

A Guideline for Selecting an Open-source WSN simulator

Siniša Nikolić, Valentin Penca
{sinisa_nikolic, valentin_penca}@uns.ac.rs

Fakultet tehničkih nauka u Novom Sadu

Abstract – Simulation is now used for various aspects
of WSN networks research and development. Use of
simulators overcomes the problems which user must
oppose in real world evaluation. In this paper we
define a, set of criteria for comparing WSN network
simulators and, based on proposed criteria, analyze
three open source, event based simulators NS-
2/MannaSim, OMNeT++/Castalia and SWANS/SIDnet
that have larger impact in WSN domain. Finally, we
suggest simple, practical guideline for simulator
selection.

1. INTRODUCTION

Wireless Sensor Network (WSN) is a network of
spatially distributed autonomous sensors that
commonly includes hundreds of thousands low cost,
battery-powered and reduced size devices with limited
processing, sensing and wireless communication
capabilities.
The specifics and complexity of WSN often lead to
analytical methods to be unsuitable or inaccurate for
simulation. Additionally, the proportion of algorithms
that are analyzed through practical evaluation is
comparatively low, possibly due to the relative infancy,
deployment cost, time required, broad diversity and
application dependence of WSN.
WSN simulators are usually developed as an extension
of some existing network simulators. In a contrast to
network simulators, WSN simulators must provide
more complex implementation of radio channel,
physical environment, sensing and energy models.
In this paper we are presenting the criteria for
evaluation and a survey of open-source simulators for
WSN simulation purposes.
The rest of this paper is organized as follows. Section 2
introduces the problem and highlights the main
problems of WSN evaluation under real-world scenario
assumption. Section 3 briefly presents related work in
the filed of WSN simulators and proposes the
evaluation criteria for comparing WSN simulators.
Section 4 contains evaluation results for selected open
source WSN simulators. Section 5 contains an
argumented guideline for selecting open-source
simulators aimed at WSN simulation.

2. PROBLEMS OF REAL-WORLD
EVALUATION

Evaluation is an unavoidable step for studying,
development and improvement of WSN. Due to the
constraints and problems existing when a real-world
evaluation scenario is deployed, the use of simulators
is essential and sometimes the only possible solution to

test new applications, algorithms and protocols for
WSN. Problems that have the greatest impact are [2] :
 Cost of hardware devices for the real-world

scenarios is often too high.
 Deployment and relocation of sensors in the real

world environment is time consuming, difficult
and potentially dangerous task.

 Debugging of WSN in a distributed environment
which has a large number of sensors. Potential
result of debugging is redeployment of WSN.

 Creation and exploitation of a controlled (specific)
environment likewise influence of obstacles on the
propagation of signals is almost impossible.

 Repeating the identical scenario with different
parameters in the system is almost impossible in
the real-world.

Simulators enable experiments in controlled conditions
in which it is possible to check the individual aspects
of sensor networks. They overcome all problems of
evaluation in the real-world scenario, but they do not
provide a guarantee that the simulated system will
behave identically in the real-world. The usage of the
simulators is only one possible phase in evaluation and
analysis of network. In [1] the results of simulation and
real-world testbed are presented.
Simulation results are relying on the particular scenario
that is being studied (environment), hardware and
physical layer assumptions which may not lead to a
complete demonstration of all that is happening, so the
credibility of results may be taken into a question.
Therefore, after successful simulation, as the final
phase of experiments it is recommended to test the
WSN in real conditions.

