
Orchestrating Yahoo! FireEagle location based service for carpooling
Dejan Dimitrijević, Ivan Luković, Vladimir Dimitrieski, Ivan Vasiljević

University of Novi Sad, Faculty of Technical Sciences

ABSTRACT

This paper proposes orchestrating Yahoo!’s

FireEagle public location based service to build web

and mobile applications intended to be used jointly for

a near real-time capable carpooling service.

1. INTRODUCTION

The number of cars on the roads today is ever-

increasing, increasing congestion, putting strain on the

available infrastructure, as well as diminishing

resources available for new car production. Instead of

producing ever more cars, and expanding the road

infrastructure, there are be better solutions for optimal

uses of all existing resources. One such already

existing solution is carpooling, allowing for more than

one person to use a single transportation vehicle, but

carpooling usually demands for the driver of the

carpooling vehicle to make prior arrangements with all

of the carpool requesting users, agreeing at least upon

a convenient pickup place.

The idea of this paper is to propose a carpooling

solution allowing carpool requesting users to make

requests and expect a response in near real-time once

at least one carpooling vehicle driver accepts the

incoming request. However, to achieve such a thing,

the precursor must be the existence of some location-

based service which would first allow for real-time

location sharing between the drivers and carpool

requesting users. Even though it is quite possible to

build such a location based service, this paper

proposes exploring orchestration of public location

based services (LBS) instead, incorporating their APIs

into the proposed carpooling solution.

The fact that the largest social network and search

engine providers such as: Facebook, Foursquare,

Google, Yahoo! already have built LBS solutions, and

have made them publically available along with their

corresponding APIs gives us confidence in their use.

Unfortunately, Facebook (Places) and Foursquare API

LBS solutions are not viable for carpooling system

envisioned, since they focus mostly on places,

primarily sharing textual venue descriptions of user

location’s and not exact GPS locations. Google

Latitude, on the other hand, uses exact GPS

coordinates, but currently limits the number of daily

location updates and thus real-time location sharing.

Yahoo!'s public LBS called FireEagle (FE) is a free,

service-offering website, that collects information

about its user's location updates. With explicit user's

permission, other previously registered, and thus FE

trusted web and mobile applications can also easily

either update that information or access it. That way,

FireEagle, exposed to third-party use via methods of

its API, is designed for helping other applications

respond to its users' locations, using their location data

to power games, local information services, friend-

finders, and potentially for friend vehicle tracking

also. Similar vehicle location data has been used

already for building taxi service automatic vehicle

location and dispatch systems (AVLDS) [1].

FireEagle allows for sharing users' locations with other

sites and services safely through a secure server and a

standardized authorization protocol – OAuth. All users

can themselves decide what to share about their

location with any other site or application that uses

FireEagle as its location provider, choosing how much

detail to share with those applications (exact point –

GPS data, neighborhood, city, state, country).

Having all of the above in mind, this paper proposes

building a web and mobile application, both using

Yahoo!’s FireEagle (FE) as their underlying LBS. The

two applications (web and mobile) work in sync,

jointly providing their users with a single service,

allowing for public carpooling requests and

acknowledgement messages to be exchanged between

users. All users of those applications, providing user

consent is previously explicitly given to FE, can track

each other’s statuses (willing to carpool, currently

busy, etc.) and possibly location. Unfortunately, FE

disallows tracking and locating multiple users

simultaneously by mobile applications, so a web

application which is privy to a general-purpose

public/secret token must be used instead. Such a token

allows FE registered web applications to issue the, so

called, general-purpose FE API method calls, best

suited for locating multiple carpool driver users with a

recent certain (non-busy) status update, located within

the given radius of a given geo-location centered area.

Those non-busy users, located within a given area can

then in turn notified of the incoming carpooling

requests. Once one of them accepts such a request, the

carpool requesting users will be notified back which

user accepted their carpooling request. Afterwards,

just by accessing FE, both user’s mobile applications

can track each other.

124

Because relying upon a public LBS foregoes the need

to develop one’s own location-based service allowing

for real-time location sharing between the carpool

vehicle drivers and carpool requesting users, in this

position paper the case is made for an exploratory use

of the public LBS solution as an alternative to an in-

house LBS solution. Description of the principle

design alongside some of the issues stemming from

having to comply with the terms of use policies

covering the use of an already built LBS have been

addressed in the next section. After that section,

various other components of the solution are identified

with their infrastructure requirements. And finally, the

current state of application development is given along

with the proposed evaluation strategy to be undertaken

to test real-world solution viability.

