
Evaluation of algorithms for solving the edge coloring

problem in bipartite graphs

Komnen Knežević1, Predrag Obradović1 and Marko Mišić1[0000-0002-7369-4010]

1 University of Belgrade, School of Electrical Engineering, 11120 Belgrade, Serbia
marko.misic@etf.bg.ac.rs

Abstract. The graph coloring problem has a wide range of applications in differ-

ent areas of science and engineering. Graph coloring is a problem where it is

necessary to assign colors to graph elements (vertices or edges). The graph col-

oring problem can be represented in the way that it is necessary to color the ver-

tices of the graph, or to color the edges of the graph under certain conditions. It

belongs to the Non polynomial (NP) class of problems. This paper presents an

analysis of algorithms for solving the edge coloring problem and their perfor-

mance for bipartite graphs. For edge coloring, it is necessary to examine whether

it is possible to color the edges of the graph with certain number of colors so that

any two edges incident to the same vertex are colored with a different color. Nu-

merous approaches have been developed to solve this problem, which have ad-

vantages and disadvantages. In this study algorithms for edge coloring were an-

alyzed, such as brute force algorithm based on the maximum degree of the nodes,

an algorithm that uses Dinitz’s method, and an algorithm that uses Euler’s parti-

tion. The solutions were carefully evaluated using four different datasets. The

results show that brute force algorithm is superior for smaller graphs with up to

104 vertices, when it reaches memory limits. The algorithm that uses the Euler’s

partition is the fastest for graphs with large number of vertices.

Keywords: bipartite graphs, edge coloring, Dinitz’s algorithm, Euler’s parti-

tion, algorithms analysis.

1 Introduction

A graph represents a non-linear data structure consisting of a set of vertices (nodes) and

a set of edges (links) [1]. Edges connect nodes that are in a defined kind of relationship.

Graphs are used in numerous fields of science and technology, such as computer sci-

ence, mathematics, biology, economics, etc. The reason for such a wide usage is that in

many fields there are problems that can be modeled by a certain interaction between

some objects. A deeper analysis of such interactions is more easily performed through

graphs.

Graph coloring is a problem where it is necessary to assign colors to graph elements

which are vertices and edges [2]. To solve the problem of graph node coloring, for

example for an undirected graph and an integer k, it is necessary to examine whether it

is possible to color the vertices of the graph with k colors so that any two adjacent

2

vertices are colored with a different color. Also, this problem can be formulated as edge

coloring problem where it is necessary to examine whether it is possible to color the

edges of the graph with k colors so that any two edges incident to the same node are

colored with a different color. Thus, the graph coloring problem can be presented both

in the context of node coloring or edge coloring under certain conditions.

The graph coloring problem has a wide range of applications. Most of them are re-

lated to various scheduling problems [3]. Some of the applications are in communica-

tion systems, such as allocation of frequency range to radio stations. The other applica-

tions are present in educational settings, such as making timetables in schools, timeta-

bles for examinations during exam periods, but also for timetables for matches at sports

events, timetables for airplanes taking off from airports, etc. Graph coloring allocation

is the predominant approach to solve register allocation by compilers [4]. In all these

situations, the problem can be represented as a graph and reduced to a graph coloring

problem [2].

The graph coloring problem belongs to the group of Non-Polynomial problems

which means that it could not be solved in polynomial time complexity [5]. The moti-

vation of this paper is to present and evaluate several algorithms for solving the graph

coloring problem with a minimum number of different colors, where the colors are as-

signed to the edges of the graph, but specifically for bipartite graphs.

Numerous approaches have been developed to solve this problem, as graph coloring

problem has several variations. We analyzed several algorithms for edge coloring in

bipartite graphs in terms of their theoretical foundations, design, time and space com-

plexity, scalability, and applicability. Some solutions to the problem are theoretically

sound, but applicable only in limited real-life scenarios. In this paper, three algorithms

were implemented and evaluated using four different datasets: brute force algorithm

based on the maximum degree of the nodes, an algorithm that uses Dinitz’s method,

and an algorithm that uses Euler’s partition.

The rest of the paper is organized as follows. In the second section, elements of the

graph theory relevant for the problem are presented. The third section describes used

algorithms. In the fourth section, characteristic test examples are presented on which

the described algorithms were tested. An analysis of the obtained results was per-

formed. A short conclusion of the paper and the directions for further work are given

in the final section.

