
Domain specific agent-oriented programming
language based on the Xtext framework

Dejan Sredojević*, Dušan Okanović**, Milan Vidaković**, Dejan Mitrović***, Mirjana Ivanović***
* Novi Sad Business School, Novi Sad, Serbia

** University of Novi Sad/Faculty of Technical Sciences, Novi Sad, Serbia
*** University of Novi Sad/Faculty of Sciences, Novi Sad, Serbia

dsredojevic.vps@gmail.com, {oki, minja}@uns.ac.rs, {dejan, mira}@dmi.uns.ac.rs

Abstract— The agent technology represents one of the most
consistent approaches to the development of distributed
systems. Multiagent middleware XJAF, developed at the
University of Novi Sad, presents a runtime environment that
supports the execution of software agents. To solve the
problem of interoperability, we propose a domain-specific
agent language named ALAS, whose main purpose is to
support the implementation and execution of agents on
heterogenous platforms. To define the structure of the
language, a metamodel and a grammar of the ALAS
language has been created, in accordance with the
requirements and needs of the agents. This paper describes
the construction of the compiler and the generation of
executable Java code that can be executed in XJAF.

I. INTRODUCTION
A software agent is a program that works autonomously

while performing tasks that are assigned to it [1]. These
are target-oriented computer programs which react to their
own environment. They work without direct supervision
and perform tasks for the end user or other programs.
Features of software agents include autonomy,
intelligence, mobility, persistence and communication [2].
Autonomy implies that agents must be able to
independently perform tasks. Mobility implies that agents
have ability to leave the place where they currently
execute a task and to continue the execution of the task on
another node in the network [3][4]. Communication
implies that agents must be able to communicate with
other agents in the system.

A system that consists of several software agents is
called a multiagent system - MAS. Such agents are
capable of collectively solving a task that is most difficult
to be solved by a single agent or monolithic system. Its
main features include agent lifecycle management,
messaging, security mechanisms, and service subsystem
that gives agents the ability to access resources, execute
complex algorithms, etc [1].

The rest of the paper is organized as follows. The
Related work section describes a couple of existing agent-
oriented programming languages (AOPL) that had a
strong influence on the development of ALAS. The
multiagent middleware Extensible Java EE-based Agent
Framework (XJAF) [5] is described in the third section. In
the fourth section of the paper, an agent-oriented
programming language ALAS is described [4][6][7]. The
fifth section presents the results of testing the ALAS using
the Eclipse framework, along with the Xtext-based plugin
installed. Last section gives concluding remarks.

II RELATED WORK
Agent-oriented programming (AOP) [8] is a software

development paradigm aimed at efficient development of
software agents and multi-agent systems. AOP shares
many features with object-oriented programming (OOP),
and it is based on agents which definition include agent
state, actions, services and messaging system. Since
object-oriented and agent-oriented paradigm share many
programming concepts, development of an OOP-inspired
AOPLs is a natural process.

One of the first AOP languages was AgentSpeak. The
AgentSpeak programming language was introduced in
[9]. It is a natural extension of logic programming for the
beliefs desires-intentions (BDI) agent architecture, and
provides an abstract framework for programming BDI
agents.

JACK [10] is a light-weight framework for rapid
development of multi-agent systems. It is based on the
Java programming language, but offers new keywords
and language constructs. The accompanying compiler
produces pure Java code, which allows for each JACK
agent to be used plain Java object.

Agent mobility is an essential property of agents.
However, this property can be quite complex to
implement. Any AOPL should hide this complexity from
end-users. SAFIN [11] and CLAIM [12] hide complex
support for agent mobility from the programmer. They
hide the functional complexity from developers by
providing them with simple, yet powerful programming
constructs.

JIAC V [13] is a multi-agent system that can execute
agents developed in pure Java or by using an
accompanying AOPL named JADL++. Similarly to
AgentSpeak, an action of a JADL++ agent can be either
private, for internal use, or public, in which case it is
called a service and offered to other part of the system.

