
Edge computing system for large-scale
distributed sensing systems

Miloš Simić, Milan Stojkov, Goran Sladić and Branko Milosavljević
Faculty of Technical Sciences, Novi Sad, Serbia

milos.simic@uns.ac.rs

Abstract—Cluster orchestration systems achieve high
resource utilization, efficient task-packing, process-level
isolation. They support high-availability applications with
features that minimize fault and recovery time. These
systems helped large internet companies like Google,
Amazon, and Facebook to satisfy all their applications and
big data workloads. With this ability, these systems can run
a dozen of tasks at scale, to satisfy all operational needs. But
current systems are not that easily applicable in domains
with constant data flow with processing on the very edge of
the network. We present a system for edge computing, with
efficient resource utilization, orchestration, and task-
packing. With these properties, a system provides the ability
to run user-defined tasks in clusters defined on the edge of
the network for constant data acquisition, manipulation,
and processing

Keywords: distributed systems, big data, service-oriented
architectures, cloud computing, edge computing, orchestration,
containers

I. INTRODUCTION
Nowadays we are facing a massive shift away from the

standard, centralized computing model that is provided
through cloud computing paradigm.
This shift returns the distribution of computing power

back to the edge of the network. Edge network is the idea
of connecting sensors to programmable automation
controllers (PAC) which handle processing, storage, and
communication. The basic concept of edge computing is
to leverage new generation technologies, processes,
services, and applications that are built to take an
advantage of this new infrastructure. The key difference
with this model is that it operates and it is deployed on
computing hardware closer to the edge of the network.
Thus, it is bringing the cloud computing model closer to
the ground.
With this new architecture of distributed edge devices,

we also need to consider how to manage them and
orchestrate jobs to those devices for best resource
utilization.
The problem with the current model is that heavily

involves centralized architecture. Issues such as latency or
small-time delays, security, privacy, network reliability,
performance and many others are extremely difficult to
completely overcome in centralized computing models.
Even a small problem can set a motion to bigger
complicated issues [1][2]. For example, Amazon Web
Services (AWS) outage is a great illustration of how much
large parts of the Internet applications, services, and even
businesses depend on the cloud services. If we choose

cloud model approach though, then we have two options
for data processing: 1) collect all data, store it and then
process it - batch processing or 2) use fast data approach,
and process data as it is arriving - stream processing. But
both batch and stream options imply data must be sent to
some cloud provider’s cluster. Before processing such
data, usually some preprocessing operations (such as
filtering, cleaning, etc.) should be executed which involve
more time, and from what a cloud provider can
economically benefit [3].
Some new problems cannot be fully addressed using

just those options. Applications like autonomous driving,
smart cities, smart homes or even remote medicine all
have different requirements that cannot always be fully
addressed by the cloud in its current form. On the other
hand, cloud benefits from tools for cluster management
and resource orchestration to maximize resource
utilization. Such systems should be present in edge
computing architecture. Currently, all major cloud
providers and companies that are trying to solve those use
cases, design their applications and services in a standard,
cloud only, way. Some providing more services/features
than others, such as storing and data manipulation or
insight into data through data analytics, machine learning
and data science in general.
This paper is organized as follows. Section II present

design of edge computing system. Section III present
related work. Section IV summarizes conclusions and
briefly propose ideas for future work.

II. DESIGN

The system we propose in this paper is purely on
conceptual level. It is influenced by three proven systems
used for decades in production environments in large
companies for various parts of their systems: 1)
Orchestration engine from Google called Borg [4] and
it’s open source counterpart called Kubernetes [5], that
helps Google run their workloads efficiently with
maximum resource utilization, 2) Chord [6], a lookup
protocol for fast locating the node that store data item and
3) log-structured merge-tree (LSM tree) [7] append only
key-value data structure for efficient data storage
presented by Patrick O'Neil.
Our system is designed to be able to run tasks defined

by users in a similar way those tasks potentially would be
run in the cloud. We assume that there are sensors which
are scattered over some area and collect data. That data is
then forwarded to the distributed nodes which can store
data and run user-defined tasks. Since this part of the
system runs those tasks on data that is coming from some