2 Graph Coloring Problem in Bipartite Graphs

A bipartite graph is an undirected graph where the set of nodes V can be divided into

two subsets V1 and V2 so that each edge {x, y} corresponds to one node from V1 and

one node from V2. A graph is bipartite if and only if there is no cycle of odd length in

the graph.

The flow graph is a weighted directed graph, where the weight of the edges repre-

sents their throughput capacity. The condition that the amount of flow entering the node

is equal to the amount of flow leaving the node must be satisfied. However, this condi-

tion does not include a source node that has only output flow, and a destination node

3

that has only input flow. Some of the systems that can be modeled with such a graph

are: liquid flow through the pipe distribution system, current flow in the electrical net-

work, information flow in the communication network, transport problems in the road

and railway network [6]. The optimal flow represents the maximum output flow

through the source node, that is, the maximum input flow into the destination node,

which can be transmitted through the flow graph to satisfy the above conditions. The

problem can be solved by various algorithms such as MPM [7], Ford-Fulkerson [8],

push-relabel [9], and Dinitz [10] algorithms. Those algorithms can be used in solving

graph coloring problems.

For bipartite graphs, a matching is a set of the edges connecting nodes from V1 and

nodes from V2 such that no edge shares a common node. A maximum matching is a

matching that contains maximum possible number of edges. This problem can be

solved by converting it into a flow graph and using one of the aforementioned algo-

rithms such as Ford-Fulkerson to find the maximum matching.

An Euler path is a path in a graph that includes all edges exactly once. An Euler

cycle is an Euler path that starts and ends at the same node. An Euler graph is a graph

that contains an Euler cycle. Euler's theorem states that if we consider a connected

graph G, the graph G is an Euler graph if and only if each node of the graph is of even

degree [11]. In a graph G in which there are exactly two nodes of odd degree u and v,

there exists an Euler path that starts at one of the nodes u or v and ends at the other node

of odd degree. There is no Euler cycle in such a graph. An Euler partition represents a

partition of the edges of the graph into open and closed paths in such a way that every

vertex of odd degree is the end of exactly one open path, and every vertex of even

degree is the end of no open paths.

A Hamiltonian path is a path in a graph in which each node of the graph is visited

exactly once. A Hamiltonian cycle represents a Hamiltonian path that starts and ends

at the same node. A Hamiltonian graph is a graph in which there is a Hamiltonian cycle.

Determining whether a Hamiltonian path exists in a graph is an NP-complete problem.

Some solutions to graph coloring problems in bipartite graphs use Euler partitions.

For general graphs, the chromatic index of the graph, which is denoted by 𝝌′(𝑮)

represents the minimum number of different colors used to color the graph G. Let’s

denote by ∆(𝐺) the degree of the graph which represent the maximum degree of all

vertices of the graph G. It must be true that 𝜒′(𝐺) ≥ ∆(𝐺). According to König’s the-

orem, every bipartite graph satisfies 𝜒′(𝐺) = ∆(𝐺), so we know what is the number of

colors that we need.

In graph theory, graph coloring represents the problem of assigning certain colors to

the elements of the observed graph. One example is the coloring of nodes, where it is

necessary to assign colors to the nodes of the graph so that there are no two nodes that

are neighbors and colored the same color. Another example is that for a given graph G

it is necessary to color the graph with a minimum number of different colors, so that

colors are assigned to each edge with the condition that there are no two incident edges

for the same node that are colored the same color. That problem will be discussed in

more detail in this paper with the additional condition that G is a bipartite graph.

For each graph edge coloring problem, there is an equivalent graph node coloring

problem of the corresponding line graph [12]. For a given graph G, a line graph L(G)

4

is a graph such that each node in the graph L(G) represents an edge in the graph G.

Nodes in the graph L(G) are adjacent if and only if the corresponding edges in the graph

G are adjacent, that is, they have a common node. Thus, a certain coloring of the nodes

of the line graph L(G) represents the coloring of the edges of the graph G with the same

number of different colors.

3 Algorithms

In this section, we present three different solutions for the edge coloring problem. Each

solution is represented with the pseudocode.

Table 1. Pseudocode of the edge coloring based on the maximum degree of a node in graph.