We have introduced the early version of the ALAS
programming language in papers [6] and [7]. This early
version have used javacc [16] parser generator, while this
paper proposes the Xtext framework for the language
development. We have decided to use Xtext, since we
wanted to start with the ECore metamodel, to separate
validation from compilation and to have Eclipse plugin
made for ALAS without additional programming. This
plugin offers both validation and code generation to any
programming language.

ICIST 2015 5th International Conference on Information Society and Technology

Page 495 of 522

III XJAF DEVELOPMENT FRAMEWORK
XJAF is a multiagent middleware based on the FIPA

standards [14]. FIPA is a non-profit organization which
has produced a set of specifications that enable
interaction between the agent and the framework, as well
as interaction between agents.

The main tasks of XJAF are to provide an efficient
environment for the execution of its agents and to provide
a reusable interface to external clients [2]. XJAF is
designed as a modular system that contains specialised
modules called managers. Each manager is relatively
independent module responsible for handling certain
agent management tasks.

The latest version of XJAF is focused on using the
advantages of computer clusters [15]:

- Load balancing – XJAF agents are automatically
distributed in a cluster in order to reduce the
load on individual computer nodes.

- State replication and failover: state of each agent
is copied to other nodes making them resistant to
hardware and software faults.

The main drawback of the original XJAF architecture
was the fact that it was limited to the Java programming
language. The consequence of this approach was that the
agents needed to be written in Java, and could not interact
with agents in other, non-Java frameworks. To increase
the interoperability and enable its wider usage, XJAF has
been redesigned as a service-oriented architecture - SOA.
The multiagent framework based on SOA called SOM -
SOA-based multiagent system, kept Java EE as the
implementation platform, but managers were redefined as
web services [3][6]. This enabled that implementation of
SOM could be done in many modern programming
languages that support web services (Java, JavaScript,
Python, C#, etc.). Interoperability is also increased and
external clients and independent tools can employ agents
through web service interfaces.

However, the use of web services does not solve all the
problems. Considering that other programming languages
can be used for the implementation of an agent
framework, it is impossible to write an agent that will
successfully execute on any platform. The problem
becomes apparent when the agents that are written in
different programming languages, moving through the
network arrive to a SOM that is implemented in some
other programming language. For example, agent
developed using Java programming language can not be
easily adapted to agent framework implemented for
example, in Python. To solve this problem the authors of
XJAF have developed a new agent language - ALAS [7].

IV SPECIFICATION OF ALAS LANGUAGE

The main goals of ALAS are:
- Hot compilation - to ensure that the agents can be

executed in target platform, regardless on the
underlying programming language,

- Hiding complexity of agent development from
programmers.

Agents must adapt to the environment in which they
arrive. When they arrive to some framework that is

implemented in a programming language X, they must be
automatically transformed to source code written in X.

According to these requirements it is necessary to
implement a compiler for the ALAS language. Input
parameters for this compiler are the original file written
in ALAS, and the identification of the destination
platform, such as Java, JavaScript, Python C#, etc.
Depending on these parameters, the compiler generates
executable code depending on the destination platform.
If the platform on which the agent arrived has been
implemented in the Java programming language, it will
be Java byte code. In this way, developers are able to
focus on solving concrete tasks and do not have to take
care about interoperability or details of the
implementation of SOM.

A. Development of ALAS using Xtext framework
Due to restrictions of the javacc system previously

used for ALAS transformation [16], development of
ALAS has been restarted using Xtext. This framework is
most commonly used for domain-specific language
development [17].

Xtext enables the development of agent-based domain-
specific language ALAS, so it could meet the
aforementioned requirements. The development of
domain-specific language using Xtext is performed using
specialized languages - Java and Xtend. Xtend is a
statically-typed programming language which translates
to comprehensible Java source code. Syntactically and
semantically Xtend has its roots in the Java programming
language but it is improved in many aspects. Xtext is an
open-source framework for the development of domain-
specific languages - DSL. It is based on ANTLR [18].
Unlike standard parser generators, Xtext not only
generates a parser, but also a class model for the abstract
syntax tree and a fully featured, customizable Eclipse-
based IDE.

