
RDF Stores Performance Test on Servers with
Average Specification

Nikola Nikolić, Goran Savić, Milan Segedinac, Stevan Gostojić, Zora Konjović
University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
{nikola.nikolic, savicg, milansegedinac, gostojic, ftn_zora}@uns.ac.rs

Abstract — The paper analysis the performances of different
RDF stores on servers with average hardware specification.
For this purpose, various tests have been performed on
three RDF stores, namely Jena-Fuseki, Sesam-OWLIM and
Virtuoso. Using different data sets and queries, the tests
have measured CPU usage, heap memory consumption and
execution time. Based on the results, for different
application scenarios, an appropriate RDF store has been
suggested.

I. INTRODUCTION
Most applications that are based on semantic web store

their data within RDF stores [1]. So far, various RDF
stores have been developed providing different
characteristics and performances. Depending on a
particular application and its usage scenario, it must be
decided which RDF store to use in order to satisfy both
functional and non-functional requirements.

Many software applications do not contain complex
functionalities implying that they do not store data sets
larger than one million triplets. Executing queries over
such smaller RDF stores doesn’t require powerful and
expensive servers. This paper is focused on such
applications and is trying to propose an appropriate RDF
store for non-expensive servers with average features.

The paper presents tests performed on three commonly
used RDF stores. The tests have been ran within custom-
made client application that executes various SPARQL
queries to an RDF store. RDF stores have been set up on a
server with average characteristics where RAM memory
does not exceed 8 GB, CPU has up to 4 cores with disk
drive space not larger than 500 GB.

Based on widely recognized RDF store ranking [2], we
have chosen to test Virtuoso and Jena-Fuseki open source
solutions and a free Lite version of commercial RDF store
Sesame-OWLIM.

The following text has been organized as follows. The
next section gives a short overview of similar performance
tests. Section 3 describes our tests providing details about
machine configuration used RDF stores, data sets and
SPARQL queries. Measured parameters and testing
procedure are also explained in this section. Results are
presented and analysed in the section 4. Finally, the last
section concludes the paper giving the future directions of
this research.

The result of this testing is two-fold: on one hand, the
proposal of the appropriate RDF store for a particular case
of usage, and on the other hand comparison of
performances of most commonly used RDF stores.

II. RELATED WORK

According to W3C list of references [3], several RDF
benchmarks have been performed so far. These
benchmarks mostly test large data sets by executing
queries on powerful servers.

The most popular is Berlin SPARQL benchmark [4],
which supports testing of several RDF stores, such as
Sesame, Virtuoso, Jena-TDB, BigData and BigOwlim. It
is based on a generic data set that is a part of an e-
commerce use case. The data set contains a set of
products, offered by different vendors and consumers,
which post reviews about products. The performances
have been measured on different size of data sets using
various SPARQL queries. Data sets size varies from 10
million up to 150 billion triplets. Tests were performed
on capable server machines worth up to ~70,000€ [5].
Given that such server highly exceeds hardware
limitations set for our research, results of these tests
cannot be used in the analysis conducted in this paper.
Still, we have used the same testing procedure and
SPARQL queries as Berlin SPARQL benchmark.

Another popular benchmark is SP2Bench SPARQL
benchmark performed on its own data sets, which are
based on library scenarios. The benchmark uses smaller
data sets consisting of up to a million triplets. In contrast
to Berlin SPARQL benchmark, SP2Bench evaluates
performances of a single RDF store with variable RDF
schemas [6].

The last benchmark we present in this paper is Lehigh
University Benchmark (LUBM). The tests were
performed on data sets that contain data on university
publications. Successive batches of the same queries were
used with some minor data variations. Such testing
procedure does not represent real life scenarios where an
application must response to a wide set of different
queries.

The remaining SPARQL benchmarks listed in [3] do
not cover all testing parameters that are relevant for our
research (these parameters are described in Section 3, part
E).

III. TEST

This section describes tests we have performed within
this research.

A. Test machine

The tests have been run on a server with following
features:

ICIST 2015 5th International Conference on Information Society and Technology

Page 67 of 522

 Processor: Intel i5-3470 3.2GHz
 RAM: 8GB DDR3
 HDD: 500GB SATA3 7200rpm
 Operating system: Linux-Ubuntu 14.04.1 LTS 64-

bit
In addition, one of the tested RDF stores works only

with data loaded into working memory (In-Memory
Backend). To make the results comparable, we have
configured all data stores using In-Memory setup.