Input: Bipartite graph G

Output: Colored edges of bipartite graph G

recolorEdge(u, c1, c2)

v = EdgeOfNodeWithColor(u, c1).Node

idOfEdge = EdgeOfNodeWithColor(u, c1).Edge

colorEdge(idOfEdge, c2)

if existsNeighbourWithColorOfEdge(v, c2) == false then

 return

else

 recolorEdge(v, c2, c1)

end_if

return

ColorAllEdges()

for i = 1 to m do

 u = edge[i].firstNode

 v = edge[i].secondNode

 if existsSameFreeColorForBoth(u,v) then

 c = findSameFreeColorForBoth(u,v)

 colorEdge(i, c)

 else

 c1 = findFreeColor(u)

 c2 = findFreeColor(v)

 colorEdge(i, c1)

 if existsNeighbourWithColorOfEdge(v, c2) then

 recolorEdge(v, c1, c2)

 end_if

 end_if

end_for

5

Brute force edge coloring algorithm (BFEC) is based on the maximum degree of the

nodes. The pseudocode is given in Table 1. Every color has the index that satisfies

equation 1 ≤ 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑑𝑒𝑥 ≤ ∆(𝐺). We traverse through the set of edges. For every edge

(x, y) we try to find the existence of a color C such that neither vertex x nor vertex y of

edge (x, y) has utilized color C in coloring any of the edges incident to them. If such a

color C exists, then we color that edge with the found color. Otherwise, we find the

color that vertex x did not use (e.g. 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑑𝑒𝑥 = 1), and find the color that vertex y did

not use (e.g. 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑑𝑒𝑥 = 2). After that we color the edge (x, y) with 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑑𝑒𝑥 = 1,

and have to recolor the edge (y, z) with 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑑𝑒𝑥 = 2 because now vertex y has two

edges colored with the same color. After that we must check if the vertex z satisfies the

conditions and so on. Time complexity of this algorithm is 𝑂(|𝐸||𝑉|).

Table 2. Pseudocode of the Dinitz’s algorithm.

Input: Graph G = ((V,E),c,s,t)

Output: Maximum flow between source s and destination t

G_f ← ConstructResidualGraph(G)

f ← 0

while existsPathBetweenSourceAndTarget do

 G_L = BFS(G_f)

 while existsPathInLayeredGraph do

 findSomePath()

 k = c_f

 f+=k

 removeZeroResidualEdges()

 removeSinkNodes()

end_while

end_while

f_max ← f

Table 3. Pseudocode of the edge coloring based on Dinitz’s algorithm.

Input: Bipartite graph G

Output: Colored edges of bipartite graph G

D = getMaxDegree(G)

G1 = makeRegularGraph(G)

for k = 1 to D do

 edgesToColor = Dinitz(G1)

for every edge e in edgesToColor do

 color(e) = k

 delete e from G1;

 end_for

end_for

6

Edge coloring using Dinitz’s algorithm (DEC) is based on making the regular bipar-

tite graph with degree of ∆(𝐺) based on the input bipartite graph G. In this algorithm,

we need to be sure that every vertex has the same degree. After that, we use Dinitz’s

algorithm ∆(𝐺) times to color matched edges with color of current index. It is based on

the Hall’s theorem which states that in a regular bipartite graph, there exists a perfect

matching meaning that every vertex will have its matched pair. Implementations are

usually based on Dinitz’s algorithm, which computes the maximum flow in a flow

graph, and which is used to find the matching set of edges of a bipartite graph. Time

complexity of the algorithm is 𝑂(∆|𝐸||𝑉|0.5). The pseudocodes are given in Table 2

and Table 3.

Table 4. Pseudocode of Euler’s partition algorithm.

Input: Bipartite graph G

Output: List of all paths that represent egde partitions of G

Paths ← emptyList

StartNodes ← emptyQueue

PutAllNodesWithOddDegree(StartNodes)

PutAllNodesWithNonZeroEvenDegree(StartNodes)

while StartNodes is not empty do

 start = getFirstFromQueue(StartNodes)

 removeFirstFromQueue(StartNodes)

 if isNonZeroDegree(start) = true then

 currPath = makeNewPathEmpty()

 currNode = start

 while isNonZeroDegree(currNode) = true do

 edge = getEdgeFromCurrNode(currNode)

 newNode = getNeighbourFromEdge(edge)

 deleteEdge(edge)

 PutEdgeInCurrPath(currPath, edge)

 currNode = newNode

 end_while

 PutCurrPathInPaths(currPath, Paths)

 if isNonZeroDegree(start) = true then

 putNodeInStartNodes(start, StartNodes)

 end_if

 end_if

end_while

return Paths

7

Table 5. Pseudocode of the edge coloring based on Euler’s partition.