2. PRINCIPLE DESIGN AND POLICY ISSUES

As said, all web applications, registered as such with

Yahoo!’s FireEagle (FE), can make general-purpose

FE API method calls. This means that, besides being

able to call distinct user-specific tracking and location

updating FE API methods (such as user and update),

every FE registered web application can also call API

methods for accessing information of all users of the

web application in question (e.g. finding all users who

recently updated locations, and all users within a

certain location – by, respectively, using recent,

within, and lookup API method calls – the last one also

being a general-purpose API method call, but not

necessarily returning user’s locations, being used

instead only for reverse geocoding parameters).

The point of the given is, that by using a FE-issued

web application's general-purpose access tokens, one

can potentially intersect the results returned by both

within and recent API method calls (forming a

resulting list of user-specific access tokens, which

identify those web application specific users who

updated their locations recently in a particular area of

interest, or in a location within a given lookup area).

For a workflow diagram, which graphically illustrates

the carpool seeking and related actions, please notice

the figure 1 diagram. In application's simplified use-

case scenario, this would mean that a user seeking a

carpool ride (1) could potentially rely upon the

proposed FE registered web application and its FE API

method calls (2,3) to find carpool drivers (4) which

have only recently "checked-in" to/or near a

location/area in which the carpool requesting users are

currently located. Also, driver mobile application will

update that user’s location with FE only when that user

is willing to accept another carpool request.

Cloud

1

2 (recent)

3 (within)

Yahoo! FireEagle

FE Users recently updated locations within given area

web & mobile
token storage

4

Proposed
web-app

5

Please notice also that the resulting set of FE users who

recently updated their locations within a given area is

located at the bottom of the diagram. That set of

carpool drivers corresponds to a list of the user-

specific access tokens previously returned in an

intersection of the within and recent FE API method

call results. The web application uses those same

tokens to identify and sequentially "call out"

individual carpool drivers, which in turn either agree

to a pickup of a carpool requester or disallow the

request (illustrated by a green or red link colors).

Once a "near-by" recently checked-in user of the

proposed web application willing to accept a carpool

request is found, the web application then sends back

the data to the original carpool requesting user about

that agreeing user, but sends related user-identifying

data to that user’s FE registered web application user-

specific access token (5). Related and not identical

data, because use of a web application user-specific

and particularly general-purpose API method calls by

FE registered mobile applications is not allowed by FE

terms of use [2]. The original resulting user-specific

access tokens are then internally used to find

corresponding mobile application user-specific access

tokens (represented by key symbols). That token will

then in turn be passed along by the web application

back to the original carpool requesting user.

Beside for ensuring the FE policy compliance, this

process is done for another rather important reason.

Once both carpool driver and the carpool requesting

web application users are informed of their mobile

application’s user-specific access tokens, they could

then potentially use just those tokens and apps to track

each other via FE registered mobile application user-

specific API method calls. Both users can then track

each other by just querying FE and not the web

application, reducing proposed web application’s

bandwidth costs. Since both users now know each

other’s user-specific access tokens, location tracking

can be done by just calling the user-specific FE API

method named user, sufficiently passing in just the

aforementioned user-specific access token parameter.

Figure 1 – Simplified application use-case scenario

125

Thus, little or almost no traffic is being exchanged or

directed to no other service than FE, which means that

there should be no network traffic directed towards the

proposed web application. Since FE is intended and

used for world-wide web-scale use, the proposed web

and mobile applications should also be scalable to a

near-equivalent world-wide web-scale use status just

as large as Yahoo!’s LBS would allow.

However, so that this could be more easily achieved,

the proposed web and mobile applications should

allow for some non-periodic/ajax polling techniques

also. Besides periodic polling, for communication

with the web application/server, using HTTP, the

users’ clients can now use technologies such as forever

frames, long polling and server-sent events. A new

development in modern HTML5 clients is the

websocket support, which provides full-duplex

communication channels over a single TCP

connection. The latter of the listed technologies gets

used, the lesser amount of resources get allocated on

the web server for the same communication task. But,

even using HTML5 (TCP) websockets and offsetting

much of the traffic to FE LBS, doesn’t guarantee that

at a certain point, a single instance web server

wouldn’t be overrun by a large number of concurrent

users, C10K problem [3]. This is why the "elasticity"

of the cloud-deployed architecture, where multiple

load-balanced web server instances are allocated,

comes in handy. However, since multiple web server

instances are load-balanced in the cloud, such servers

need a preferably fast message backplane, which will

be discussed more in the next section.

