
34

ReingIS: A Toolset for Rapid Development and

Reengineering of Business Information Systems

Renata Vaderna, Željko Vuković, Gordana Milosavljević, Igor Dejanović

University of Novi Sad, Faculty of Technical Sciences, Chair of Informatics, Serbia

{vrenata, zeljkov, grist, igord}@uns.ac.rs

Abstract—ReingIS is a set of tools for rapid development of

client desktop applications in Java. While it can be used to

develop new applications, it is primary intended use is for

reengineering existing legacy systems. Database schema is

extracted from the database itself and used to generate code

for the client side. This remedies the fact that most existing

systems do not have valid documentation.

I. INTRODUCTION

Enterprises often use their information system (IS) for a
long time. Maintaining such systems can become hard and
expensive. They may use libraries, frameworks or even
languages that are no longer actively maintained. This can
also lead to security threats. Developers who are fluent in
technologies used to develop the IS may become scarce.
These are some of the reasons why reengineering of
existing legacy systems may be necessary. The new
information system must take into account existing data
structures, persisted data, business processes and flows
modeled by the legacy system.

An ideal starting point for developing a new IS would
be the technical documentation of the old one. However,
such documentation can often be incomplete, not properly
maintained (describing the initial version of the legacy
system without reflecting changes that have been
performed over time) or even non-existent. Therefore,
some reverse engineering is usually needed first.
Developers may also seek information from the user
documentation if it is available. Users themselves can also
participate in the process. The goal of these efforts is to
replicate functionality of the legacy system while
preserving or migrating its contained data.

ReingIS toolset consists of a database schema analyzer,
a code generator and a framework. The database analyzer
extracts the schema information (tables, columns, types,
constraints, etc.) from the database itself. A graphic user
interface then allows the developer to define information
that could not be read from the schema, like labels and
menu structure. Afterwards, the code generator generates
components on top of the generic enterprise application
framework. The result is an application the users can run
straight away in order to inspect it and note necessary
changes. These changes are then made using the generator
GUI and the process is repeated until satisfactory results
are achieved. The toolset also provisions inserting
manually coded components and modifications in such a
way that subsequent code generation will not overwrite
manual changes.

ReingIS toolset facilitates quick introduction of new
team members or in-house programmers who maintained
the legacy system. The problem with object-oriented
technologies is that they are too sophisticated – successful

designing and programming using objects takes well-
educated and mentored developers, not novices. Classes in
class libraries serving as building blocks are too small so
the novice has no support. With coarse-grained
components and tools built upon the knowledge and
experience of senior team members, a novice gets enough
support to almost immediately be productive, with the
opportunity to gradually master the secrets of modern
technologies.

II. RELATED WORK

 JGuiGen [1] is a Java application whose main purpose
is generation of forms which can be used to perform
CRUD (Create, Read, Update, Delete) operation on
records of relational database tables. Similarly to our
application, JGuiGen can work with a large number of
different databases. On top of that, code generated by
JGuiGen handles usage by multiple users. Information
regarding the database tables is not entered manually. The
database is analyzed and descriptions of its tables and
their columns are stored in a dictionary, optionally
accompanied by comments added by the user with the
intention of describing certain elements in more detail, as
well as the database schema change history.

When defining a form, it is possible to choose a table
contained by the previously mentioned dictionary which
will be associated with it. One graphical user interface
component is generated for each column of the table and
its properties can be customized. Furthermore, JGuiGen
also puts emphasis on localization, input validation,
accessibility standard [2], and ease of generation of
documentation. On top of that, it enables creation of
simple reports, which are usually quite significant to
business applications.

However, unlike our solution, it does not provide a way
in which a user would be able to specify positions of user
interface components. They are simply placed one below
the other. Additionally, the number of components which
can be contained by one tab cannot be higher than 3, while
our solution does not enforce this limitation. Associations
between two forms cannot be specified using JGuiGen,
which means that this feature would have to be
implemented after all forms are generated. Similarly, there
is no support for calling business transactions.

In [3] the authors use a domain specific language (DSL)
to describe tables and columns of a relational database and
how they are mapped to user interface components, such
as textual fields, lists, combo boxes etc. Description of
columns should also contain instructions on how to lay
these components out – their vertical and horizontal
positions and lengths for components which have it. The
generator then uses this information to generate fully

6th International Conference on Information Society and Technology ICIST 2016

35

functional forms which can perform various operations on
records of previously specified tables. The authors prefer
textual notation to a visual one stating better support for
big systems as the reason. However, it can be noticed that
this solution, just like previously described one, does not
support associations between forms, although it is a quite
important concept for all, and especially more complex
business application. Furthermore, it is not possible to
describe and generate activation of business reports and
transactions. Finally, as mentioned, this solution demands
manual description of tables and columns instead of
analyzing the database meta-schema, making the whole
process more time consuming and error-prone.