Input: Bipartite graph G

Output: Colored edges of bipartite graph G

RecursiveEdgeColoring(D)

if D is odd then

 if D = 1 then

 M = G

 else

 M = Dinitz(G)

 c = getNewColor()

 for every edge e in M do

 color(e) = c

 delete e from G;

 end_for

 end_if

end_if

Paths = EulerPartition(G)

if Paths is not empty then

 List1 <- makeEmptyList()

 List2 <- makeEmptyList()

 for each path p in Paths do

 for i = 1 to r do

 if i is odd then

 put ei in List1

 else

 put ei in List2

 end_if

 end_for

 for i = 1 to 2 do

 RecursiveEdgeColoring(⌊D/2⌋)

 end_for

end_if

EdgeColoring(G)

DeleteAllNodesWithZeroDegree(G)

D <- maxDegreeOfVertexInGraph(G)

RecursiveEdgeColoring(D)

Edge coloring using Euler’s partition (EPEC) is an elegant way to improve the pre-

vious algorithm with the divide-and-conquer technique and the use of Euler partition.

The idea [13] is to utilize Euler partition to divide a regular bipartite graph with degree

∆(𝐺) into two subgraphs, G1 and G2, such that the maximum degree of all vertices in

both subgraphs is equal to ⌊
∆(𝐺)

2
⌋ or ⌈

∆(𝐺)

2
⌉. After the division of the regular bipartite

8

graph into two subgraphs G1 and G2, the objective is to independently color each of

the subgraphs G1 and G2. If ∆(𝐺) is an odd number, then both subgraphs could have

the maximum degree of all vertices equal to ⌈
∆(𝐺)

2
⌉, and if we color separately sub-

graphs G1 and G2 then we would color the graph G with ∆(𝐺) + 1 colors, which is not

the minimal number of colors. So, in this case we would use Dinitz’s algorithm to find

a matching set of edges, color them, and in that way, we made a graph G with degree

∆(𝐺) − 1, which is an even number and can continue to divide the graph into two sub-

graphs. We repeat this process until we have the graph 𝐺′ that has ∆(𝐺′) = 1. Time

complexity of this algorithm is 𝑂(|𝐸||𝑉|0.5𝑙𝑜𝑔∆). An interesting case emerges when

∆(𝐺) = 2𝑛, where the time complexity of this algorithm becomes O(|𝐸| log|𝑉| + |𝑉|).

The pseudocodes are given in Table 4 and Table 5.

4 Evaluation and Discussion

The three described algorithms have been implemented in C++ programming language.

The method of loading the number of nodes and edges of the graph was based on a

Codeforces online competition problem [14]. The implementation of the Dinitz algo-

rithm was based on [15][16], while the implementation method for the algorithm using

the Euler partition was based on the solution implemented in [16]. Their execution time

has been evaluated on a local machine using four different datasets with various forms

of bipartite graphs.

The first set of test examples consisted of several graphs: a complete graph, a sparse

graph, as well as an example of a graph that was created so that the maximum degree

of all vertices was of the form ∆(𝐺) = 2n. In this set of test examples, the total number

of vertices in the graph was up to 1000 vertices, as shown in Table 6.

The second set of tests consists of several test examples, for which the total number

of vertices in the graph is 104, with the maximum number of edges that goes up to

5 ∗ 106 as presented in Table 7. The third set of tests consisted of tests in which there

were a total of 2 ∗ 104 vertices, with the maximum number of edges that goes to

107. The overview of the third dataset is shown in Table 8. The fourth set of tests was

created so that there were 2 ∗ 105 vertices in total, where maximum number of edges

goes to 5 ∗ 107 (Table 9). For the second and third set of tests the maximum value for

∆(𝐺) is 1000, and for the fourth set of tests the maximum value for ∆(𝐺) is 500.

Table 6. Overview of dataset 1 used for testing.

 No. V1 No. V2 No. edges ∆(𝐺)

Complete graph 400 400 16 * 104 400

Sparse graph 600 600 1800 3

Graph ∆(𝐺) = 2n 1000 1000 263120 512

9

Table 7. Overview of dataset 2 used for testing.

No. nodes No. V1 No. V2 No. edges ∆(𝐺)

104 5000 5000

25000 5

5 * 104 10

105 20

5 * 105 100

25 * 105 500

5 * 106 1000

Table 8. Overview of dataset 3 used for testing.

No. nodes No. V1 No. V2 No. edges ∆(𝐺)

2 * 104 104 104

105 10

2 * 105 20

106 100

5 * 106 500

107 1000

Table 9. Overview of dataset 4 used for testing.

