6th International Conference on Information Society and Technology ICIST 2016

Dataflow of Matrix Multiplication Algorithm
through Distributed Hadoop Environment

Vladimir M. Ciri¢, Filip S. Zivanovi¢, Natalija M. Stojanovi¢, Emina I. Milovanovié¢, Ivan Z. Milentijevi¢

Faculty of Electronic Engineering, University of Nis§, Serbia
{vladimir.ciric, filip.zivanovic, natalija.stojanovic, emina.milovanovic, ivan.milentijevic} @elfak.ni.ac.rs

Abstract — Increasing of processors' frequencies and
computational speed with components scaling is slowly
reaching its saturation with current MOSFET technology.
From today's perspective, the solution lies either in further
scaling in nanotechnology, or in parallel and distributed
processing. Parallel and distributed processing have always
been used to speedup the execution further than the current
technology had been enabling. However, in parallel and
distributed processing, dependencies play a crucial role and
should be analyzed carefully. The goal of this paper is the
analysis of dataflow and parallelization capabilities of
Hadoop, as one of the widely used distributed environment
nowadays. The analysis is performed on the example of
matrix multiplication algorithm. The dataflow is analyzed
through evaluation of the execution timeline of Map and
Reduce functions, while the parallelization capabilities are
considered through the utilization of Hadoop's Map and
Reduce tasks. The implementation results on 18-nodes
cluster for various parameter sets are given.

L

The current projections by the International Technology
Roadmap for Semiconductors (ITRS) say that the end of
the road on MOSFET scaling will arrive sometime
around 2018 with a 22nm process. From today's
perspective, the solution for further scaling lies in
nanotechnology [1]. However, parallel and distributed
processing have always pushed the boundaries of
computational speed, through history of computing,
further than it had been enabled by the current chip
fabrication technology. Two promising trends nowadays,
which enable applications to deal with increasing
computational and data loads, are cloud computing and
MapReduce programming model [2].

Cloud computing provides transparent access to the large
number of compute, storage and network resources, and
provides high level of abstraction for data-intensive
computing. There are several forms of cloud computing
abstractions, regarding the service that is provided to
users, including Infrastructure-as-a-Service (laaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS) [3].

MapReduce is currently popular PaaS programming
model, which supports parallel computations on large
infrastructures. Hadoop is MapReduce implementation,
which has attracted a lot of attention from both industry
and research. In a Hadoop job, Map and Reduce tasks
coordinate to produce a solution to the input problem,
exhibiting precedence constraints and synchronization

INTRODUCTION

46

delays that are characteristic of a pipeline communication
between Maps (producers) and Reducers (consumers) [4].
In distributed processing in general, as well as in the
MapReduce, the crucial problems that lie in front of
designers, are data dependency and locality of the data.
While data dependency influence is obvious, data locality
has indirect influence on execution speed in distributed
systems due to the communicational requirements. One
of the roles of the Hadoop is to automatically or semi-
automatically handle the data locality problem.

There are several models and simulators that can capture
properties of MapReduce execution [2], [5]. The
challenge to develop such models is that they must
capture, with reasonable accuracy, the various sources of
delays that a job experiences. In particular, besides the
execution time, tasks belonging to a job may experience
two types of delays: (1) queuing delays due to the
contention at shared resources, and (2) synchronization
delays due to the precedence constraints among tasks that
cooperate in the same job [4].

The goal of this paper is the analysis of dataflow and
parallelization capabilities of Hadoop. The analysis will
be illustrated on the example of matrix multiplication
algorithm in Hadoop, proposed in [6]. The dataflow will
be analyzed through evaluation of the execution timeline
of Map and Reduce functions, while the parallelization
capabilities will be considered through the utilization of
Hadoop's Map and Reduce tasks. The results of the
implementation for various parameter sets in distributed
Hadoop environment consisting of 18 computational
nodes will be given.

The paper is organized as follows: Section 2 gives a brief
overview of MapReduce programming model. In Section
3 dataflow of MapReduce phases for matrix
multiplication algorithm is presented, and data
dependencies are discussed. Section 4 is devoted to the
analysis of the parallelization capabilities of the matrix
multiplication algorithm, as well as to the implementation
results, while in Section 5 the concluding remarks are
given.

IL.

The challenge that big companies are facing lately is
overcoming the problems that appears with big amount of
data. Google was the first that designed a new system for
processing such data, in the form of a simple model for
storing and analyzing data in heterogeneous systems that
can contain many nodes. Open source implementation of

BACKGROUND

6th International Conference on Information Society and Technology ICIST 2016

this system, called Hadoop, became an independent
Apache project in 2008. Today, Hadoop is a core part of a
lot of big companies, such as Yahoo, Facebook,
LinkedIn, Twitter, etc [7].