3. IMPLEMENTATION AND RELATED ISSUES

As said, the proposed web and mobile applications

could be scalable to the near-equivalent of the

FireEagle’s world-wide web-scale use status. This is

in large part due to the fact that, even though the

backbone of the carpooling modern request/response

mechanisms is performed by the logic of the proposed

web and mobile application, the most network

resource demanding operations, location updating and

tracking are almost completely offset to FE. Since FE

is a Yahoo! developed product, its resources are

considered plentiful for world-wide web-scaled

operations within this paper. So, what remains is to

implement the backbone logic of the web and mobile

applications used during the process of searching for

and accepting of carpool driver users in line with

previously outlined basic design features.

Since the FE platform uses an OAuth (version 1.0a)

implementation as its authorization protocol, it is

necessary to first understand and then implement

OAuth clients for the web and mobile application, both

of which differ slightly.

The main preposition behind OAuth is that to use a

resource of a third-party (in this case location data

stored in FE), one need not be forced to implement

their own authorization, if that third-party (FE) has

implemented their own (OAuth) authentication and

authorization already. If the application relying on the

aforementioned third-party data is then willing to

“trust” that third-party’s authentication data, and the

third-party is also willing to extend their end-user

authorization to allow for authorized access to the end-

user’s data by relying application, OAuth, in essence,

offers a standardized approach for implementing

exactly such a thing.

Yahoo!’s FireEagle LBS also allows for exactly that,

be it for a relying web or mobile (or even desktop)

applications, previously registered with that LBS.

Once a relying web application is registered with FE

(by its Yahoo! registered developer) it will be issued a

set of two token pairs, one for a user-specific and the

other for general-purpose FE API method calls, the

latter pair being only available to applications

designated as web and not mobile. The initially issued

token pair to all application types, usually referred to

as consumer tokens, consists of a key and a secret

token – the key being used to unanimously identify the

“consumer” i.e. the application requesting access to a

specific user’s location data and the latter token being

used to sign that request. One such request by a web

application is illustrated in the diagram figure 2

bellow.

Figure 2 – OAuth web and mobile authentication

workflow diagrams taken from FireEagle API documents

126

As of OAuth version 1.0a all requests coming from the

users of a relying (web) applications must contain a

non-null callback URL, to which the FE redirects back

any user who has set about to authorize access to their

location data by the relying web application. As the

proposed web application, or better say, its previously

registered FE user starts the location data access

authorization process, FE receives an initial request

formed using the consumer token pair issued back

when the application was initially registered by its

developer with FE. If the consumer token signed

request is recognized by FE as being properly signed,

coming with a consumer token from a previously

registered web application, then the web application

will receive back a so-called temporary request token,

which will be only valid for a limited time. If then

another request by the proposed web application is

sent back to FE, containing the previously issued

request token, once the request token is checked for its

validity the user will be rendered a FE web form to

either confirm or deny access to their location data by

the initially requesting relying web application. In case

the user disallows the access, the authorization process

is stopped there, however if they allow access the

request is sent back to a callback URL location,

presumably a URL belonging to the relying web

application, which can then strip that callback request

of a query parameter, the so-called access token. At

that point the access token and its secret counterpart

used for signing future requests is all that is needed by

the relying web application to access the user-specific

location data of the user to whom the access token

belongs.

The whole process for a mobile OAuth client is quite

similar with the exception that the callback URL

should be specified as “oob” (out of band). This is

done because legacy mobile devices may not all be

able to receive back and then even interpret callback

URLs and for that reason instead of using the callback

URL the authorization process yields an access token

which is rendered on a FE web page, just after the user

on a web form authorizes access to their user-specific

location data by the relying mobile application, which

could then be re-entered manually. The reason for this

OAuth client implementation difference for mobile

devices lies mostly in the fact that FE insists that the

authorization for mobile applications be done in the

context of a (mobile device’s) web browser (allowing

all FE users to recognize the familiar interface along

with the address) and not in an embedded web browser

control. This essentially causes disconnect in the flow

seen for web applications, where the users needs to

enter the access tokens manually via browser, shown

in figure 2 again outlined in non-solid dashed lines.

For the newer generation mobile devices one might be

able to relieve the situation somewhat by registering a

custom protocol on a mobile device, which refers to

the mobile application, as a callback URL sent initially

along with the request for the temporary request token.

If the mobile device’s web browser is integrated into

the mobile OS and capable of interpreting the callback

URL request coming in with a custom protocol, that

request can be made to re-open / activate the mobile

application which could again strip the request for a

query parameter representing the user’s access token

automatically.