3. EVALUATION METODOLOGY

Nowadays, there are many network simulation
frameworks in which sensor networks can be tested,
where various simulators have different capabilities
and goals. There are generic purpose simulators,
usually extension of network simulators used to
simulate the network traffic, algorithms and to research
different aspects of communication protocols. Other
simulators are more specialized and optimized to
simulate execution of a specific simulation platform.
The problem of choosing the simulator can be a
difficult task, particularly for the beginners in the WSN
simulation.
The papers [2], [3] and [4] present surveys of WSN
simulation tools. They offer slightly diverse
comaprison criteria and briefly describe realtively large
number of tools. Unfortunatelly, the suggested criteria
are highly aggregated and do not allow deeper insight
in the simulation process. In our approach, a smaller
number of simulators will be described in more details,

and they will be compared by set of criteria which is of
relatively fine granulation.
All features that will be used as criteria for evaluation
and comparison are divided in two groups: functional
and non-functional. This classification implies strict
separation of features into those which describe
simulator as software and those which are functional
features essential for representing the WSN. Similar
categorization is proposed by [5]. The list and
description of the criteria used in this paper is given
below.

3.1. Functional features

 Possibility of usage – in some references this
simulator criteria is also referred to as complexity
[1] or level of details [4]. It represents the
possibility to simulate WSN on different levels
(communication, application, hardware) of use.
There are two types of simulators. First type, the
generic simulators focus on communication,
sensing and data processing aspects. These types
of simulators are useful for observing the WSN in
general, where hardware/software infrastructure of
node are not being focused on. These simulators
can be used to develop, compare and learn
algorithms and protocols in WSN. The second
type, specific simulators are specialized for
emulating hardware and software platforms.
Specific simulators are often called emulators and
can be further classified into: application (code)
and instruction (firmware). The purpose of
application simulators is to simulate a specific
software environment (operating system), where
the same application can be run on simulator and
on real node without changes. Instruction
simulators support emulation of the sensor nodes
hardware..

 Time dimension – how simulation is executed over
a time. This criterion classifies the simulators into
discrete-event and time-driven. The idea of a
discrete-event simulator is to jump from one event
to the next. The events are recorded as event
notices in the future event list (FEL). Each event
occurs at a point in time and marks a change of
state in the system. A discrete-event simulator uses
event scheduler to simulate events. In a time-
driven simulation we have a various recording of
time, which is follows fixed steps.

 Energy consumption models – the models of
power consumption in relation to the operation of
sensor nodes.

 Available protocol models – Which OSI protocols
are available in a simulator.

 Scalability – how simulator reacts when a large
scale sensor network is simulated. The scalability
depends on how the simulator performs regarding
memory usage and programming language in
which the simulator is implemented (low level
languages tend to perform better then high level
languages).

 Deployment models – introduce the initial

placement of sensor nodes in virtual field.
Simulators implement the random (from plane,
topology patterns) and manual placement of nodes.

 Mobility models – sensor nodes can change
position in simulation. Their position can be
randomly or manually changed (user can define
moving paths).

 Interaction with real nodes – possibility of the
simulator to include real, physical nodes into
simulation.

 Sensing models – how is sensing process modeled
on nodes (random generation of sensing
information or advanced sensing models which
include sensing environment).

 Radio channel – available models of signal
propagation (signal fading, terrain modeling).

 WSN platforms models –the hardware and
software sensor platforms which can be simulated.

3.2. Non-Functional features

 License –availablility to the end users (terms of
usage and redistribution).

 Popularity –how intensively the simulator is being
used by the community. The level of acceptance of
simulator is defined by the number of science
papers, users and books. The most popular
simulators are those that are open source, in phase
of active development, portable, reusable, with
GUI support and rich with protocol and node
models.

 Platform independence – possibility to use the
simulator in different operating systems.

 GUI tools – support of graphical user interfaces.
The desirable functionalities of GUI tools are:
trace support (monitoring of simulation), debug
support (interacting in simulation – inspection of
modules and variables, possibility to add queries
in real time) and modeling (visual modeling and
composition of simulation scenario).

 Programming language – language in which
simulator is written. Users’ level of knowledge of
some programming language may be crucial in the
selection of a simulator.

 Active development – criterion that answers the
question “is the simulator still being developed?”

 Documentation – availabaility and quality of user
and developer manuals.

 Parallel execution – the goal is to get higher speed
of simulation execution. Only a few simulators
implement this feature.

 Extensibility – reusability and change of available
models.