No. nodes No. V1 No. V2 No. edges ∆(𝐺)

2 * 105 105 105

5 * 105 5

106 10

2 * 106 20

107 100

5 * 107 500

The results of the first set of tests (Table 10) showed us that the brute force algorithm

has the shortest execution time, which is unexpected based on the time complexities of

all algorithms. Comparing the algorithm that uses the Dinitz’s algorithm and the algo-

rithm that uses the Euler’s partition, we noticed that in case of a sparse graph the exe-

cution time of the algorithm that uses the Dinitz’s algorithm is less, which is also un-

expected based on their time complexity. Regarding the example of a graph that has the

maximum degree of all vertices of the form ∆(𝐺) = 2𝑛, we noticed the expected result,

which is that the algorithm that uses Euler’s partitions (5.772s) is much faster than the

algorithm that uses Dinitz’s algorithm (46.848s). We got similar results as in the exam-

ple of a complete graph.

Table 11 presents the results of the second set of tests. It shows that the algorithm

that uses Euler’s partitions has better performance than the algorithm that uses Dinitz’s

algorithm as the value of the parameter ∆(𝐺) increases. However, the parameters of

this set of examples are not large enough to show that the algorithm with Euler partition

runs faster than the brute force edge coloring algorithm.

10

Table 10. The results of the three implemented algorithms on dataset 1. The best results are

given in bold. BFEC – brute force edge coloring algorithm, DEC – Dinitz algorithm-based edge

coloring, EPEC – Euler partitions -based edge coloring algorithm.

 BFEC DEC EPEC

Complete graph 0.229s 25.795s 3.729s

Sparse graph 0.291ms 14.823ms 18.065ms

Graph ∆(𝐺) = 2n 0.325s 46.848s 5.772s

Table 11. The results of the three implemented algorithms on dataset 2. The best results are

given in bold. BFEC – brute force edge coloring algorithm, DEC – Dinitz algorithm-based edge

coloring, EPEC – Euler partitions -based edge coloring algorithm.

∆(𝐺) BFEC DEC EPEC

5 24.207ms 41.856ms 55.678ms

10 30.726ms 109.223ms 126.630ms

20 31.616ms 306.135ms 288.818ms

100 120.089ms 4.288s 1.879s

500 1.418s 1.254min 13.257s

1000 5.527s 5.635min 52.342s

Table 12. The results of the three implemented algorithms on dataset 3. The best results are

given in bold. BFEC – brute force edge coloring algorithm, DEC – Dinitz algorithm-based edge

coloring, EPEC – Euler partitions -based edge coloring algorithm.

∆(𝐺) BFEC DEC EPEC

10 48.526ms 230.434ms 258.063ms

20 58.024ms 641.160ms 585.068ms

100 Memory limit 9.364s 4.061s

500 Memory limit 2.798min 34.764s

1000 Memory limit Infinity 1.163min

Table 13. The results of the three implemented algorithms on dataset 5. The best results are

given in bold. BFEC – brute force edge coloring algorithm, DEC – Dinitz algorithm-based edge

coloring, EPEC – Euler partitions -based edge coloring algorithm.

∆(𝐺) BFEC DEC EPEC

5 Memory limit 0.977s 1.152s

10 Memory limit 2.470s 2.580s

20 Memory limit 6.664s 5.956s

100 Memory limit 1.424min 45.715s

500 Memory limit Infinity 5.489min

11

The result of the third set of tests shows that if the value of parameter ∆(𝐺) in the

graph is 100 (with 106 edges) or more, the brute force algorithm does not execute due

to the memory limits, as shown in Table 12. If we look at the test example for which

∆(𝐺) = 500 (with 5 ∗ 106 edges), we can notice that the algorithm that uses the Euler’s

partition is executed almost 5 times faster than the algorithm that uses the Dinitz’s al-

gorithm. The example where ∆(𝐺) = 1000 (with 107 edges) has interesting results.

The algorithm that colors edges using Dinitz's algorithm takes infinitely long to exe-

cute, while the algorithm that uses Euler’s partitions executes in almost one minute.

The results of the fourth set of tests are presented in Table 13. They have similar

results as in the third set of tests, only for smaller values of parameter ∆(𝐺), because

the total number of vertices in the bipartite graph is 10 times higher in the tests of the

fourth set. For all examples in this test set, the brute force algorithm does not execute

due to memory limitations. For the example where the parameter ∆(𝐺) has a value of

100 (with 107 edges), there is almost double the difference in execution time between

the algorithm that use the Dinitz algorithm and the algorithm that use the Euler parti-

tion. In the last example of the fourth set of tests, for the value of the parameter ∆(𝐺) =
500 the algorithm that use Dinitz's algorithm takes infinitely long to execute while al-

gorithm that use Euler partition executes in almost 5 minutes.