B. Domain-specific language ALAS modeling
In the last decade, great advancements appeared in the

modeling field and defining of domain-specific
languages. These languages allow developers and domain
experts to focus on specific domain problems instead of
dealing with the programming language features.
Formation of OMG (Object Management Group), an
organization that gathered the most important industrial
subjects in order to establish standards in the field, has
greatly contributed to the acceleration of the development
methodology for designing software controlled by models
[19]. OMG initiative called MDA (Model-Driven
Architecture) represents one of the most important
movements in the development of software controlled by
models. MDA is a specialization of a broader approach
called MDE (Model-Driven Engineering) which is a
development metodology focused on creating domain
models. The domain-specific languages are programming
languages designed for solving problems in a specific,
clearly defined, domain.

MOF (Meta-Object Facility) is an OMG standard,
which represents the core of infrastructure for support to
MDA [20]. MOF is a specification that enables

ICIST 2015 5th International Conference on Information Society and Technology

Page 496 of 522

cooperation between different domains and different
modeling language and is a mechanism for formally
defining modeling languages, i.e. metamodels. MOF is a
four layered architecture whose layers are marked as M0,
M1, M2 and M3 (Fig. 1). MOF can be viewed as an
abstract syntax of DSL which used to define the
metamodel.

There are several implementations of MOF infrastructure
which more or less follow specification standards.
Implementation that is used to create a metamodel of
ALAS is ECore. ECore was developed by the Eclipse
Foundation and EMF project, which basically is an
implementation of EMOF 2.0. ECore is also open source
and is part of the Eclipse platform [21].

C. Implementation of ALAS metamodels, by using
ECore meta-metamodel

To define domain-specific language ALAS, a
metamodel has been created first i.e. class diagram of our
domain-specific language. ALAS metamodel is
implemented by using ECore meta-metamodel which is a
part of Eclipse framework.

To represent the metamodel graphically, the Eclipse

framework uses Sirius 2.0 plugin [22]. ALAS ECore
metamodel may be defined manually, using the tree
editor, but this kind of modeling is tiresome and
impractical. Other, often used method is to define the
metamodel using the class diagram which is accessible in
existing modeling tools. In Fig. 2 you can see the class
diagram, which defines the structure of the domain-
specific language ALAS.

D. Grammar of ALAS language
Created metamodel is then used for automatic generation
of the ALAS grammar. After the integration of Xtext
plugin into the Eclipse framework, it is possible to create
an Xtext project which will implement the previously
mentioned ECore metamodel. The grammar of ALAS
language is shown in Listing 1. Considering that the
graphic representation of the ALAS metamodel does not
fully define the structure of the language, it is necessary to
modify the generated grammar by adding keywords and
identifiers that are listed under the single quotes and new
rules which can be created only after import of certain
packages.

Considering that Xtext is compatible with Java
programming language, existing Java based rules such as:
XimportSection, XblockExpression, XE -

xpression, XMoveExpression, Xprimary -

Expression and XvariableDeclaration can be
usedafter import package from Listing 1, line 4. These
rules are automatically added to ECore metamodel of the
language and marked as red frame in Fig. 2.

Each rule in the grammar represents an appropriate
class in the ALAS metamodel diagram. The grammar
contains a set of declared events, variables, functions,
services, actions and agent states. The grammar is based
on the EBNF - Extended Backus-Naur Form - Listing 1.

Figure 1. Four-layered metamodel architecture

Figure 2. ALAS metamodel

ICIST 2015 5th International Conference on Information Society and Technology

Page 497 of 522

After any change in the language grammar, it is necessary
to generate the appropriate artifacts, i.e. language
infrastructure.