4. SIMULATORS OVERVIEW

In this section we are presenting three open source
simulators that have more significant impact in WSN
domain. The selection is based on

4.1. NS-2/MannaSim

NS-2 [6], [7], [8] began as NS (Network Simulator) in
1989 with the purpose of general network simulation
for studying the dynamic nature of communication
networks. It is the most popular simulation tool for
sensor networks. NS-2 is an object-oriented discrete
event simulator which allows for straightforward
creation and use of new protocols. NS-2 is the
paradigm of reusability; its modular approach for
protocol development has effectively made NS-2
extensible.
Simulations are based on a combination of C++ and
OTcl. In general, C++ is used for implementation of
protocols and extending the NS-2 library. OTcl is used
to create and control the simulation environment itself,
including the selection of output data. Simulation is run
at the packet level, allowing for detailed results. NAM
is a simple GUI tool which can be used for animating
the simulation results in NS-2. NS2 is available for
Linux (Ubuntu, Fedora etc.), FreeBSD, SunOS/Solaris,
HP/SGI, and Windows 95/98/NT/ME/2000/XP.
NS-2 uses a very simple energy model, where energy
level is implemented as a node attribute. Every node
has initial amount of energy (at the beginning of the
simulation) that is decreased for every packet it
transmits and receives (identical for every size of
packet). Mobility and deployment of nodes may be set
explicitly in the configuration or can be randomly set
by the simulator. Direction and seed can be set for
every node movement.
NS-2 does not scale well for sensor networks, it is not
easy to scale the NS2 beyond several hundred
simulated nodes (limit may be thousand nodes). Every
node is its own object and can interact with every other
node in the simulation. The previous said creates a
large number of dependencies to be checked at every
simulation interval (n2 connection may be possible).
Object-oriented architecture is the problem [9].
The Mannasim Framework [10] is an extension for
WSN simulation based on NS-2. Mannasim extends
NS-2 introducing new modules for design,
development and analysis of different WSN
applications. Main feature that manasim introduces is
WSN sensing model, data processing, improved energy
model and hieratical organization of nodes. Sensing
model in MannaSim is very simple and it represents a
random generator for creating sensing values (standard
deviation of average value). Improved energy model
includes additional sensing and data processing
consumption (constant_device_consumption *
time_of_operation). Mannasim provides JAVA tool for
generating simulation scenarios.

4.2. OMNeT++/Castalia

The OMNeT++ is a C++ discrete event simulation
environment [11] publicly available since 1997.
OMNeT++ was designed to be as general as possible
and it is not а WSN simulator. OMNeT++ provides а
basic machinery and tools to write simulations, but
itself it does not provide any components aimed at
computer network simulations, queuing network

simulations, system architecture simulations or any
other area. Because of its generic and flexible
architecture, various applications can be supported by
designing additional simulation models and
frameworks such as INET/INETMANET, MiXiM or
Castalia.
The simulator as well as user interfaces and tools are
highly portable. They are tested on the most common
operating systems (Linux, Mac OS/X, Windows), and
they can be compiled out of the box or after trivial
modifications on most Unix-like operating systems.
OMNeT++ was designed from the beginning to
support network simulation at a large scale, keeping in
mind that simulation models need to be hierarchical
and simulation software itself should be modular,
customizable and should provide for embedding
simulations into larger applications. OMNeT++
contains an Integrated Development Environment
(IDE) that provides rich environment for editing,
debugging simulation and analysis, visualization of
simulation results. Tkenv, the GUI user interface of
OMNeT++, is a simulation GUI tool that supports
interactive simulation execution, animation, tracing
and debugging.
The major drawback of OMNeT++ was the lack of
available protocols compared with other simulators.
However, in recent years OMNET++ is becoming a
popular tool and its lack of protocol models is being
cut down by recent contributions.

