encrypt data in transfer. In the DEPLOY phase configuration should
be checked and all flow should be scanned; we added checking who can push and
pull from the safe repository (git), which increases the security level. Flow scan is
planned in the future work.

OPERATE deploys software in the production environment and runs Secure
Patch tools (Spacewalk [26]). We trigger the rule to run a secure patch tool to
automate the patch management process. Adding tools for metrics and logs can
generate a large data set, which security experts can analyze manually.

A FEEDBACK stage is out of scope and will be considered future work because
it requires communication with clients, which is delayed until performance
improves.

The emphasis is on the initial stages while analyzing all these outputs to
automate self-healing would be in the further approaches. Tools used in pipelines
generally ignore warnings. We automatically throw a warning for other output from
the Threat model that we cannot solve with the rules, where the acceptance
threshold would be configurable (e.g., 3 or 30 depending on the system, to have a
supportive pipeline for security). When that threshold is crossed, we mark the
pipeline as unstable so that the warning is not ignored. Also, there are alarms in the
system that mark the pipeline as inconsistent. Each phase can be marked with an

10

error (where the pipeline is terminated), unstable (where the system gives a
warning), or successful flag. If all pipeline stages are successfully finished, the
pipeline is successfully executed, and the product can be used. A successful flow is
executed up to the deploy phase and reports with SBOM. The stages deploy,
operate, and monitor are optional and require communication with the client; these
phases will be started depending on the client's requirements. This flow is
applicable to the complete software solution delivered to clients. The solution
applies to on-premises and enterprise applications. Cloud deployments are out of
scope for the current pipeline.

With this pipeline, we establish a standard for a certain level of security in the
system to force the user to accept it as the bare minimum security. The presented
approach's advantages, disadvantages, and possible improvements are explained in
the next section.

5 Discussion

The pipelines can be evaluated by different criteria, such as the execution time of
individual phases or tasks, total execution time, or response to error resolution
depending on the DevOps engineer and his expertise. The traditional pipeline and
proposed pipeline enhanced with a knowledge-based system were evaluated by the
total execution time. An internally developed micro-cloud system with 21
containerized services was used as part of the experiment. As expected, the
execution time of the proposed flow was 22% slower but with better control over
the individual tasks, especially for those that can generate warnings. The IMAGE
VULNERABILITY side chain slows the pipeline by 9%, which we consider
tolerable.

Automating the entire pipeline is hard because only some things can be solved
automatically. It should also be borne in mind that the used tools have their
shortcomings and that it is possible to attack any application that uses the services
of a given tool for security implementation.

Currently, we do not examine whether this DevSecOps pipeline is complete. It is
hard to complete because traditional DevSecOps predominately resides in the
development stage. We can only write and use practices and methodologies to
ponder as many security requirements as possible. Despite the obstacles, we strive
to achieve this goal.

The major problem in the system is to protect sensitive data. By including the
orchestration, we are adding one additional data isolation layer.

Threat Model tools identify external and internal threats, where the majority of
checking criteria are made with best security practices, and we try to recognize
their insufficiencies with rules. A disadvantage is that we cannot resolve all
vulnerabilities, but we provide an option to remove the vulnerability if the system
does not need the library (package) that contains the vulnerability.

We provide awareness of what should be scanned. Everywhere where a person
can make a mistake is alarming. We still cannot fully remove the vulnerability.

11

Taking into account storing large amounts of knowledge in one place, the best
usage of security policies is through a knowledge base. Knowledge stored in the
form of the rule does not harm the development code. That allows clean code and
separates it from cumbersome security checks.

We recommend using tools in different stages, but with some caution against
impairing software performance. Using a large number of scanning tools and
improving security aspects destroys performance, which is a trade-off.

Generally, the advantages of DevSecOps with database knowledge are:
o Increased productivity, speed, and agility between teams.
o Rapid changes.
e Detection and clarification of flaws in code at an earlier stage
o Early detection defects in code.
e Localization of a problem in code does not have to be hunted manually.
The use of a knowledge base helps a lot in covering security in one place and in
developing security simultaneously with the project itself, but there needs to be a
compromise.

The detected shortcomings also represent possible improvements. All warnings
in our pipeline should automatically be repaired through rules (database
knowledge). In the case of implementing a microservices architecture, there will be
explicit communication between containers in the system, where the network
bridge should be protected.

In this pipeline, we strive to follow the Zero Trust approach. Our system has
verification, least privilege access, continuous monitoring (without automated
analyzing), encryption, and data protection. In future work, we will investigate to
add zero-trust network access checks and strive to micro-segmentation of the steps
(for the purpose that every part has its control). Output from every stage should be
analyzed automatically in purpose to resolve problems in the earliest stage and
make a self-healing system.