As that explains most of the logic needed for both web

and mobile OAuth client implementation, there

remains the need to further explain the logic needed

for the server portion of the proposed web application

which will be responsible for storing of access token

pairs. Since the deployment platform of choice is the

cloud, chosen primarily due to its “elasticity”, which

will be crucial in case if the proposed web and mobile

application use becomes very wide-spread (C10K),

currently considered solution for chaining access

token pairs issued for web and mobile applications is

Access Control Service (ACS), part of Microsoft

Windows Azure cloud platform. ACS is responsible

for allowing uniformed access to claims issued by

various identity providers (in our case Yahoo!’s

identity store) to relying party applications (in this

case the web and mobile applications). Due to the fact

that the relying party application is in fact two

applications, mostly due to the FE terms of use, each

user interested in being a carpool driver will need to

have two access tokens (one for updating their location

which is searchable by the web application and

another for mobile application use). This overhead of

having to track pairs of access tokens would be easily

solved by the ACS, since each identity provider’s

claims always contain an unambiguously identity-

determining piece of data, in case of the Yahoo!

identity provider (i.e. user’s Yahoo! registered email

address). So, once the user is unambiguously

identified in both web and mobile applications, by

their email address easily accessible via ACS, their

location and status will be easily transferable to and

from the context of the web and mobile applications,

which is essentially most of the authentication logic

that is needed.

As for logic determining the carpool drivers’ statuses,

the logic for that can be as easy as this: if a certain

carpool driver has "recently" (FireEagle allows for

maximum sequential updates once each 10 seconds or

6 times per minute) updated their location within the

web application’s domain, they will be considered as

a user willing to take on passengers by the proposed

127

http://fireeagle.yahoo.net/developer/documentation/error_codes

web application, thus their web application access

tokens will be subject to being listed by the recent and

intersected with within FE API method results.

Recapping, once a mobile application carpool

requesting user issues a request for a pickup, their

mobile device transmitted location will be used to start

the web applications within FE API call, allowing the

web application to locate all carpool drivers within the

area containing the previously given location. If that

search yields results, another API call is issued, this

time for the recent method. The resulting user-specific

access token list will represent all the users who are

recently updating their location, thus they are willing

to accept carpool requests. Once the intersection of

recurring within and recent API calls yields some

results, each intersecting user-specific access token

will be used to find the corresponding ACS identity,

using which the proposed web application will be

capable of notifying all those users of the incoming

carpool pickup requests on a separate channel

(preferably using at least a long pooling one, if the

TCP websocket is not supported on their mobile

devices). If and when those users accept a carpooling

request and the proposed web application is notified of

that on the separate channel, which could be easily

implemented using open-source websocket compliant

SignalR [4] library, that user’s corresponding user-

specific mobile application access token will be

transferred back to the original carpool requesting

mobile application user, as will that user’s user-

specific mobile application token be transferred to the

carpool driver accepting user. At that point, both users

know of each other’s mobile application user-specific

access tokens, and in conjunction with the consumer

key and consumer secret mobile application tokens

which will come baked into the mobile application

itself, they will be capable of tracking each other via

just FE queries as explained before.

Even though most, if not all, the traffic used for mutual

locating and tracking of carpool agreed users is offset

to FE, there’s still a chance of our proposed web

application’s web server being saturated by a large

simultaneous connections made by carpooling and

requesting users (C10K). To overcome such a

potential, but possible problem, especially in world-

wide web-scale use, multiple load balanced web

servers must be introduced, along with a backplane

messaging mechanism for their mutual

synchronization. To achieve this, one might store all

incoming requests and their states in a relational

database, but since the proposed solution tends to be

near real-time, the issue of storing incoming request

states becomes a possible bottleneck when joining data

from large data sets. As this is a possibility due to an

unpredictable large number of concurrent users which

may attempt access at any moment, it is for that reason

that a NoSQL memory-caching data store could be

used instead. Since Redis [5] is an in-memory

persistent NoSQL database, using a custom data

model with it is proposed for building multiple

pub/sub state-differentiated memory-caches. This also

ensures that transformation needed to store states in

the database is reduced to just a choice of which cache

to store the incoming request in (incoming fresh,

broadcasted, timed out…) with each Redis instance

cache being subscribable to and having inbuilt time-

to-live (TTL) which could implicitly incur state

transitions once timeouts occur. All of the described

implementation details given are again represented at

high abstraction level using the diagram given in the

figure 3.