The Hadoop cluster consists of collection of racks, each
with 20-30 nodes, which are physically close and
connected. The cluster consists of three types of nodes
depending on their roles: (1) Client host - responsible for
loading data into the cluster, forwarding MapReduce job
that describes the way of processing data, and collecting
the results of performed job at the end; (2) Master node -
in charge of monitoring two key components of Hadoop:
storage of big data, and parallel executions of
computations; (3) Slave node - used for performing actual
data storage and computing.

There are two main components of Hadoop system: (1)
Distributed File System - Hadoop DFS (HDFS), used for
big data storage in cluster; (2) MapReduce - framework
used for computing big data stored in HDFS.

The HDFS lies as a layer above existing file system of
every node in the cluster, and its blocks are used for
storing input data in the form of the input splits (Figure
1). Large files can be split into a group of small parts
called blocks, which have default size of 64MB. The size
of these blocks is fixed, due to the simplification of
indexing [9]. Usually, HDFS workflow consists of 4
parts: (1) transferring input data from Client host to
HDFS, (2) processing data using MapReduce framework
on the slave nodes, (3) storing results by Master node on
HDFS, and (4) reading data by Client host from HDFS.
There are two transformations in MapReduce technique
that can be applied many times on input files: Map
transformation, which consists of My Mappers or Map
tasks, and the Reduce transformation, which consists of
R7 Reducers or Reduce tasks. The parameters M7 and Ry
are specified in system configuration of Hadoop, Ry
explicitly, and M7 implicitly through specification of the
blocksize. In the Map transformation, each Map task
processes one small part of the input file and forwards the
results to the Reduce tasks. After that, in the Reduce
transformation, Reduce tasks gather the intermediate
results of Map tasks and combine them to get the output,
i.e. the final result, as shown in Figure 1.

The Mappers, during theirs execution, executes Mr Map
functions to perform required computations. One Map
function transforms input data, according to input (key;,,
value;,) pairs, into the set of intermediate (key;,, value;,)
pairs (Figure 1). Let us note that the number of executed
Map functions Mr is equal to the number of different
keys key;,, and that this number doesn't need to be equal
to the configured number of Map tasks M.

In the phase between Map and Reduce, called Shuffle and
Sort, all intermediate data with the same key key;, are
grouped and passed to the same Reduce function (Figure
1). The number of executed Reduce functions R is equal
to the number of different keys key;,. It doesn't need to be
equal to the configured number of Reduce tasks R7. In the
end, all data from the Reduce tasks are written into
separate output.

47

Input File
v v
HDES Input Split | Input Split 2
Y A 4
A M2
Map tasks Ml M2
(k) l(/) [k
. Y
Map functions 3/ 1| M2 M3 M4
Shuffle R sVin) (kasvi) Vi) IR)
Sort ‘ ' ‘
l‘{nlll'\'(‘ ;\,]* ‘ I VR‘QV
functions — —
, |
Reduce tasks R,1 R}2
\ 4 Y
HDFES Qutput 1 ‘ Output 2

Figure 1. MapReduce data and process flow

MapReduce inherits parallelism, fault tolerance, data
distribution and load balancing from Hadoop system
itself [8]. As mentioned before, it consists of two main
phases, namely, Map and Reduce, each one implemented
by multiple tasks (M7+R7) running on multiple nodes (&)
[4].

Figure 2 shows a simple example of a timeline
representing the execution of a Hadoop job composed of
M7=2 Mappers and R;=1 Reducer, running on N=3 nodes.
The number of Map functions in algorithm shown in
Figure 2 is M=4, and the number of Reduce functions is
R=4. There is one additional Reducer Ry, that collects
outputs from all Reduce functions. The notation used for
particular Map functions within Map tasks is M, where i
represents the number of the function. The order at which
the Reduce functions R/, i=1,2,3,4, begin their execution
is defined by the order at which the Map functions M,
i=1,2,3,4, finish theirs. Precisely, Reduce function R/
should start as soon as Map function M}’ finishes and the
node that executes Reduce task is idle. At the end, the
merge task (R)) can start only after all Reduce tasks
finish.