Module for generating application prototypes of the
IIS* Case tool [4] is another interesting project which
generates fully functional applications which satisfy
previously defined visual and functional requirements,
allowing records of database tables to be viewed and
edited. The process of generation of these applications
includes generation of UML (User Interface Markup
Language) documents which specify visual and functional
aspects of the applicative system and their interpretation
which uses Java Renderer. This interpreter transforms
UML specifications into Java AWT/Swing components.
Furthermore, the module contains Java classes which
provide the ability to communicate with the database and
pass parameters and their values between forms. Visual
properties of the applicative system can be defined by the
user by choosing one of the available user interface
templates and specifying visual attributes and groups of
fields. This is done using another module of the tool.
Generation of subschemas of types of forms, whose
results provide information which can be used to create
SQL queries, is done before the application is generated.

The main difference between this module and our
solution lays in the fact that the IIS* Case module is
supposed to be used when developing new systems, while
ReingIS is optimized to be used when reengineering
existing projects with the desire of keeping already
existing database schema.

III. IMPLEMENTATION

ReingIS was developed using Java programming
language and enables generation of a fully functional
client side of a business application based on the meta-
schema of an existing database. The architecture of the
system is shown in Fig. 1. The application for specifying
user roles and permissions is referenced as “security”.
Each component of ReingIS will be described in more
detail in the upcoming sections.

The framework provides a generic implementation of
all basic concepts of business applications: standard and
parent-child forms, data operations (viewing, adding,
editing, deleting and searching data), user interface
components which enable input validation, activation of
reports and stored procedures. For this reason, the
framework makes development of business applications
easier and quicker. Since all of the important elements
were already implemented and tested, that does not need
to be done when creating each specific form.
Implementation of application elements within the
framework follows our standard for user interface
specification [5].

1) User interface standard of business applications

The most important elements of our standard, supported

by the framework are: standard and parent-child forms
and form navigation. The complete description can be
found in [5, 6].

Standard form was designed with the intention of
making all data and operations which can be performed on
them visible within the same screen. Standard operations
(common for all entities) are available through icons
located in the upper part of the form (toolbar), while
specific operations (reports and transactions) are
represented as labeled buttons and located on the right
side of the form.

Navigation among forms includes zoom and next
mechanisms. Zoom mechanism enables invocation of the
form associated with the entity connected with the current
one by association, where the user can pick a value and
transfer it back to the form where zoom was invoked. On
the other hand, next mechanism provides the transition
from the form associated with the parent entity to the form
associated with the child entity in a way that the child
form shows only data which was filtered according to the
selected parent.

Parent-child form is used to show data which has a

hierarchical structure, where every hierarchy element is

modeled as an entity in the database and is shown within

its standard panel. Panel on the nth level of the hierarchy

filters its content based on the chosen parent on the (n-1)th

level.

2) Implementation of generic standard and parent-

child forms

The core component of the framework is the generic

implementation of the standard form (Fig. 2), which
allows creation of fully functional specific forms by
simply passing description of the table associated with the
form in question, its columns and links with other tables,
as well as the components which will be used to input
data.

Figure 1. Architecture of the system’s framework

’s Framework

6th International Conference on Information Society and Technology ICIST 2016

36

1..1

1..*

zoomElements

1..1

0..*

lookupElements

1..1

0..*

zoomMap

1..1

0..*

nextElements

1..1

1..*

nextElementProperties

0..*

1..1

parentForm

0..*

1..1

childForm

1..* 1..1

dbTable

1..1

1..*

columns

1..1

0..*

zoomMap
Column

-

-

-

-

-

-

-

name

type

label

unique

order

pesentInTable

size

: String

: int

: String

: boolean

: int

: boolean

: int

Table

- name : String
StandardForm

Zoom

-

-

tableName

className

: String

: String

ZoomElement

-

-

from

to

: String

: String

LookupElement

-

-

lookup

lookupLabel

: String

: String

NextElement

-

-

-

tableName

tableLabel

className

: String

: String

: String

NextElementProperties

-

-

from

to

: String

: String

PrentChildForm

Figure 2. Class diagram of standard and parent-child forms, the

framework’s core components

The information about the tables and its columns which
are passed to the generic forms are represented with
classes Column and Table. Attributes of these classes are
used during the GUI construction phase, as well as for
dynamic creation of database queries and retrieving their
results. This eliminates the need to write any additional
code for communicating with the database.