Copyright 2018 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 36

sensing source on the edge, we ensure that data sent to
the cloud for future analyses is smaller and already pre-
processed in some degree. In this way, the system enables
faster time to market approach saving both, time and
money to users.
In order to gain maximum resource utilization from

these distributed nodes, we define a master process which
resides in the cloud and manipulates the information
about previous, active and future user tasks which will be
triggered.
The system we propose is separated into two major

parts: 1) master process that is responsible for
orchestration and task scheduling, storing information
about user-specified tasks, cluster topology and resource
utilization, 2) cluster of nodes, that is responsible for
storing data and running user-defined tasks.

1. Cloud master process
In the cloud, we would have logic that orchestrates

user-defined jobs, store and process metrics, keep secrets
and run user-defined microservices. Also, have engines to
process data collected from clusters.
Picture 1 shows high architecture overview of the cloud
system.

Picture 1. High overview of the cloud architecture

The job is a standard user-defined application, which can
be categorized into one of three different types: 1) batch
jobs, for standard batch processing over some collection
of data. This job should run only when data is available,
or at predefined time 2) events, this type of job should
react when some specific event happened in the system,
or if acquired data pass some predefined threshold 3)
streaming jobs, should continually do some processing on
data as it is arriving (long-running jobs). Every job
should contain direct acyclic graph (DAG) [8] which is
created when job transits from operation to operation and
result of every operation is stored to disk or memory
depending on user’s preference. This is done to prevent
data loss if the job fails or entire node fails or restart. If
fail happens, the job can continue from last saved
checkpoint. The orchestration process is composed of a
key-value store (optimized for scaling) and job scheduler.
Key-Value store [9][10] contains topology and
information of the edge, user-defined job definitions,
number of replicas for every job, the total amount of
computing resources such as CPU, RAM, disk storage in
every edge cluster, configuration for every specified job.

A job scheduler is responsible to find node, schedule
jobs there and always keep running a defined number of
jobs. Key-Value store is replicated in an odd number of
times. To prevent potential chaos, the consensus protocol
is responsible for maintaining global truth. Beside
orchestration process, in the cloud users can register their
own applications that will contain data from jobs they
submitted, run some analytics for data insights and
monitor their portion of the system with dashboard and
monitoring tools. Every part in the cloud is running as a
single service (microservice).
With this approach, we can more easily scale, and keep

the system always available [11][12]. All services should
be available to outside world through dashboards and/or
Representational State Transfer (REST) services, and
inside communications should be binary for less overhead.
Cloud should provide dashboards so that users can easily
monitor various parts of the system.

2. Edge cluster
The second part is edge cluster. The core concept here

is a node. Node is a computer that runs an operating
system, container engine, and a small daemon. Daemon
does all the communication with orchestration engine in
the cloud. He is also responsible for metrics collection,
and communication between nodes inside the cluster,
starting/stopping/restarting jobs. Since this tasks should
run in parallel, we propose using Actor model [13] where
daemon just pass the message to some of its children
tasks.
Nodes are connected in the cluster in peer to peer [14]

manner in order to eliminate a single point of failure and
to be easier to scale. All nodes are equal, there is no some
special node like the master node. Nodes that belong to
the same cluster form a distributed hash table (DHT)[6]
used for data storing, lookups, deletes but also run user-
defined jobs scheduled in orchestration engine in the
cloud.
All data stored in DHT is replicated by a user-defined

number of times in subsequent nodes to prevent data loss.
Nodes and data are hashed using consistent hashing
principles and all nodes that belong to the single cluster
are connected in one virtual ring. With this simple idea,
we can easily partition data so each node is only
responsible for a small portion of data. Consistent
hashing [15][16] is beneficial for two reasons: 1) if a
node join/leave a group, we just need to copy a small
amount of data over network because each node is only
responsible for small partition of data, 2) we store similar
data (same key) on the same place (same node) when we
do some calculation, since it is much faster because data
is already on the same node. By doing this we benefit
because we bring calculation to the data. Each node has a
retention policy, or how long will they keep the data.
Because these nodes are not high-end machines with a lot
of resources.
Picture 2 shows a high overview of a single edge node
with running processes.