Castalia [12] is one of many simulators built on the top
of OMNeT++. It is specifically designed for WSN,
encompassing all important aspects of the system and
providing the most accurate modeling available in the
research community, starting with the communication
models (i.e., wireless channel and radio models) [13].
This simulator enables support for Wireless Sensor
Networks (WSN), Body Area Networks (BAN) and
generally networks for low-power embedded devices.
Purpose of this generic C++ simulator is to test user's
algorithms and protocols.
Adopting the principle of OMNeT++, sensor nodes are
built as compound modules, whose sub-modules
represent the wireless sensor node stack. Scalability in
Castalia is not an issue, modular approach enables high
scalability. Memory usage increase and simulator
speed decrease tend to show linear dependencies as
networks become bigger.
Nodes do not connect to each other directly but
through the wireless channel module. This module,
upon receiving a packet, decides which nodes should
receive the packet. The whole model of sensing is the
most realistic in Castalia. For sensing purpose nodes
are connected to adequate physical process module
(one instance of module for each physical process), to
get their sensor readings. Nodes can acquire multiple
sensing devices (multiple sensing modalities). Sensors
are implemented with a high level of details (sampling
rate, devices Bias, sampling Noise of device, resolution
of measurement etc.). Complex Sensing model is
defined in time and space on sensing phenomena.
Deployment of nodes can be set manually or

automatically (uniform or randomize grid distribution
in 2D or 3D area). After initial deployment, mobility
manager (module) specifies how the nodes will move
through the space (mobility pattern). Mobility of node
must be set manually in configuration files, only one
mobility pattern is available (line pattern) [14].
Energy model in Castalia includes power consumption
depending on the state of the sensor node (active,
shallow sleep, deep sleep etc). These differences in
consumption influence the radio module, where power
is used for sending and receiving packets. Also energy
consumption is calculated for the transition processes
between states and for the sensing process of the sensor
node. Sensor power usage is modeled for every type of
sensor as consumption per single sample of
phenomena.
In previous years, because of small number of
implemented protocols, this simulator was not so
popular (initially routing was seen as a less important
feature so no module was introduced). Nowadays,
when the set of protocols is extended, Castalia stands
for one of the simulators with most growing popularity.

4.3. SWANS/ SIDnet

SWANS [15] is a discrete event, wireless network
simulator build on the top of JiST platform. JiST is
basically a simulation kernel which enables Java based
simulation environment. JVM is modified to run
programs in simulation time instead of real time.
Models in SWANS are written and compiled in Java.
Afterwards, compiled code is rewritten by embedding
simulation engine, in order to execute simulator on
standard JVM. This approach of virtual-machine
simulation enables high portability and merging high-
level languages with simulation semantics. Aforesaid
allows the execution of already written JAVA
applications on the simulator.
SWANS has a modular architecture. Components are
defined for different layers of node stack.
Communication among layers is achieved by message
exchange (simulated network packets). Message is a
Java object that encapsulates а higher level message to
mimic the chain of packet headers. In SWANS there is
no unnecessary overhead in the intercommunication
model among layers of node stack. Message is a shared
object that is passed by reference to avoid copying.
Deployment field is partitioned into grid of node bins.
When some node is transmitting signal, the Field
component uses transmitting node position in the grid,
and information about signal strength to determine the
neighboring nodes that are capable of receiving the
signal. That way, the number of communication
dependencies to be checked at every simulation
interval is significantly lower then n2. The radios of