The description of the table's links with other tables is
necessary for generic zoom and next mechanisms and is
represented by the following classes: Zoom, ZoomElement,
LookupElement, NextElement and lastly
NextElementProperties. Classes NextElement and
Zoom contain data related to the tables connected with the
current one, as well as names of Java classes which
correspond to forms associated with those tables (attribute
className). The name of a class is all that is needed to
instantiate it using reflection. Classes ZoomElement and
NextElementProperties contain information regarding
the way in which the columns of one table are mapped to
the columns of the other one. This is important for
automatic retrieval of the chosen data when zoom
mechanism is activated and for automatic filtering when a
form is opened using next mechanism. If additional
columns of tables connected through the zoom mechanism
with the current one should be shown (for example, name
and not just id of an entity), their names and labels should
be specified as well. Class LookupElement is used for this
reason.

 Validation of the entered data can be enforced on
the form itself by using specially developed graphical user
interface components. The query is not sent to the
database unless all validation criteria is met, which
reduces its workload. These components are:

 ValidationTextField – represents a textual field
which can be supplied with validation data, such as
the minimal and maximal possible length of the
input, indicator if the field can only contain digits
or other characters as well, the minimal and

maximal value for numerical input, indicator if the
field is required, and, finally, patterns, i.e. regular
expressions that the input value is checked against
(for example, this can be used to validate an e-mail
address).

 DecimalTextField –field which is used to enter
decimal values. The input is aligned to the right
side and the thousands separator is automatically
shown when needed. Maximal length of the
number and the number of decimals can be
specified.

 TimeValidationTextField – field used to input
time as hours, minutes and seconds.

 ValidationDatePicker – component which
extends Jcalendar component, which is
licensed under GNU Lesser General Public
license.

The generic parent-child form was implemented as two
joined standard forms linked through the next mechanism.
Creation of a specific form of this type only requires two
previously constructed standard forms to be passed.

3) Reports and transactions
Calling previously created Jasper [7] reports and stored

procedures can be done through a menu item of the
application's main menu, as well as inside standard forms.
It is necessary to define parameters needed by the
procedure or a report, if there are any. Everything else is
done automatically. Framework also provides a generic
parameters input dialog, which needs to be extended and
supplied with specific input components.

B. Analyzer

The analyzer uses the appropriate Java Database
Connectivity (JDBC) driver and establishes connection
with the database which needs to be analyzed and, using
java.sql.DatabaseMetaData class, finds the information
regarding its tables and their columns, relations and
primary and foreign keys. The end user doesn't need to
know which JDBC driver and Database Management
System (DBMS) are used, which means that a large
number of different databases can be analyzed.

Based on the retrieved information, the analyzer creates
an initial, in-memory, specification of the business
application (i.e. instances of the StandarForm class are
created), using the following transformation rules:

 Every table is mapped to a standard form

 Every column of the database tables is mapped to
an input component contained by the form

 Names of the columns and tables are used as
labels of components and forms, in that order

 Types of the input components corresponding to
the columns are determined based on the types of
those columns. A textual field is added when the
column is of a textual type (char, varchar), a date
input component is added when the column is of
a date type, a textual field which automatically
enforced validation which only enables numbers
to be entered is added when the column is of a
numerical type

6th International Conference on Information Society and Technology ICIST 2016

37

0..1

1..1

standardFormDialog

0..1

1..1

parentChildDialog

0..1

1..1

menuDialog 1..1

0..*

tables

<<create>>

0..1

1..1

current

1..1

0..*

forms

1..1

0..*

parentChildForms

1..1

0..*

menus

0..1

1..1

project

0..1
0..*

<<calls>>

0..1 0..*

0..1

0..*

0..1

1..1

model

0..1 1..1

connection

1..1 0..*

columns

0..1

1..*

0..1

1..*

0..1

1..*

0..1

1..*

0..*

1..1

table

0..*

1..1

childForm

0..*1..1

parentForm

MainFrame : 1

StandardFormGeneratorDialog : 1

ParentChildGeneratorDialog : 1

MenuGeneratorDialog : 1

PropertiesPanel

<T>

Model

Table

ModelFactory

Project

AppElement

{abstract}

StandardForm

ParentChildForm

Menu

JFrame

(javax.swing)