The first rule in the grammar - DomainModel is always
used as an input or initial rule. In this case, the

DomainModel may or may not (quantifier ?) contain an
imports. Also, it contains an arbitrary number (quantifier

*) of AbstractElement rules that will be added to the
parameter elements (quantifier +=). Within the
AbstractElement rule the PackageDeclaration or
AgentDefinition rule (quantifier '|') can be used.
Within the PackageDeclaration rule the name of the
package is defined the program will be written and again
within the same package – PackageDeclaration, the
choice can be made between PackageDeclaration rule
or AgentDefinition rule.
AgentDefinition rule defines an agent. Agent is

defined with keyword agent, then his name, and then the
body of an agent in brackets ('{' and '}'). Agent can
contain an arbitrary number of Feature rules. The
Feature rule allows us to write any of the following six
rules: AgentStates, AgentState, Variable, Func-
tion, Service or Action. Some of these rules can be
added within another, and this can lead to compiler error,
since the compiler does not know which rule to execute.
To prevent this, we use the '=>' quantifier. It gives an
advantage to the rule, in front of which is located. This
way the compiler first applies this rule.

The difference between the first two rules,
AgentStates and AgentState is as follows: within the
AgentStates rule an arbitrary number of Variable
rules can be defined, and within the AgentState rule
only one Variable rule can be defined. This definition
enables us to define a variable in the form in Listing 2.

One of the future goals of the ALAS programming
language will be to provide mobility of an agent. One of
the functions that will be used for this purpose is the
'move' command - XMoveExpression. This command
is specified in grammar of the language and is
implemented within the XblockExpresion. To achieve
this, the XPrimaryExpression rule has been redefined
from the source of the Xbase grammar by adding the
XMoveExpression rule. The XMoveExpression rule
introduces a new keyword 'move' and within the
brackets that follow a String argument is placed. This
argument represents an address to which the agent shall
move (Listing 4, line 32).

Because the agent is written in ALAS, regardless of the
task or problem that it solves, it can not be used as such in
some environment that uses a different programming
language. This is the appropriate moment to introduce the
conversion - mapping of an agent to the destination
programming language. The next section will describe the
process of generating Java code from a program written in
ALAS.

E. Translating program from ALAS agent language to
Java code

To generate code for target platform, from an agent
written in ALAS language, we can use automatically
generated class that is provided by Xtext – it is generated
with other language infrastructure constructs. The name of
the used grammar must be provided at the beginning of
the grammar file. ALAS uses the Xbase.xtext
grammar, which can be seen in the line 1 of Listing 1.
Based on the built-in grammar that is used, the compiler
generates packages and classes that will be used for
mapping to the concrete programming language. If the
grammar uses Terminals.xtext, it will generate the
package generator and within it classes that will be used

1. int value = 1;

2. String str = “host”;

Listing 2. An example of variable definitions by using ’Variable’
rule

1. grammar rs.ac.uns.alas.Alas with

org.eclipse.xtext.xbase.Xbase

2.

3. generate alas

"http://www.ac.uns/rs/alas/Alas"

4. import

"http://www.eclipse.org/xtext/xbase/Xbase"

5.

6. DomainModel:

7. importSection = XImportSection?

8. Elements += AbstractElement* ;

9.

10. AbstractElement:

11. PackageDeclaration | AgentDefinition ;

12.

13. PackageDeclaration:

14. 'package' name = QualifiedName '{'

15. Elements += AbstractElement*

16. '}' ;

17.

18. AgentDefinition:

19 'agent' name = ValidID '{' features +=

 Feature* '}' ;

20.

21. Feature:

22. =>AgentStates | AgentState | =>Variable |

 Function | Service | Action;

23.

24. AgentStates:{AgentStates}

25. 'state' '{'states += Variable* '}' ;

26.

27. AgentState:

28. 'state' state = Variable ;

29.

30. Variable:

Type = JvmTypeReference name = ValidID ('='

exp = XExpression)?';' ;

31.

32. Function:

33. Function = FunctionDeclaration body =

Body ;

34.

35. Service:

36. 'service' service =

FunctionDeclaration body = Body ;

37.

38. Action:

39. Action = ActionDeclaration body = Body

;

40.