nodes are parameterized with frequency, reception
threshold, bandwidth, error models, transmission
power and antenna gain. Node mobility is
automatically supported. Nodes can move to random
position, in random direction or by “teleport” model.
The latest version of SWANS has been released in
March 2005. Lack of active development and small
number of supported protocols have caused SWANS to
be less popular then other simulators.
Despite the fact that SWANS is written in Java (Java
performance tends to be lower than C++ in tasks of
memory handling), this is the highly scalable simulator
[16]. SWANS can handle network of 106 wireless
nodes. High network scalability is achieved mainly by
SWANS architecture and cross-layer optimization. In
[9] it has been presented that this simulator
outperforms the NS-2 in execution time of simulation
and memory consumption.
SIDnet-SWANS (Simulator and Integrated
Development Platform for Sensor Networks
Applications) [17], [18] is a Java general purpose WSN
simulator built on the top of the architecture of
JiST/SWANS. This extension enables battery, sensing,
GPS and other WSN component. SIDnet provides the
GUI interface that allows run-time interaction with
simulation on various levels. Through the GUI user can
observe phenomena fluctuation, network topology,
energy level of network, network statistic, change
phenomena dynamic and simulation speed, inspect and
influence on individual nodes and query the network.
This flexible graphical user interface provides visual
feedback of almost all important aspect of the sensor
network in real time. In SIDnet user can attach virtual
terminal and query the phenomena of interest, this is
done by implementing high-level language structures
that is similar to the syntax of TinySQL.
Deployment of the nodes can be manual (single node
deployment), random automatic (uniformly distributed,
bi variate distributed) or automatic fly-by distributed
(nodes are being deployed along given trajectory) [19].
Energy consumption model is highly realistic. It takes
into account operational energy consumption and
battery drain. Also there is possibility to recharge the
battery. Operational energy is used for radio (active
and sleeping consumption), processing (active and idle
consumption of CPU) and sensing purposes. Battery
consumption, in all mentioned cases, is realized as a
dependency of elapsed time and different levels of
consumption.
One large drawback of SIDnet is extremely poor
documentation.
Table 1 shows briefly the characteristics of the
analyzed simulators following the proposed
methodology and criteria.

Table 1 – Analyzed characteristics of the simulators

5. CONCLUSIONS AND GUIDELINES FOR
SIMULATOR SELECTION

Almost all available simulators are network simulators
with or without wireless capabilities. Therefore, they
are extended in order to support sensing, radio and
energy models, which are basic WSN simulation
requirements, resulting in Mannasim, Castalia, and
SIDnet extensions.
NS-2/Mannasim, OMNeT++/Castalia and SWANS/
SIDnet are generic purpose simulators which can be
used to develop, compare and learn communication
protocols/algorithms.
Regarding the energy models, SIDnet has the most
comprehensive model of battery consumption,
including battery drains.
Since the radio is the biggest energy consumer,
simulators must predict consumption for different radio
mode (shallow sleep, deep sleep, active…) which is
supported in Castalia and SIDnet.
Generally speaking, the number of implemented
protocols is highly related to the popularity of the
software: the more models implemented, the less time

for WSN development is needed. NS-2 is a simulator
with best performances regradning protocol models
implemented, while is the worst one.
In general, it is expected tthat simulators implemented
in C/C++ tend to show better scalability than those that
are implemented in Java, but there are exceptions like
SWANS which scales surprisingly well [3]. Simulators
with component-based architecture scale better than
object-oriented architectures due to the possibility of
parallel execution.
When the aim of simulation is not only to to test a
protocol, the sensing models of higher level of details
are needed. Mannasim does not simulate sensing
phenomena and its sensing model is very simple
(generator of random values), while SIDnet both have
complex sensing models, where multiple sensors on a
single node collect data from environment. GUI
support is preferable, but not a necessary condition
when choosing a simulator. NS-2/Mannasim has
simple GUI environment (simulation animation and
modeling). OMNeT++ and SIDnet provide powerful
GUI which supports interactive simulation execution,
animation, tracing and debugging. SIDnet allows

queries through the network to be sent in order to get
sensing information.

Due to specifics of the particular WSN application
and,consequently, the aspects that should be studied, it
is not possible to give an unambiguous guideline for
selection of WSN simulator in general. However, the
presented analysis can provide some useful
recommendations which are as follows. Firstly, the
selection criteria can be classified in two groups
according to their importance.
The first group, which is essential and must fulfill all
user requests, comprises following simulator features:
communication protocol models, energy consumption
models, sensing models and scalability. The second
group comprises the features that are preferred but not
essential to selection of simulator. These are:
popularity of the simulator, user’s familiarity with
implemented programming languages, GUI
availability, proper documentation and active
development .

