
70

Clover: Property Graph based metadata

management service

Miloš Simić

Faculty of Technical Sciences, Novi Sad, Serbia

milos.simic@uns.ac.rs

Abstract—As the file systems continue to grow, metadata

search is becoming increasingly important way to access and

manage files. Applications are capable to generate huge

amount of files and metadata about various things. Simple

metadata (e.g., file size, name, permission mode), has been

well recorded and used in current systems. However, only

limited amount of metadata, which not record only

attributes of entities but also relationships between them,

are captured in current systems. Collecting, processing and

querying such large amount of files and metadata is

challenge in current systems. This paper present Clover, a

metadata management service that unifies files/folders, tags,

relationships between them and metadata into generic

property graph. Service can also be extended with new

entities and metadata, by allowing users to add their own of

nodes, properties and relationships. This approach allow not

only simple operations such as directory traversal and

permission validation, but also fast querying large amount

of files and metadata by name, size, date created, tags etc. or

any other metadata provided by users.

I. INTRODUCTION

The continuous increase of data stored in the cloud,
storage systems, enterprise systems etc. is changing the
way we search and access data. Compared to the various
database solutions, including the traditional SQL
databases [1] and the NoSQL databases [2-4], file systems
usually shine in providing better scalability(i.e. larger
volume and higher parallel I/O performance). They also
provides better flexibility (i.e. supporting both structured
and unstructured, as well as non-fixed data schemas).
Therefore, a large fraction of existing applications are still
using file systems to access raw data. However, with large
volumes of complex datasets, the decades-old hierarchical
file system namespace concept [5] is starting to show the
impact of aging, falling short of managing such complex
datasets in an efficient manner, especially when these data
comes with some simple metadata. In other words,
organizing files (data) in the directory hierarchy can only
be effective and efficient for the file lookup requests that
are well aligned with the existing hierarchical structures.
For today’s highly variable data a pre-defined directory
structure can hardly foresee, let alone satisfy the ad-hoc
queries that are likely to emerge [17]. Metadata can
contain user-defined attributes and flexible relationships.
Metadata describes detailed information’s about different
entities like files, folders, users, tags etc. and relationships
between them. These information’s extend simple
metadata which contains attributes from individual entity
and basic relationships, to more detail level. Current file
systems are not well-suited for search because today’s
metadata resemble those designed over four decades ago,

when file systems contained orders of magnitude fewer
files and basic navigation was enough [5]. Metadata
searches can require brute-force traversal, which is not
practical at large scale. To fix this problem, metadata
search is implemented with separate search application,
with separate database for metadata as in Linux (locate
utility), Apple’s Spotlight [6], and appliances like Google
[7] or Kazeon [8] enterprise search. This approach have
been effective for personal use or small servers, but they
face problems in larger scale. These applications often
require significant disk, memory and CPU resources to
manage larger systems using same techniques. Also these
applications must track metadata changes in file system,
which is not easy task. Existing storage systems capture
simple metadata to organize files and control file access.
Systems like Spyglass [10] and Magellan [11] have also
been proposed as tools to store and manage these kinds of
metadata. While collecting metadata current systems still
lack a mechanism to store, process and query such
metadata fast. At least some challenges like Storage
System Pressure, Effective Processing/Querying, and
Metadata Integration should be addressed [12]. The
problem with approaches done in the past is that they
relied on relational [1] or key-value [14] databases to store
and unify metadata. There have been studies that try to fix
inefficiency of retrieving and/or managing files, by
offering search functionalities from desktop and enterprise
systems. For these environments, returning consistent file
search results in real-time or near real-time becomes a
necessity, which in and by itself is a challenging goal.
This paper propose unifying all metadata into one
property graph while files remain on file system. All
applications and services can store and access metadata by
using graph storage and graph query APIs. With this in
mind, all applications and services store data on the file
system in the same way, and we can further improve
performance using optimization techniques for storing
data. Complex queries can express easier as graph
traversal instead of a join operation in relation databases.
Using graph to represent metadata we also gain rapidly-
evolving graph techniques to provide better access, speed,
and distributed processing.