Yahoo! FireEagle

Redis
Pub/Sub
Finished
TTL: 30m

Redis
Pub/Sub

Broadcasted
TTL: 45s

Redis
Pub/Sub

Fresh
TTL: 3m

Redis Message Backplane

Load-balanced web servers

LB IIS
#1

LB IIS
#2

Windows
Azure
ACS

Oauth 1.0a OAuth 1.0a

Figure 3 – High abstraction level implementation diagram

128

4. CURRENT APPLICATION DEVELOPMENT

Currently, both web and mobile applications are

proof-of-concept and not of public staging or

production quality thus no real-world evaluation has

been done yet. Based on few open source projects,

none of which however were up-to-date, both

applications’ source codes had to be previously

updated for current FireEagle compatibility, adding

OAuth 1.0a support. OAuth version 1.0 protocol was

found to be subject to an attack vector in 2009, so

version 1.0a includes an obligatory non-null callback

URL to be always passed along when authorizing

users. The common open-source library behind both

applications is FireEagleNet [6], which unfortunately

supported only OAuth version 1.0. Future web and

mobile application development direction includes

converging both mobile and web client application

presentation layers into HTML5, supported by web

socket real-time communication features if the used

device browser is compatible.

5. EVALUATION STRATEGY

As this solution not yet fully implemented and

deployed, to assess the viability of the proposed web

solution some unknowns should be evaluated more

thoroughly proposing this strategic order: 1) network

latency – during the process of locating and notifying

individual carpool drivers FE LBS must be queried

using its API method calls, the unknown there is what

amount of latency, short of infinite (unreachable LBS),

would be deemed acceptable. The proposed metric for

this would be to ascertain the processing time needed

for current state of the art commercial solutions,

calculating the latency needed for break-even

performance. Alongside break-even performance

figures, the evaluation could also judge the

performance figures for performance with exceptions

and best case ones, allowing for relative performance

to be judged afterwards. 2) NoSQL performance

comparison to traditional SQL, relational model,

databases – having presumed the fact that the NoSQL

solution using a custom data model would over

perform its relational model counterpart, it is essential

to judge how much faster exactly such a solution could

be. The metrics for this that is yet to be determined,

however, a possibility would be to construct both

relational and non-relational data models needed for

the proposed solution to function. Once both data

models are functional one could precisely estimate

execution times for the most frequent data queries,

comparing NoSQL to SQL easy. 3) reduction of

network bandwidth – even though it is quite evident

that offsetting the bandwidth traffic used for location

tracking to public FE LBS would decrease the amount

of bandwidth used by the proposed web and mobile

applications, it is unclear exactly what amount, both

percentage and exact-wise would be saved. To assess

the percentage-wise figure one should have real-world

estimates to compare with first, estimating the average

bandwidth figure needed for location of a first carpool

driver willing to accept the carpooling request. This

evaluation could only be made once sufficiently high

enough number of real-world carpool requests were

made and been answered within the solution.

6. CONCLUSION & FUTURE WORK

The expected benefit of the proposed carpooling

solution would be significantly reduced total cost of

ownership (TCO) figures for implementing and

maintaining it, compared to a baseline TCO figure

needed to develop and implement one’s own LBS

from scratch, not factoring in even the additional costs

of having to run it. However, by basing it upon

Yahoo!’s FireEagle and its resources, we would still

keep the proposed solution world-wide web-scalable,

which should keep it on par compared to the current

state of the art solutions used commercially by recent

ride sharing startup services such as Lyft or Sidecar.

Our next step would be to complete the

implementation prototype and evaluate it in the real-

world, comparing various design options along the

way. If a near real-time solution is deemed not yet

possible using the public FE LBS due to network

latency cloud-server issues only, a custom public

open-source FE API compliant replacement could be

implemented in-house separately and integrated, still

providing location tracking as a service. By logging

GPS data from participating carpooling vehicle drivers

and carpool requesting users, we could use that data to

provide some fee-based recommender systems [7]

allowing for further development and refinement of

our proposed carpooling solution’s automatic dispatch

algorithms, as well as offsetting the maintenance cost.

REFERENCES

[1] Z. Liao. “Real-time Taxi Dispatching using Global

Positioning Systems”. Communications of the ACM,

46(5):81-83, 2003

[2] Yahoo! FireEagle API Documentation -

http://fireeagle.yahoo.net/developer/documentation

[3] C10K - http://en.wikipedia.org/wiki/C10k_problem

[4] SignalR - https://github.com/SignalR/SignalR

[5] Redis - http://redis.io

[6] FireEagleNet - http://code.google.com/p/fireeaglenet/

[7] Jing Yuan, Yu Zheng, Liuhang Zhang, Xing Xie. T-

Finder: A Recommender System for Finding Passengers

and Vacant Taxis. Submitted to TKDE, under second

round review, 2012

129

http://fireeagle.yahoo.net/developer/documentation
http://en.wikipedia.org/wiki/C10k_problem
https://github.com/SignalR/SignalR
http://redis.io/
http://code.google.com/p/fireeaglenet/