37

Picture 2. High overview of single edge cluster node

The system must always be able to store new data.
Each node can discover other nodes that belong to the
same cluster using Gossip-based protocol [17]. Each node
in the ring knows only about a handful of nodes
clockwise from it. This is done in order to scale the whole
system. Each node can contact any other node in the
cluster for some data, and eventually will get information
where that data is actually stored. All communication
between nodes should be as fast as it can, so binary
protocols like HTTP/2 [18] should be used via remote
procure call mechanism (RPC) [19][20]. Every job that
runs on these nodes, should be packed in form of a Linux
container [21][22]. This gives us the better ability for
packing jobs on machines, easier orchestration and
separation between jobs on a single machine.
The benefit of this approach is that users are free to

define their own applications that are composed of
multiple different jobs, and can always change,
upgrade/downgrade or remove their applications
depending on workloads they need.

III. RELATED WORK

There are attempts both in academia and industry that
are trying to combine cloud with the edge, or to go even
further.
For example, Thinnect [23] is an IoT edge network

service provider which combines cloud and edge
computing. Their service is complementary to cellular
operators, offering high density, large scale, local
coverage, utilizing cost-efficient technologies. Since their
approach is more micro-controller based, for specific
tasks we need specific devices.
Nebula [24] is the project which goal is to be a Docker

orchestration for IoT devices and distributed services
(like CDN or edge computing). Users have the ability to
simultaneously update tens of thousands of IoT devices
all around the globe with a single API call, allowing users
to treat IoT devices like another distributed Docker
application. The project is at an early stage, but despite
all of that, as an idea, it provides a lot of potentials.
Mainflux [25] is highly secure, scalable, open-source

IoT platform written in Go and deployed in Docker. It
serves as software infrastructure and set of microservices
for development of the Internet of Things Solutions and
deployment of Intelligent products.

IV. CONCLUSION
Since we are facing massive shift from centralized

computing architectures, we should find a new way to
address problems with new applications like the internet
of things area and autonomous driving. Cloud computing
is a great tool used for many decades now, but its
centralized nature may not be well suited for this new
kind of applications. Since we are waste a lot of time and
money on storing filtering and preprocessing data in the
cloud we could consider the option to do preprocessing
where data is created and that is on the very edge of the
network. Thus edge computing model could be used to
help cloud computing paradigm and users to preprocess
data on the edge of the network, and only that data send
to further analysis and on that way accelerate time to
market for its users.
Security is a crucial part of every system, and this

paper does not cover this topic of overall system design.
The future work will focus more on the security of the
whole system, beyond just process insolation trough
containers. Also, we will focus on metrics collection and
keep the health of the entire system and every job
interdependently, and self-healing trough task
orchestration. Another important topic is configuration
management of every job. Since we are talking about
large-scale distributed sensing systems manual
configuration of every node is out of the question. We
must find a way to automate the whole process.

REFERENCES
[1] H. Gunawi, M. Hao, R. Laksono, A. Satria, J. Adityatama, K.

Eliazar, Why Does the Cloud Stop Computing? Lessons from
Hundreds of Service Outages, SoCC '16 Proceedings of the
Seventh ACM Symposium on Cloud Computing Pages 1-16

[2] J. Hamilton, On Designing and Deploying Internet-Scale Services,
Pp. 231-242 of the Proceedings of the 21st Large Installation
System Administration Conference (LISA '07) (Dallas, TX:
USENIX Association, November 11-16, 2007).