Based on the essential features, we suggest following
recommendation for the open source simulators that
have been analyzed in this paper.
NS-2 simulator is the most suitable solution regarding
the communication protocols criterion.
Castalia has the most realistic sensing model.
SIDnet simulator handles complex aspect of energy
consumption and copes best with scalability of sensor
field.

REFERENCES

[1] K. Wehrle, M. Günes, and J. Gross, Modeling
and Tools for Network Simulation, Berlin,
Heidelberg: Springer-Verlag Berlin Heidelberg,
2010.

[2] E.M. Shakshuki, H. Malik, and T.R. Sheltami,
“A comparative study on simulation vs. real time
deployment in wireless sensor networks,”
Journal of Systems and Software, vol. 84, 2011,
pp. 45-54.

[3] M. Mekni and B. Moulin, “A Survey on Sensor
Webs Simulation Tools,” 2008 Second
International Conference on Sensor
Technologies and Applications (sensorcomm
2008), Cap Esterel, France: 2008, pp. 574-579.

[4] E. Egea-Lopez, J. Vales-Alonso, A.S. Martinez-
Sala, P. Pavon-Marino, and J. García-Haro,
“Simulation tools for wireless sensor networks,”
Proc. Int’l. Symp. Perf. Eval. of Comp. and
Telecommun. Sys, pp. 559–66.

[5] M. Jevtić, N. Zogović, and G. Dimić,
“Evaluation of Wireless Sensor Network
Simulators,” Proceedings of the 17th
Telecommunications Forum (TELFOR 2009),
Belgrade, Serbia, Belgrade,Serbia: 2009.

[6] I. Khemapech, A. Miller, and I. Duncan,
Simulating Wireless Sensor Networks, Technical
report, School of Computer Science, University
of St Andrews, 2005.

[7] “The Network Simulator - ns-2,”
http://www.isi.edu/nsnam/ns/.

[8] T. Issariyakul and E. Hossain, Introduction to
Network Simulator NS2, Boston, MA: Springer
US, 2009.

[9] I.T. Downard, Simulating sensor networks in ns-
2, Citeseer, 2004.

[10] R. Barr, “Swans-scalable wireless ad hoc
network simulator, User Guide,” Mar. 2004.

[11] “MannaSim Framework,”
http://www.mannasim.dcc.ufmg.br.

[12] “OMNeT++ Network Simulation Framework,”
http://www.omnetpp.org/.

[13] “Castalia,” http://castalia.npc.nicta.com.au/.
[14] D. Pediaditakis, Y. Tselishchev, and A. Boulis,

“Performance and scalability evaluation of the
Castalia Wireless Sensor Network simulator,”
3rd International ICST Conference on
Simulation Tools and Techniques
(SIMUTools2010), Malaga/Spain: 2010, pp.
271–275.

[15] A. Boulis, “Castalia A simulator for Wireless
Sensor Networks and Body Area Networks,
User’s Manual,” Aug. 2010.

[16] A.H. Network, “Scalable Wireless Ad Hoc
Network Simulation,” Handbook on theoretical
and algorithmic aspect of sensor, ad hoc
wireless, and peer-to-peer networks, 2006, p.
297.

[17] E. Schoch, M. Feiri, F. Kargl, and M. Weber,
“Simulation of ad hoc networks: ns-2 compared
to JiST/SWANS,” Proceedings of the 1st
international conference on Simulation tools and
techniques for communications, networks and
systems & workshops, 2008, pp. 1–8.

[18] “Projects - SIDnet-SWANS,”
http://users.eecs.northwestern.edu/~ocg474/SID
net.html.

[19] O.C. Ghica, “SIDnet-SWANS, User Manual,”
Mar. 2010.

[20] O. Ghica, G. Trajcevski, P. Scheuermann, Z.
Bischoff, and N. Valtchanov, SIDnet-SWANS: A
Simulator and Integrated Development platform
for Sensor Networks Applications, 2006.

Acknowledgments

Results presented in this paper are part of the research
conducted within the Grant No. III-43007, Ministry of
Science and Technological Development of the
Republic of Serbia.