This paper is organized as follows. Section II present
graph model for metadata. Section III present related
work. Section IV present system design and
implementation, also show used tools. Section V show
experimental results. Section VI summarize conclusions
and briefly propose ideas for future work.

II. GRAPH-BASED MODEL

Researches already consider metadata as a graph. The

traditional directory-based file management generate a

6th International Conference on Information Society and Technology ICIST 2016

71

tree structure with metadata stored in inodes [15]. Also

file system is designed as tree structure. These trees are

graphs enriched with annotations that provide more

information’s. The metadata graph is derived from the

property graph model [16] (Figure 1), which have

vertices (nodes) that represent entities in the system,

edges that show their relationships, and properties that

annotate both edges and vertices that can store arbitrary

information’s that user what. These information’s are

usually stored as properties of vertices or edge in form of

key-value pair that are usually separated with ‘:’ for

example name: clover, size: 12kb and so on.

Usually it’s not necessary that all vertices or edges

contains same set of properties or key-value pairs.

A. Vertices to edges

Clover define three basic types of vertices, as follow:

Files: represents file on file system, does not contain

file content

Folders: represents folder on file system that can

contain other folders or files

Tags: represent small metadata information that group

other files and/or folders by some (user defined) text.

Tags makes filtering easier.

Also users can define their own entities trough APIs

for example users or administrators and later on can

know which user created some file or folder.

B. Relationships to edges

Relationships between entities represent same

relationships in file system, and carrying the same

semantic. Every file can be child of every folder, also

every folder can be child of every folder in file system

structure. Every edge is directed relationship from child

to parent. Also, relationship between files/folders and

tags exist on logic level, and it is not necessarily stored in

file system data.

Users are free to add their own relationships and enrich

the semantics between data. For example create

relationship can be added and we can know which user

create some edge.

C. Properties

Vertices and their relationships have annotations on

them. In graph model these annotations are stored as

properties. These properties are attached to vertices

and/or relationships in key-value pars. There is none

predefined properties for vertices or relationships, and

user add them. Limitation is, that key of every property

must be unique in every node/relationship. It can be

added more restrictive rule that values for every

relationship/edge must be unique like in relation

database. Users can always extend model with new

properties and enrich semantic of model.

Properties are usually used to select or query specific

edges and relationships from others. Examples are

name: clover, type: python and so on.

III. RELATED WORK

There is dozens of solutions that have been proposed

to fix the inadequacy of file systems in fast file retrieval

and filtering, to some extent. These solutions can be

broadly divided into the three categories [17]:

File search engines, which rely on the crawling process

to catch up with new updates periodically, are unlikely to

keep the file index always up-to-date [10-12]. Because of

its nature of periodically updates these kind of systems

can lead to inaccurate retrieval results. None of the

existing file-search engines is designed for large-scale

systems. Some of these engines are Apple Spotlight [6],

Google Desktop search [7], Microsoft Search [8].

Database-based metadata services use databases as a

additional metadata service running on top of file

systems. These database-based metadata service have the

same limitations like every database-based [2, 3] storage

solution. Their performance could not match the I/O

workloads on file systems [10, 11]. Also, SQL schema is

static and it is not suitable for the exploratory and ad-hoc

nature of many big data and HPC analytics activities [18,

19].

Searchable file system interfaces provide file search

functions directly through the file systems. Research

prototypes that attempt to provide such interfaces include

HPC rich metadata management systems [13], Semantic

File System [20], HAC [21] and WinFS [22], VSFS [17].

All of these systems serve end-user’s needs for retrieving

files which means that they will try to find the files based

on the keywords provided by users, and have very limited

support for the metadata query [10, 23]. These queries

might not be useful for analytics applications that rely on

range queries or multidimensional queries to fetch the

desired data. Furthermore, similar to the file-search

engines, these systems perform parsing within the

systems, which limits the flexibility in handling the high

variety of the datasets.

IV. DESIGN AND IMPLEMENTATION

Clover is composed of few parts. Main part is Cover
service which handles all HTTP requests from clients, and
response to them. Also, this service do all communication
to storage infrastructure and metadata service.