M MMy
2 2 : 4
M M M, I
H 1 2 3 B 4
R, PR Rey Ry Ry

Figure 2. Execution timeline of Hadoop job

In Figure 2, Map tasks are denoted as M;, where i
denotes the number of particular Mapper. As shown in
Figure 2, two Map tasks, MT1 and Mrz, start execution
immediately at the beginning of the job execution, on
separate nodes, while the Reduce task (R7') is blocked
and, therefore, waits. As soon as the first Map function
(M;") finishes, the first Reduce function (Rf') can begin
its execution. Also, another Map function M} is assigned
to the task M;' that was executing M. This point in time
is shown in Figure 2 with a dotted vertical line. It also
represents a synchronization point when the set of
functions executing in parallel changes. From this point
in time, My, M;* and R;' are executing. Since M, starts

6th International Conference on Information Society and Technology ICIST 2016

executing only after M;' finishes, there is a serial
precedence between them.

The execution of a Hadoop job represents a set of
synchronization points, and each one of them delimits the
parallel execution of different sets of functions. In order
to maximize performance due to the synchronization
characteristic of Hadoop system, and to utilize
parallelization capabilities of Hadoop, the number of Map
tasks, Map functions, Reduce tasks and Reduce functions
should be carefully planned in accordance to the available
number of computational nodes.

III. DATAFLOW OF MATRIX MULTIPLICATION IN

HADOOP ENVIRONMENT

We will illustrate parallelization capabilities of Hadoop
on the example of matrix multiplication algorithm
proposed in [6]. Let us briefly discuss the dataflow
timeline of the algorithm from [6], and allocation of
computations onto Map and Reduce functions My and Rp.
Let A and B be matrices of order IxK and KxIJ,
respectively, and let C be their product as

K
cu_zz a- blu‘ .
k=1

According to the matrix multiplication algorithm
proposed in [6], the value of the key key; that
distinguishes the Map functions is common index & from
(1). In this case, the total number of Map functions M,
that are executed by Map tasks, is equal to M=K, i.e. to
the number of columns in matrix A and the number of
rows in matrix B. Map function M, obtains all partial
products cix,k:a,-,gbk » where i=1,2,....1, and j=1,2,....J.

The example of the multiplication of matrices A and B of
order 2x3 and 3x4, respectively, is shown in Figure 3 and
Figure 4.

(M

Figure 4. The example of Matrix multiplication C,4=A,3'B;4

According to (1), all elements of the first column of the
matrix A, i.e. ag and ayy in Figure 4, are needed for the
multiplication with all elements of the first row of the
matrix B, boy, b1, bor and by;. The same holds for other
columns of the matrix A, and the rows of the matrix B, as
it is shown with dashed lines in Figure 4.

From the above, every Map function M, will get k-th
column of matrix A and k-th row of matrix B, as shown
in Figure 3. Within each Map function My, every element
air, i=1,2,....1, of matrix A will be multiplied with every
element by, j=1,2,...,]J, of matrix B, producing partial
products c¢; J«k:al;k-bk ;- For example, within Map function
M, the element ay, will be multiplied by bg, producing
partial result cooo, as denoted with gray circles and arrows
in Figure 3. The same stands for all other elements from
M;. As a result, Mapper M; will produce first
intermediate results for all elements in the resulting
matrix C. On the other hand, while the Mappers are
responsible for multiplying, Reducers are responsible for
summarizing intermediate results c; J«k for every element
¢;; in the resulting matrix C. In the example given in
Figure 3, oo’ Coo' and coo” are summarized into cqp.
According to the computations allocation of the particular
matrix multiplication algorithm, there is no data
dependency between Map functions, and all Map
functions can be executed in parallel. The same holds for
the Reduce functions.

On the other hand, each Reduce function can start its
execution only when all Map functions finish their
computations. Therefore, in this algorithm, there is no
overlapping between Map and Reduce phase (Figure 3).

M, — >
M, | —
M, >
Rf—3 |)
! 0 1 2 !
: : Cots Cors Con :
Rj— s I Co
: : Coas Coas Co
Rli i 0 : 1 : 2 ! Cor
L Co35 Co3> Cos T
4 ' 0 I 2 ! 03
: i Cio> Cios Cro i
RS' ! 0 1 2 1 CI(J
N ; Ciis Ciis Ci ;
R(‘! ! 0 1 2 1 CII
X ; Cip Cipy Cp ;
R7! ! c() Cl cz 1 clz
: : chl I 135> ~13» ~13 I 013
— — g > T
MRs Ms Me Rs Re
— —
initialization communication

Figure 3. The dataflow timeline of the matrix multiplication algorithm
in the MapReduce distributed environment

6th International Conference on Information Society and Technology ICIST 2016

Iv.