41. FunctionDeclaration:

43. type = JvmTypeReference name=ValidID

44. '('(params += FullJvmFormalParameter

(',' params += FullJvmFormalParameter)*)?')' ;

45.

46. XMoveExpression returns XExpression:

47. {XMoveExpression}'move'

 '('(str=STRING)')' ';' ;

Listing 1. Part of ALAS grammar

ICIST 2015 5th International Conference on Information Society and Technology

Page 498 of 522

for mapping to different programming languages. Since
the Xtext is closely related to the Java programming
language and ALAS is Java-like language, the
Xbase.xtext grammar is used. The parser will not
generate the generator package but jvmmodel package and
within it AlasJvmModelInferrer class that will be used
to translate an agent written in ALAS to the Java program.

The AlasJvmModelInferrer class is implemented
in the Xtend programming language. The main goal of the
ALAS is that it can be transformed to any programming
language, not only to Java. To achieve this, it was
necessary to reimplement the AlasJvmModelInferrer
class with all the rules that will be used by the parser to
generate any destination code. To do so it was necessary
to implement the AlasModelGenerator class and the
doGenerate method, which generates destination code
using rules from the AlasJvmModelInferrer class (Fig.
3).

To implement a service, rules in the Listing 3 were

used. Listing 4, lines 14 to 33, shows a service written in
the ALAS language, while Listing 5, lines 18-28, shows
Java implementation of that service. The Java code was
generated from code in the Listing 4, applying the rules
from the Listing 3. The parameter keyword was used to
define service parameters.

Considering that agents are Java-like and that writing

the body of services, functions and actions uses
XblockExpression, the parser easily generates the body
by applying the body rule. If the target language is not
Java, the process of generating code is more complex and
mapping is then performed in the AlasModelGenerator
class.

F. Agents code validation
One of the main advantages of a domain-specific

language is the possibility of static validation of code
segments. Xtext provides the ability to define validation
rules and constraints. During the generation process an

appropriate validator package is automatically generated.
This package contains an implementation of the validation
rules and required constraint definitions.

The AlasValidator class implements various
constraints: checking the validity of local and global
variables, checking arguments and names of functions,
services and activities. In order to invoke validation, the
@Check annotation has been introduced. This annotation
triggers the validation process. An example of validation
triggering is shown in the Fig. 4.

V TESTING AND RESULTS
The framework is tested using the Eclipse framework

with the Xtext-based plugin installed. This plugin enables
users to create a new project with the ALAS source code
in it - test.alas file in Listing 4. The code is
automatically converted to Java code and part of the
resulting code is displayed in Listing 5.

One of the requirements of XJAF framework is that
generated code should contain onMessage method - a part
of the generated onMessage method is shown in Listing 5,

Figure 4. Example of Validation

1. Service : {

2. members += f.toMethod(f.service.name,

 f.service.type ?: inferredType) [

3. documentation = f.documentation

4. visibility = JvmVisibility.PRIVATE

5. for (p : f.service.params) {

6. parameters +=

 p.toParameter(p.name, p.parameterType)

7. }

8. body = f.body.exp

9.]

10.}

Listing 3. The rules for mapping services from ALAS to Java

Figure 3. Working principle of parser generators

1. package example.agents{

2.

3. agent TimeSync {

4.

5. state {

6. String startingHome;

7. String next;

8. }

9. state String remaining;

10.

11. String host = "192.168.0.1";

12. int n;

13.

14. service void syncTimers (String hosts,

double time){

15. if(startingHome == null){

16. startingHome = host;

17. }

18. else if (startingHome.equals(host)){

19. System.out.println("I'm back home");

20. startingHome = null;

21. }

22. //apply the time

23. print("Setting the system time to "+

time);

24. print("ALAS command:

applySystemTime(time)");

25.

26. //go to the next host

27. if(hosts.length() == 0) {

28. next = startingHome;

29. }

30. else

31. parseHosts(hosts);

32. move("192.168.0.2");

33. }...