[3] R. Perry S. Hendrick. The Business Value of Amazon Web
Services Accelerates Over Time,
https://media.amazonwebservices.com/IDC_Business_Value_of_
AWS_Accelerates_Over_time.pdf, last accessed 21 april 2018

[4] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J.
Wilkes, Large-scale cluster management at Google with Borg,
Proceedings of the European Conference on Computer Systems
(EuroSys), ACM, Bordeaux, France (2015).

[5] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg,
Omega, and Kubernetes, ACM Queue, vol. 14 (2016), pp. 70-93.

[6] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.
Kaashoek, F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-
peer lookup protocol for Internet applications, IEEE/ACM
Transactions on Networking (Volume: 11, Issue: 1, Feb 2003).

[7] O'Neil, Patrick E.; Cheng, Edward; Gawlick, Dieter; O'Neil,
Elizabeth (June 1996). The log-structured merge-tree (LSM-tree).
Acta Informatica. 33 (4): 351–385. doi:10.1007/s002360050048.
Retrieved 2014-08-03.

[8] M. Fiore, M. Devesas Campos, The Algebra of Directed Acyclic
Graphs, Computation, Logic, Games, and Quantum Foundations,
2013.

[9] M. Berezecki E. Frachtenberg M. Paleczny K. Steele, Many-core
key-value store, IGCC '11 Proceedings of the 2011 International
Green Computing Conference and Workshops Pages 1-8.

[10] A. Nayak, A. Poriya, D. Poojary, Type of NOSQL Databases and
its Comparison with Relational Databases, International Journal of
Applied Information Systems (IJAIS) – ISSN : 2249-0868

38

Foundation of Computer Science FCS, New York, USA Volume
5– No.4, March 2013.

[11] N. Dragoni, I. Lanese, S, Larsen, M. Mazzara, R. Mustafin, et al..
Microservices: How To Make Your Application Scale. A.P.
Ershov Informatics Conference (the PSI Conference Series, 11th
edition), Jun 2017, Moscow, Russia.

[12] W. Hasselbring, Microservices for Scalability: Keynote Talk
Abstract, ICPE '16 Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering Pages 133-
134.

[13] C. Hewitt, Actor Model of Computation: Scalable Robust
Information Systems, eprint arXiv:1008.1459 2010.

[14] M. Bawa , B. Cooper , A. Crespo , N, Daswani , P. Ganesan , H.
Garcia-Molina , S. Kamvar , S. Marti , M. Schlosser , Q. Sun , P.
Vinograd , B. Yang, Peer-to-peer research at Stanford, ACM
SIGMOD Record, v.32 n.3, September 2003

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels. Dynamo: Amazon’s highly available key-value store.
SIGOPS Operating Systems Review, 41(6):205–220, 2007

[16] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web.
In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing (STOC), pages 654–663, 1997.

[17] A. Das, I. Gupta, A. Motivala, SWIM: scalable weakly-consistent
infection-style process group membership protocol, Proceedings
International Conference on Dependable Systems and Networks

[18] S. Ludin, J. Garza, Learning HTTP/2 A Practical Guide for
Beginners, O'Reilly Media 2017, ISBN-10: 1491962445.

[19] S. Wilbur, B. Bacarisse, Building distributed systems with remote
procedure call, Software Engineering Journal (Volume: 2, Issue: 5,
September 1987)

[20] A. Birrell, B. Nelson, Implementing remote procedure calls, ACM
Transactions on Computer Systems (TOCS) TOCS Homepage
archive Volume 2 Issue 1, February 1984 Pages 39-59

[21] A. Javed, Linux Containers: An Emerging Cloud Technology.
[22] D. Bernstein, Containers and Cloud: From LXC to Docker to

Kubernetes, IEEE Cloud Computing (Volume: 1, Issue: 3, Sept.
2014)

[23] Thinnect, http://www.thinnect.com/, accessed 21 April 2018
[24] Nebula, https://nebula-orchestrator.github.io/, accessed April 2018
[25] Mainflux, https://www.mainflux.com/, accessed April 2018

39