Clover service understand all basic commands on
files/folders that are common on every file system and
operating system. Supported commands are: create
(folders only), rename, copy, move, remove, list. With this

Figure 1. Property graph [28]

6th International Conference on Information Society and Technology ICIST 2016

72

approach, clover is released from any scheduled tasks to
update metadata, and potentially show not consistent state.
On every command intended to the storage infrastructure,
metadata is updated. With this in mind, clover can use
some current and/or future algorithms to improve speed of
these operations. All of these operations are done through
Python modules.

In additions to these, Clover provides tagging, search,
filter operations on metadata storage. When files/folders
are opened, their rate is updated. If search provide more
results than single item, the higher rated files/folders are
on top of the list as top hit. Figure 2 show Clover
architecture.

Metadata service is implemented using graph database
[24]. This database store all metadata in form of edges,
relationships and properties for every item in storage.
Service is also able store information’s that exists only on
logical level, like who created element, who send item,
where is download from etc. and enrich metadata and
provide more semantics to it. With this in mind much
powerful search can be provided.

Vertices contains at least: name and path to files/folders
on storage infrastructure. Path must be unique, so unique
constraint is added to every file/folder vertices. It is
recommended, that vertices and/or relationships contains
also date created, date modified, last accessed date for
better querying, but it is not necessary.

Users are free to extend these properties. Every vertices
and relationship, or group of them, can be labeled with
some free text and make search even sassier and simpler.
Metadata service labeled every file with FILE, folder with
FOLDER and tag with TAG label to logically distinguish
these items, and make querying a lot easier and faster.
When file/folder is child of some other folder, that
relationship is created and labeled with CHILD label. This
relationship should have at least since property to describe
since when files/folders are children of that specific
folder. Files and/or folders that are that are tagged are
connected to tag vertices over TAGGED labeled
relationship. Recommendation for since property is
applied here as well.

Metadata service must provide fast search mechanism,
and indexing. Labels are mechanism to relatively fast
filter items. This might be acceptable in some cases but if
we’re going to be looking up some fields frequently, then
we’ll see better performance if we create an index on that
property for label that contains that property. Users can
add their own indexes trough clover service APIs.

Metadata service provide indexes on name property,
assuming that file name is used mostly in searching.

Why graph database and not relational database? A graph
database... is an online database management system with
CRUD methods that expose a graph data model [18]. Two
important properties:

 Native graph storage engine: written from the
ground up to manage graph data

 Native graph processing, including index-free
adjacency to facilitate traversals

The problem with relational approach are joins. All joins
are executed every time when query is executed, and
executing a join means to search for key in another table.
With indices executing a join means to lookup a key, B-
Tree index speed is O (log (n)).

Graph databases are designed to: store inter-connected
data, make it easy to evolve database and to make sense of
that data. Enable extreme-performance operations for
discovery of connected data patterns, relatedness queries
greater than depth 1 and relatedness queries of arbitrary
length. People usually use them when have problems with
join performance, continuously evolving data set (often
involves wide and sparse tables) or the shape of the
domain is naturally a graph (like file system).

Early adopters of these databases were Google:
Knowledge graph [25], Facebook: Graph search [26]. It
show’s it is easy to use, it is really fast, and users can
query almost on their natural language.

A. Neo4j

Neo4j [27] is used as the database for storing
metadata. Neo4j is open source, it has largest ecosystem
of graph enthusiast, community is large 1000000+
downloads 150+ enterprise subscription customers
including 50+ global 2000 companies (January 2016).
Most mature product is in development since 2000, in
24/7 production since 2003.

This database show good connected query performance.
Query response time (QRT) [28] is given by formula (1)

QRT=f(graph density, graph size, query

degree) (1)

Graph density is average number of relationships per node

Graph size is total number of nodes in the graph

Query degree is number of hops in ones query

RDBMS has exponential slowdown as each factor
increases, and Neo4j performances remains constant as
graph size increases. Performance slowdown is linear or
batter as density and degree increase.