JDialog

(javax.swing)

Connection

(java.sql)

Column

BasicGenerator

{abstract}

EnumGenerator MainFormActionGenerator MainMenuGenerator OperationActionGenerator OperationParametersDialogGenerator

ParentChildGenerator

StandardFormGenerator

MainFrame : 2 MenuGeneratorDialog : 2

ParentChildGeneratorDialog : 2

StandardFormGeneratorDialog : 2

JPanel

(javax.swing)

Figure 3. Class diagram of the analyzer, generator and its user interface

 Length of a textual field, as well as width of the
corresponding column in the form's table are
determined based on the length of the database
column

Analysis of the database meta-schema is done when the
application is run for the first time or when it is connected
to a different database. The acquired data, regarding found
database tables and their columns, is saved to a XML file,
which is then loaded when the application is started again.
Therefore, the time consuming database analysis process
is avoided unless it is necessary. If needed, the user can
activate the analysis from the application at any time.

The class which provides the mentioned functionality is
ModelFactory, while the class Model represents the
database meta-schema, as shown in Fig. 3. This class
contains a list of tables discovered during the analysis.
Each of them is described by class Table, which contains
a list of columns represented by class Column.

This default specification created by the analyzer can
later be changed and enhanced through the generator's
components, grouping of fields into tabs and panels,
creation of zoom, next and lookup elements and parent-
user interface by the users. The mentioned application

enables additional specification of labels of forms and
child forms etc.

C. Code Generator User Interface

The user interface of the generator application consists
of three dialogs represented by classes
StandardFormGeneratorDialog (for specifying standard
forms), ParentChildGeneratorDialog (for specifying
parent-child forms) and MenuGeneratorDialog (for
specifying menus) – Fig. 3. These dialogs are activated
through the main form of the generator application.

The mentioned dialogs rely on instances of classes
StandardForm, ParentChildForm and Menu to store data
needed to generate forms and menus, such as sizes, titles
and input components of forms and names and structures
of menus.

When a form is first created, default settings are set (for
standard forms, they are based on the analysis results).
Therefore, the generator can generate usable program
code straight away. These settings can me modified by the
users through certain panels contained by the mentioned
dialogs. These panels are instances of class
PropertiesPanel – a parametrized class which enables

6th International Conference on Information Society and Technology ICIST 2016

38

various properties of an element associated with it to be
changed (class AppElement). Class AppElement is
extended by all classes which represent an element of a
business application or one of its parts. In order to enable
work to be saved and edited on a later occasion, the term
project is introduced. It is represented by class Project,
which contains lists of defined standard and parent-child
forms and menus.

1) Specifying standard forms
Dialog for specifying standard forms enables

modification of default form settings set by the analyzer
i.e. based on the database meta-schema. The following
properties of a form can be adjusted: label, size, associated
database table, initial mode (add, search, view/edit),
allowed data operations, grouping of contained
components into tabs and panels, links with other forms
through zoom and next mechanism, specific operations
activated from the form – reports and transactions. One
database table can be associated with multiple forms (Fig.
4). Additionally, the following properties of form
components can be set: label, indicator if its content can
be edited, position – specified using MigLayout [10]
constants, validation rules etc.

Figure 4. Dialog for specifying standard forms

The dialog consists of:

 A part for choosing associated database table –
within green borders

 A part for selecting and searching previously
created forms – within red borders

 A part for setting basic form properties – within
blue borders

 A part for specifying links with other forms,
component groups and component properties –
within orange border

Fig. 7 shows an example of a generated standard form.

2) Specifying parent-child forms
Dialog for specifying parent-child forms (Fig. 6)

enables users to choose two standard forms, one of which
will be the parent, while the other one will be the child.
After this step is performed, a new parent-child form is
created and default initial values of its properties, such as
title and size, are set. Therefore, the corresponding Java
class can be generated at any moment and the form's
current appearance can be previewed if so desired.

Figure 6. Dialog for specifying parent-child forms and the resulting form

3) Specifying menus
Menus of business applications can be specified using

another dialog of the generator application. It is possible
to create menus with submenus, which can contain
additional submenus as well. The following properties can
be defined for menu items: name, shortcut, description
(mapped to tool tip text), form or report which will be
activated by clicking on the item. If the menu item
activates a report, it is necessary to specify parameters
which will be passed to it. This dialog is shown in Fig. 5.