In the previous section it was shown how the partial
computations are allocated to Map and Reduce functions.
As mentioned before, the numbers of Map and Reduce
functions are parameters of the algorithm, while Map and
Reduce tasks are configured according to the capabilities
of the cluster.

For this particular matrix multiplication algorithm, all
Map functions can start in parallel at the point denoted
with Ms on the T axis in Figure 3. Ideally, the number of
nodes N, and the number of the Map tasks M7 should be
equal to the number of required Map functions Mrp.
However, as the number of Map functions Mr is equal to
the dimension K of matrices A and B, this number will
always in practice overcome the number of available
nodes N in the cluster. Therefore, one Map task will
execute many Map functions. The same holds for the
Reduce functions. All Reduce functions can start in
parallel at the point of time denoted as Rs in Figure 3 and
last until Re. The number of available Reduce tasks Ry
will limit the parallelization in this case, as well.

The algorithm is implemented and executed on the
Hadoop cluster consisting of N=18 nodes. The
characteristics of nodes are the following: Intel(R)
Core(TM)2Duo, CPU E4600@2.40GHz, RAM: 1GB.
We executed the algorithm for two scenarios: (1) fixed
number of Reduce tasks, equal to the number of nodes
(R=N=18), and various number of Map tasks
(1=M7<2-N=36), and (2) fixed number of Map tasks,
equal to the number of nodes (M=N=18), and various
number of Reduce tasks (1<R;<2-N=36). Let us note that
in both cases square matrices of order 1.500x1.500 were
considered. Thus, the number of Map functions is
M=1.500, and the number of Reduce functions is
R=2.250.000.

The obtained results for the MapReduce algorithm for
described scenarios are graphically presented in Figure 5.
Let us note that for each result shown in Figure 5 there
are Mr+Ry tasks configured. Thus, the minimum number
of tasks for the first scenario is 1+18=19, and the
maximum is 36+18=54, which are executed on 2-18=36
cores. From the results given in Figure 5 it can be seen
that the parallelism is underutilized if the total number of
tasks is less then 36 (value M/R=18 in Figure 5), due to
the fact that there are unused cores. If the number of tasks
is greater then the number of cores (Figure 5), there is
additional overhead for synchronization that slows down
the execution. Due to the characteristic of the matrix
multiplication algorithm, the optimal cluster utilization is
when the total number of tasks is equal to the number of
cores (Figure 5).

IMPLEMENTATION RESULTS

49

A
T[min]

4-

Figure 5. Execution time of MapReduce algorithm for matrix
multiplication

V. CONCLUSION

In this paper the analysis of dataflow and parallelization
capabilities of Hadoop is illustrated on the example of
matrix multiplication algorithm. The dataflow is analyzed
through evaluation of the execution timeline of Map and
Reduce functions, while the parallelization capabilities
are considered through the utilization of Hadoop's Map
and Reduce tasks. The results of the implementation for
various parameter sets in distributed Hadoop environment
consisting of 18 computational nodes are given. It is
shown that the optimal cluster utilization is when the total
number of tasks is equal to the number of cores.

VI. ACKNOWLEDGMENT

The research was supported in part by the Serbian
Ministry of Education, Science and Technological
Development (Project TR32012).

VIL

Ciric, Vladimir, et al. "Tropical algebra based framework for error
propagation analysis in systolic arrays." Applied Mathematics and
Computation 225 (2013): 512-525.

Wang, Guanying, et al. "Using realistic simulation for
performance analysis of MapReduce setups." Proceedings of the
Ist ACM workshop on Large-Scale system and application
performance. ACM, 2009.

Rakumar Buyya, James Broberg, Andrzej Goscinski, "Cloud
Computing: Principles and Paradigms", Willey, 2011.

REFERENCES
(1]

Vianna, Emanuel, et al. "Analytical performance models for
MapReduce workloads." International Journal of Parallel
Programming 41.4 (2013): 495-525.

Ganapathi, Archana. "Predicting and optimizing system utilization
and performance via statistical machine learning." (2009).
Zivanovi¢ S. Filip, Ciri¢ M. Vladimir, Stojanovi¢ M. Natalija,
Milentijevi¢ Z. Ivan. "Optimized One Iteration MapReduce
Algorithm for Matrix Multiplication". IcEETRAN, 2015.

Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.
Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a flexible
data processing tool." Communications of the ACM 53.1 (2010):
72-77.

White, Tom. "Hadoop: The definitive guide." O'Reilly Media,
Inc., 2012.

	Volume 1
	Dataflow of Matrix Multiplication Algorithm through Distributed Hadoop Environment