Neo4j using pointers instead of lookups and doing all
joining on creation of vertices and relationships. Also
contains profiler embedded, and we can detect bottle
necks and fix them. Figure 3 show comparison of
RDBMS and Neo4j.

Figure 2. Clover architecture

6th International Conference on Information Society and Technology ICIST 2016

73

Neo4j uses Cypher [29] query language. This language
can easily mapped graph labels on natural language and
make querying a lot easier. For example, if we have two
nodes A, B and both of them contains name property, and
one relationship between them labeled with LOVES.
Simple query to figure out friends who likes pie

START me = (p:PEOPLE{name:’me’}),

pie = (t:THING{name:’pie’})

MATCH me-[:FRIEND]-> (friends:PEOPLE),

friends -[:LIKES]->pie

RETURN people

V. EXPERIMENTAL RESULTS

 In order to evaluate the performance system presented

in Sections 4, search engine was implemented in Python

and Neo4j version 2.3.2 for windows. All experiments

were made using a 2 GHz Pentium 4 workstation with 4

GB of memory running Windows 7 and Linux. For

dataset, Python27 folder is crawled containing 15084

nodes, 15083 relationships and deep recursive structure

of sub files and/or folders. No attempts have been made

to optimize Java VM (java version "1.8.0_71", SE build

1.8.0_71-b15,), the queries etc.

Experiments were run on Neo4j and MySQL out of the

box with natural syntax for queries. The graph data set

was loaded both into MySQL and Neo4j. In MySQL a

single table.

Figure 4 show comparison results on MySQL, Neo4J,

locate and Windows search when searching folder by

given name stoneware in Python27 directory.

Figure 5 show comparison results on MySQL, Neo4j and

locate command when searching for child nodes that have

*.py extension of folder by given name stoneware in

Python27 directory.

Figure 6 show comparison results on MySQL, Neo4j and

locate when retrieving file/folder attributes for given

exact file location.

Results include time on sending and receiving HTTP

requests.

VI. CONCLUSION

As amount of data and files now days become larger

and larger, current systems lack to do fast metadata

search. This paper present Clover, a graph-based

mechanism to store metadata, and search large-scale

systems. Clover model data is in form of property graph,

where vertices are presented as edges of graph, and they

are connected over relationships. Both vertices and

relationships contains properties to more describe them,

and give them more semantics to them. These properties

are stored in key-value form. Inspiration comes from

Facebook and Google which use this approach to enable

fast search.

There are numerous ways to improve Clover in future.

First to add role-based access control (RBAC) to separate

which users can access which files. Second, to improve

search by adding Domain Specific Language specifically

designed for natural language. This will make search

even easier. Third, content of text files can be stored in

some document database so Clover can search inside

content of files. Forth, Clover can be extended with

framework to support big-data. Fifth, all operations that

Figure 3. Comparison RDBMS vs Neo4j [28]

Figure 5. locate, MySQL, Neo4J comparison on searching child

nodes that contains *.py as extension of given folder

Figure 4. locate, Windows search, MySQL, Neo4J comparison

searching folder by given name

Figure 6. locate, MySQL, Neo4J comparison on retrieving

file/folders attributes

6th International Conference on Information Society and Technology ICIST 2016

74

affect storage are currently synchronous. Future work

should enable asynchronous operations for every function

on file system. This can be handy especially with bigger

files and operations that takes a lot of time to be executed

(copying or moving big amount of files etc.). Also system

should be tested on server configuration with larger

amount of files/folders and different kind of not just

simple, but also rich metadata by giving more semantic

relationships.

REFERENCES

[1] Oracle database.
http://www.oracle.com/us/products/database/overview/index.html,
accessed 2016.

[2] K. Banker. MongoDB in Action. Manning Publications Co.,
Greenwich,CT, USA, 2011.