6 Conclusion

Creating a pipeline by combining tools and rules as expert knowledge of security
applications, we increase the degree of automation of application and development
security on the left side. Of course, it should be borne in mind that the pipeline is
not finished. DevSecOps is in the development stage and requires more time to
automate each step, but we strive to achieve this goal.

The future work would be based on automating the rest of the pipeline. The final
goal will be automatically analyzing and solving threats by using the rules in
cooperation with machine learning techniques and working with security for multi-
tenancy to enable the deployment of our pipeline to cloud-based applications.

References

1. Yussupov, V., Soldani, J., Breitenbiicher, U., Brogi, A., & Leymann, F. (2021). From

12

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.
21.

22.
23.
24.
25.

26.

Serverful to Serverless: A Spectrum of Patterns for Hosting Application Components.
In CLOSER (pp. 268-279).

Sharma, P., Chaufournier, L., Shenoy, P., & Tay, Y. C. (2016, November). Containers
and virtual machines at scale: A comparative study. In Proceedings of the 17th
international middleware conference (pp. 1-13).

Docker Hub, https://hub.docker.com/, accessed January 2023.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee
Software, 33(3), 94-100.

Qadir, S., & Quadri, S. M. K. (2016). Information availability: An insight into the most
important attribute of information security. Journal of Information Security, 7(3), 185-
194.

Jacob, R. J. K., & Froscher, J. N. (1990). A software engineering methodology for rule-
based systems. /EEE Transactions on Knowledge and Data Engineering, 2(2), 173-189.
Kudriavtseva, A., & Gadyatskaya, O. (2022). Secure Software Development
Methodologies: A Multivocal Literature Review. arXiv preprint arXiv:2211.16987.
Alonso, J., Piliszek, R., & Cankar, M. (2022). Embracing laC through the DevSecOps
philosophy: Concepts, challenges, and a reference framework. /IEEE Software, 40(1),
56-62.

Bernardo, G. (2022). DevSecOps pipelines improvement: new tools, false positive
management, quality gates and rollback (Doctoral dissertation, Politecnico di Torino).
Andel, B. (2022, October). Continuous Documentation: Automating Document
Preparation with your DevSecOps Pipeline. In 2022 [EEE 29th Annual Software
Technology Conference (STC) (pp. 156-165). IEEE.

Ramaj, X., Sanchez-Gordon, M., Gkioulos, V., Chockalingam, S., & Colomo-Palacios,
R. (2022). Holding on to Compliance While Adopting DevSecOps: An
SLR. Electronics, 11(22), 3707.

Rajapakse, R. N., Zahedi, M., Babar, M. A., & Shen, H. (2022). Challenges and
solutions when adopting DevSecOps: A systematic review. Information and software
technology, 141, 106700.

Deshmukh, S. V., Ahire, D. S., Chavan, N. N., Bharambe, N. D., & Jain, A. R.
Implementing DevSecOps pipeline for an enterprise organization.

Ur Rahman, A. A., & Williams, L. (2016, May). Software security in devops:
Synthesizing practitioners' perceptions and practices. In Proceedings of the
international workshop on continuous software evolution and delivery (pp. 70-76).
Muiri, E. O. (2019). Framing Software Component Transparency: Establishing a
Common Software Bill of Material (SBOM).

NVD, https://nvd.nist.gov/, accessed January 2023.

Drools, https://docs.drools.org/5.4.0.Betal/drools-expert-docs/html_single/, accessed
January 2023.

Park, K., & Kim, B. (2020). Core Container Security Frameworks. International
Journal of Advanced Research in Engineering and Technology (IJARET), 11(6).
OWASP Top Ten, https://owasp.org/www-project-top-ten/, accessed January 2023.
MITRE ATT&CK, https://attack.mitre.org/, accessed January 2023.

STRIDE, https://learn.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20)?redirectedfrom=MSDN , accessed January 2023.

SonarQube, https://www.sonarsource.com/products/sonarqube/ , accessed January 2023.
Snyk, https://snyk.io/ , accessed January 2023.

Notary, https://github.com/theupdateframework/notary, accessed January 2023.

Rsyne, https://www.digitalocean.com/community/tutorials/how-to-use-rsync-to-sync-
local-and-remote-directories, accessed January 2023.

Spacewalk, https://spacewalkproject.github.io/ , accessed January 2023.

https://hub.docker.com/
https://nvd.nist.gov/
https://docs.drools.org/5.4.0.Beta1/drools-expert-docs/html_single/,
https://owasp.org/www-project-top-ten/,
https://attack.mitre.org/
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://www.sonarsource.com/products/sonarqube/
https://snyk.io/
https://github.com/theupdateframework/notary,
https://www.digitalocean.com/community/tutorials/how-to-use-rsync-to-sync-local-and-remote-directories,
https://www.digitalocean.com/community/tutorials/how-to-use-rsync-to-sync-local-and-remote-directories,
https://spacewalkproject.github.io/