D. Code Generator

Using the database metadata and additional information
given by the developers, code is generated (using
Freemarker [9] template engine) for the framework
components. This includes the main form and its menus,
standard forms and parent-child forms. Generated form
classes extend generic classes that are a part of the
framework. It can be noted that the generator supports
synchronization with changes made to the database after
the specification of the forms was started. If some
columns were added or removed from a database table,
the corresponding components are automatically added to
or removed from the appropriate form. Similarly, when a
database table is deleted, the form associated with it is
also deleted.

Figure 5. Dialog for specifying application menus

6th International Conference on Information Society and Technology ICIST 2016

39

E. Security

Handling of security concerns for the generated
application is based on the Apache Shiro framework [8].
Shiro is a Java framework that supports authentication,
authorization, cryptography and session management.
Within the framework each operation is given an identity
string. Based on the currently active user and the
operation identity it can be determined if the operation is
allowed. A user interface was implemented in order to
allow managing users and groups and assigning them
access rights. It is also possible to import existing users
from the legacy system.

In order to facilitate construction of the user interface
for the end application, a set of classes was implemented.
They extend the standard Swing classes and make them
aware of the security context. When these components are
used, user interface elements are automatically disabled or
hidden if the current user is not allowed to perform the
action that they are associated with. SecureAction is an
abstract class which extends Swing’s AbstractAction.
The actionPerformed() method is redefined and made
final. This method uses Shiro to authorize the action and
then calls the action() method. This method is to be
implemented by classes extending the SecureAction
class. The identity string of the action is returned by
getActionIdentity() method, which is also to be
implemented by subclasses. Classes SecureJButton,
SecureJMenu and SecureJMenuItem extend classes

JButton, JMenu and JMenuItem respectively and are to be
used with SecureAction. All classes register themselves
as an AuthenticationListener in Shiro. This enables
them to react interactively when the current user is
switched.

IV. CONCLUSION

The toolset presented here enables reengineering of
legacy enterprise information systems. It uses existing
database structure as a basis for replicating functionality
and preserving data contained in the original system. After
adding user interface details that could not be extracted
from the schema (labels, menus, etc.) developers can run
the code generator which produces generated code on top
of the generic framework, resulting in a runnable
application. This application can then be presented to the
users who can verify its functionality. Since it is possible
to repeat the code generation while maintaining all
settings and customization, the process also supports
forward engineering and incremental development.

The process could be further improved if we were able
to extract user interface elements in addition to the
database structure. In order for the approach to remain
applicable for a wide variety of applications, this requires
development of a generic UI element extractor. Each
plugin could provide extraction facilities for one
technology, e.g.: COBOL screens, .NET forms, Swing
frames, web pages, etc.

REFERENCES

[1] JguiGen, http://jguigen.sourceforge.net

[2] A11y standard, http://a11y.me

[3] Lolong S, Kistijantoro A, Domain Specific Language (DSL)
Development for Desktop-based Database Application Generator,
International conference on Electrical Engineering and Informatics,
Bandung, Indonesia, 17-19 July 2011.

[4] Ristic S., Aleksic S., Lukovic I., Banovic J., Form-Driven
Application Development, Acta electrotechnica et Informatica, Vol.
12, No. 1, 2012, pp. 9–16, DOI: 10.2478/v10198-012-0002-x

[5] Milosavljevic G., Ivanovic D., Surla D., Milosavljevic B.,
Automated construction of the user interface for a
CERIF‐compliant research management system, The Electronic
Library, Vol. 29 Iss: 5, pp.565 - 588

[6] Perišić, B., Milosavljević, G., Dejanović, I., Milosavljević, B.,
UML Profile for Specifying User Interfaces of Business
Applications, Computer Science and Information Systems, Vol. 8,
No. 2, pp. 405-426, DOI 10.2298/CSIS110112010P, 2011.

[7] Jasper Reports, http://jaspersoft.com/

[8] Apache Shiro framework, http://shiro.apache.org/

[9] Freemarker Java Template Engine,
http://freemarker.incubator.apache.org/

[10] MigLayout - Java Layout Manager for Swing, SWT and JavaFX2,
http://www.miglayout.com

Figure 7. A generated standard form

6th International Conference on Information Society and Technology ICIST 2016

http://jguigen.sourceforge.net/
http://a11y.me/
http://shiro.apache.org/
http://freemarker.incubator.apache.org/

	Volume 1
	ReingIS: A Toolset for Rapid Development and Reengineering of Business Information Systems