[3] D. Borthakur and et al. Apache hadoop goes realtime at
facebook.SIGMOD ’11. ACM

[4] G. DeCandia and et al. Dynamo: amazon’s highly available key-
value store. SOSP ’07

[5] Daley R., Neumann P., A general-purpose file system for
secondary storage. In Proceedings of the Fall Joint Computer
Conference, Part I (1965), pp 213-229

[6] Apple Spotlight, https://support.apple.com/en-us/HT204014,
accessed 2016

[7] Google inc. Google enterprise, https://www.google.com/work/,
accessed 2016

[8] Kazeon, Kazeon search enterprise,
http://www.emc.com/domains/kazeon/index.htm, accessed 2016

[9] Microsoft. Windows Search. https://support.microsoft.com/en-
us/kb/940157, accessed 2016

[10] A. W. Leung, M. Shao, T. Bisson, S.Pasupathy, E. L. Miller,
Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage
Systems, in FAST, vol 9, 2009, pp. 153-166

[11] A. Leung, I. Adams, E. L. Miller, Magellan: A Searchable
Metadata Architecture for Large-Scale File Systems, University of
California, Santa Cruz, Tech. Rep. UCSC-SSRC-09-07, 2009.

[12] L. Xu, H. Jiang, L. Tian, and Z. Huang. Propeller: A scalable real-
time file-search service in distributed systems. ICDCS ’14

[13] D. Dai., R B. Ross, P Carns, D. Kimpe, Y. Chen, Using Property
Graphs for Rich Metadata Management in HPC Systems

[14] S. C. Jones, C. R. Strong, A. Parker-Wood, A. Holloway, D. D.
Long, Easing the Burdens of HPC File Management, in
Proceedings of the sixth workshop on Parallel Data Storage.
ACM, 2011, pp. 25-30

[15] J. C. Mogul, Representing Informatinos about Files, Ph.D
dissertation, Citeseer, 1986, Texas Tech University

[16] Property Graph, https://www.w3.org/community/propertygraphs/,
2016

[17] L. Xu, Z. Huang, H. Jiang, L. Tian, D. Swanson, VSFS: A
Searchable Distributed File System, parallel data storage
workshop, 2014

[18] J. Lin and D. Ryaboy. Scaling big data mining infrastructure: the
twitter experience. SIGKDD Explor. Newsl., 14(2):6–19, Apr.
2013

[19] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S.
Madden, and M. Stonebraker. A comparison of approaches to
large-scale data analysis. SIGMOD ’09

[20] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr.
Semantic file systems. In SOSP ’91, 1991

[21] B. Gopal and U. Manber. Integrating content-based access
mechanisms with hierarchical file systems. In OSDI ’99.

[22] Microsoft. WinFS: Windows Future Storage.
http://en.wikipedia.org/ wiki/WinFS, accesed 2016

[23] Y. Hua and et al. Smartstore: a new metadata organization
paradigm with semantic-awareness for next-generation file
systems. In SC ’09.

[24] I. Robinson, J. Webber, E. Eifrem, Graph databases, O’Reilly,
2015, ISBN: 9781491930892

[25] Google Knowledge graph,
http://www.google.com/intl/es419/insidesearch/features/search/kn
owledge.html, accessed 2016

[26] Facebook graph search,
https://www.facebook.com/graphsearcher/, accessed 2016

[27] Neo4j, http://neo4j.com/, accessed 2016.

[28] Goto conference 2014, http://gotocon.com/dl/goto-chicago-
2014/slides/MaxDeMarzi_AddressingTheBigDataChallengeWith
AGraph.pdf, accessed 2016

[29] Cypher, http://neo4j.com/docs/stable/cypher-introduction.html,
accessed 2016

6th International Conference on Information Society and Technology ICIST 2016

http://www.oracle.com/us/products/database/overview/index.html
https://support.apple.com/en-us/HT204014
https://www.google.com/work/
http://www.emc.com/domains/kazeon/index.htm
https://www.w3.org/community/propertygraphs/
http://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
http://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
http://gotocon.com/dl/goto-chicago-2014/slides/MaxDeMarzi_AddressingTheBigDataChallengeWithAGraph.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/MaxDeMarzi_AddressingTheBigDataChallengeWithAGraph.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/MaxDeMarzi_AddressingTheBigDataChallengeWithAGraph.pdf
http://neo4j.com/docs/stable/cypher-introduction.html

	Volume 1
	Clover: Property Graph based metadata management service