Listing 4. Part of test.alas

ICIST 2015 5th International Conference on Information Society and Technology

Page 499 of 522

lines 29 to 44. Within the onMessage method the data is
received in the JSON format [23]. JSON or JavaScript
Object Notation, is an open standard format that uses
human-readable text to transmit data objects consisting of
attribute–value pairs. All the necessary JSON-related
libraries must be imported and invoked. By specifying the
onMessage method, parser automatically imports all
relevant classes in the executable Java class.

VI CONCLUSION
Based on the previous work on agent domain-specific

language ALAS [4][6][7], we can conclude that the Xtext
is the favorable environment for the development of
domain-specific languages like ALAS because not only
the syntax and validation can be defined, but even the
code in an arbitrary target programming language can be
generated. By using the Xtext framework it is possible to
write agents which will execute specific tasks, but which

will also be automatically converted to the executable
code of the target platform. Because of these advantages
Xtext framework is a better tool than the javacc which
was used in the previous version of ALAS [7]. This tool
can be used to generate source code for other agent-
oriented languages, as well as general purpose languages
used for agent-oriented programming [24].

Future work for the ALAS language will include
implementation of the AlasModelGenerator class
which will be able to transform ALAS code to an arbitrary
programming language. So far, we have been able to
manually transform ALAS code to JavaScript and Python,
so the AlasModelGenerator will be implemented to
transform ALAS code to any of those two programming
languages. The future work will include analysis of
suitability of other programming languages for the XJAF
framework. Finally, it is necessary to integrate the Xtext-
based plugin into the XJAF framework, so the ALAS code
transformation could be performed outside the Eclipse
framework. That way, agents written in ALAS will be
able to migrate between different XJAF servers.

VII REFERENCES
[1] Vidaković, M., Ivanović, M., Mitrović, D., Budimac,

Z.: Extensible Java EE-based agent framework -
past, present, future. In: Ganzha, M., Jain, L.C. (eds.)
Multiagent Systems and Applications, Intelligent
Systems Reference Library, vol. 45, pp. 55 - 88.
Springer Berlin Heidelberg, 2013

[2] M. Ivanović, M. Vidakovi´c, D. Mitrović, and Z.
Budimac. Evolution of Extensible Java EE-Based
Agent Framework. In G. Jezić, M. Kusek, N.-T.
Nguyen, R. Howlett, and L. Jain, editors, Agent and
Multi-Agent Systems. Technologies and
Applications, volume 7327 of Lecture Notes in
Computer Science, pages 444–453. Springer Berlin
Heidelberg, 2012.

[3] Mitrović, D., Ivanović, M., Budimac, Z., Vidaković,
M., - An overview of agent mobility in
heterogeneous environments, Proceedings of the
workshop on Applications of Software Agents, pp.
52 – 58, 2011

[4] Mitrović, D., Ivanović, M., Budimac, Z., Vidaković,
M., ―Supporting heterogeneous agent mobility with
ALAS, ComSIS, Vol. 9, No. 3, pp. 1203-1229, 2012

[5] Bădică, C., Budimac, Z., Z., Burkhard, Hans-Dieter,
and Ivanović, M., „Software Agents: Languages,
Tools, Platforms“, Computer Science and
Information Systems, ComSIS 8(2), pp. 255–296,
2011

[6] Mitrović, D., Ivanović, M., Vidaković, M.,
„Introducing ALAS: a novel agent-oriented
programming language“, In Symposium on
computer languages, implementations and tools,
SCLIT 2011, Greece, pp. 19–25, 2011

[7] Mitrović, D., Ivanović, M., Vidaković, M.,
Sredojević, D., “Okanović, D., Integracija agentskog
jezika ALAS u Java agentsko okruženje XJAF“, XX
naučna i biznis konferencija, 9-13. Mart 2014. pp.
457-461, 2014

[8] Shoham, Y., ―“Agent-oriented programming“,
Robotics Laboratory Computer Science Department,
Stanford University Stanford, CA 94305, USA, 1993

1. @Stateful

2. @Remote(AgentI.class)

3. @SuppressWarnings("all")

4. public class TimeSync {

5. @AgentState

6. private String startingHome;

7.