Based on the results from all sets of tests, we can conclude that for small graph sizes,

the brute force algorithm is executed the fastest, due to the existence of a larger constant

factor in the time complexity (which is not shown in the O notation) than in the case of

algorithms that use Euler's partition and Dinitz's algorithm. On the other hand, in the

case of graphs that have a large number of vertices, the algorithm that uses the Euler

partition is the fastest.

5 Conclusion

This paper presents the graph coloring problem that belongs to the group of NP-hard

problems. A definition of the edge coloring problem in bipartite graphs is given, in

which the number of used colors needs to be minimized. Several algorithms that solve

the presented problem with different approaches are described.

The algorithms were tested on several synthetic datasets. Each of the datasets con-

sisted of some characteristic topologies of a bipartite graph, such as a complete graph,

a sparse graph, a graph for which the maximum degree of a node of the form ∆(𝐺) =
2𝑛 is valid, as well as for other values of the parameter ∆(𝐺). The results show that

brute force algorithm is superior for smaller graphs with up to 104 vertices, when it

reaches memory limits. The algorithm that uses the Euler’s partition is the fastest for

graphs with large number of vertices.

There are two main directions for future research work. The first direction is to im-

prove the algorithms in terms of better performance than the described algorithms, as

well as the implementation of new algorithms that bring improvement in terms of per-

formance by means of optimization and parallelization. It is significant for reasons of

faster execution in the case when there is a huge number of nodes. Another direction is

the research of new fields where graph coloring can be applied in real-life problems.

12

References

1. Bender, E., Williamson, S., Lists, D.: Graphs With an Introduction to Probability. University

of California at San Diego, 147-148 (2010).

2. Jensen, T. R., Toft, B.: Graph coloring problems. John Wiley & Sons (2011).

3. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica Poly-

technica Electrical Engineering (Archives), vol. 48, no. 1-2, pp. 11-16. (2004).

4. Eisl, J., Leopoldseder, D., Mössenböck, H.: Parallel trace register allocation. In: Proceedings

of the 15th International Conference on Managed Languages & Runtimes, pp. 1-7. ACM,

USA (2018).

5. Karp, R. M.: Reducibility among combinatorial problems. Springer Berlin Heidelberg

(2010).

6. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to algorithms. MIT

press (2022).

7. Malhotra, V. M., Kumar, M. P., Maheshwari, S. N.: An O (| V| 3) algorithm for finding

maximum flows in networks. Information Processing Letters, vol. 7, no. 6, pp. 277-278.

(1978).

8. Ford, L. R., & Fulkerson, D. R.: Maximal flow through a network. Canadian journal of

Mathematics, vol. 8, pp. 399-404. (1956).

9. Goldberg, A. V., Tarjan, R. E.: A new approach to the maximum-flow problem. Journal of

the ACM (JACM), vol. 35, no. 4, pp. 921-940. (1988).

10. Dinitz, Y.: Dinitz’algorithm: The original version and Even’s version. Theoretical Computer

Science: Essays in Memory of Shimon Even, pp. 218-240. (2006).

11. Beşeri, T.: Edge Coloring of a Graph. Izmir Institute of Technology (Turkey) (2004).

12. Deo, N.: Graph theory with applications to engineering and computer science. Courier Do-

ver Publications (2017).

13. Gabow, H. N.: Using Euler partitions to edge color bipartite multigraphs. International Jour-

nal of Computer & Information Sciences, vol. 5, no. 4, pp. 345-355 (1976).

14. Codeforces - Problem F – Edge coloring of bipartite graph, https://codeforces.com/con-

test/600/problem/F, last accessed 2023/05/24.

15. Maximum flow – Dinic’s algorithm, https://cp-algorithms.com/graph/dinic.html, last ac-

cessed 2023/05/24.

16. Sotanishy implementation of edge coloring of bipartite graph, https://codeforces.com/con-

test/600/submission/162194398, last accessed 2023/05/24.

https://codeforces.com/contest/600/problem/F
https://codeforces.com/contest/600/problem/F
https://cp-algorithms.com/graph/dinic.html
https://codeforces.com/contest/600/submission/162194398
https://codeforces.com/contest/600/submission/162194398