8. @AgentState

9. private String next;

10.

11. @AgentState

12. private String remaining;

13.

14. private String host = "192.168.0.1";

15.

16. private int n;

17.

18. private void syncTimers(final String hosts,

 final double time) {

19. boolean _equals =

Objects.equal(this.startingHome, null);

20. if (_equals) {

21. this.startingHome = this.host;

22. } else {

23. boolean _equals_1 =

this.startingHome.equals(this.host);

24. if (_equals_1) {

25. System.out.println("I\'m back home");

26. this.startingHome = null;

27. }

28. }

 //..

29. public void onMessage(final ACLMessage msg)

 {

30. if(msg.getPerformative() ==

31. Performative.REQUEST){

32. String s = msg.getContent().toString();

33. JSONParser parser = new JSONParser();

34. JSONObject json;

35. try {

36. json = (JSONObject) parser.parse(s);

37. String serviceName =

 json.get("serviceName").toString();

38. switch (serviceName){

39. case "syncTimers":

40. String hosts =

 json.get("hosts").toString();

41. double time =

Double.parseDouble(json.get("time").toString())

42.

43. syncTimers(hosts, time);

44. }//..

Listing 5. Part of TimeSync.java

ICIST 2015 5th International Conference on Information Society and Technology

Page 500 of 522

[9] Anand S. Rao, “AgentSpeak(L): BDI agents speak
out in a logical computable language”, Springer
Berlin Heidelberg, number 1038, pp 42–55, 1996

[10] M. Winikoff, “Jack™ Intelligent Agents: An
Industrial Strength Platform,” in Multi-Agent
Programming: Languages, Tools and Applications,
Springer US, pp 175-193, 2005

[11] D. Xu, G. Zheng, and X. Fan, “Information and
Software technology”, pp. 435-442, 1998

[12] A. E. Fallah-Seghrouchni, and A.Suna, “CLAIM and
SyMPA: A Programming Enwironment for
Intelligent and Mobile Agents,” in Multi-Agent
Programming: Languages, Tools and Applications,
Springer US, pp. 95-122, 2005

[13] B. Hirsch, T. Konnerth, and A. Heßler, “Merging
Agents and Services – the JIAC Agent Platform,” in
Multi-Agent Programming: Languages, Tools and
Applications, Springer US, pp. 159-185, 2009

[14] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/SC00001L.pdf,
12.10.2014.

[15] Mitrović, D., Ivanović, M., Vidaković, M., Budimac,
Z., Extensible Java EE-based Agent Framework in
Clustered Environments, 12th German Conference,

MATES 2014, 23-25. Septembar, Štutgart,
Nemačka, Proceedings, pp. 202-215, 2014

[16] JavaCC, https://javacc.java.net/ 15.11.201.
[17] Xtext,

http://www.eclipse.org/Xtext/documentation.html,
12.10.2014.

[18] ANTLR, http://www.antlr.org, 15.10.2014.
[19] Object Managament Group, http://www.omg.org

15.11.2014.
[20] Meta Object Facility, http://www.omg.org/mof

15.11.2014.
[21] Eclipse Modeling Framewok,

http://www.eclipse.org/modeling/emf 15.11.2014.
[22] Sirius 2.0, http://eclipse.org/sirius/ 20.11.2014.
[23] JSON

http://docs.oracle.com/javaee/7/tutorial/doc/jsonp.ht
m, 18.10.2014

[24] Pokahr, A., Braubach, L., Haubeck, C., Ladiges, J.,
“Programming BDI agents with pure java,” In:
Muller, J.P., Weyrich, M., Bazzan, A.L. (eds.)
Multiagent System Technologies, Lecture Notes in
Computer Science, vol. 8732, pp. 216–233. Springer
International Publishing, 2014

ICIST 2015 5th International Conference on Information Society and Technology

Page 501 of 522

	VOLUME 2
	Domain specific agent-oriented programming language based on the Xtext framework