B. RDF stores

Following RDF stores have been used:
1. Virtuoso – Version 6.1.8,
2. Sesame-OWLIM – Version OWLIM-Lite 5.4.6486,

based on Sesame 2.7.13, deployed on Apache-
Tomcat 6.0.41.

3. Jena-Fuseki – Version 1.1.1, open source RDF
store

Virtuoso [7] is free and open source software product
which is one of the most commonly used RDF system
worldwide. It is a universal hybrid server for handling data
such as RDF triplets and XML documents. Using
Virtuoso it is possible to combine SPARQL and SQL
queries for handling RDF data.

Sesame-OWLIM is a commercial RDF store that offers
a free version with limited features. This free version has
been used in our study. It supports wide set of tools
developed in Python and Java programming language.
These tools provide increased RDF(S) functionalities.
Sesame itself lacks OWL reasoner. To address this
limitation, Sesame was upgraded with OWLIM third-
party store [8] that adds missing functionalities. OWLIM
belongs to newer generations of RDF stores which are
made for more frequent data updating and increased
concurrent access. Since beginning of 2014. the popularity
of this RDF store has increased which drew our attention
towards testing it. Free Lite version of OWLIM [9] is
available with restricted features. One important constraint
requires that data must be loaded in working memory.

Jena [10] is an open source software framework written
in Java providing both storage and access of RDF data. It
comes with its own OWL RDF graph reasoning
component. It uses Fuseki SPARQL interface for
accessing the abstract RDF graph model through HTTP
protocol. Fuseki can be run as a stand-alone SPARQL
server too.

C. Data sets

The tests use the same data sets as Berlin SPARQL
benchmark. As mentioned, these data sets are taken from
e-commerce domain containing sets of products that are
classified by vendors and rated by reviewers. Data sets
were programmatically generated in different sizes and
representations depending on product count using BIBM
(Business Intelligence Benchmark) generator [11].

Each data set was built from different class instances of
vendors, producers, product offers, product types, product
features, reviews, reviewers and their web pages. An
example of a product class instance is shown in Listing 1.

dataFromProducer021:Product015

 rdfs:label "Dell Inspirion 3521";

 rdfs:comment "New machine";

 rdf:type ftn:Product;

 rdf:type ftn-inst:ProductType123;

 ftn:producer ftn-inst: Producer021;

 ftn:productFeature ftn-inst:ProductFeature456;

 ftn:productPropertyTextual1 "The best";

 ftn:productPropertyNumeric1 "17"^^xsd:Integer;

 dc:publisher dataFromProducer021:Producer021;

 dc:date "2015-01-07"^^xsd:date .

Listing 1. Product class instance
Each product is described with label, comment and

product type. Product type defines different product
features which are also described with label and comment.
The product is produced by one or more vendors. A
vendor is described with label, comment, web page URL
and country URI. Offer is described with price, expiration
and delivery date. Reviewers are described with name, e-
mail address and nationality.

Table 1. shows the characterictics of the generated data
sets. The data sets contain up to a million triplets. Table
rows display number of class instances for the given
number of expected triplets starting at 1K triplets and all
the way up to 1M. Given that BIBM generator cannot
generate the exact number of required triplets, the
penultimate row display how many triplets have been
generated. The last row presents the size of the file
containing the data.

TABLE I.
CHARACTERISTICS OF DATA SETS

RDF triplets 1K 10K 100K 1M
Products 1 25 260 2848
Producers 1 1 6 61
Product Features 289 289 1954 4745
Product Types 7 7 37 151
Vendors 1 1 3 30
Offers 20 500 5200 56960
Reviewers 1 13 129 1451
Reviews 10 250 2600 28480
Exact RDF
triplets 1844 10250 101817 1022446

File size
(unzipped) 210.6kB 968.9kB 9.3MB 93.6MB

D. SPARQL queries

Data sets of all sizes have been tested using a
combination of two groups of queries. First group gathers
queries aimed on searching and navigation through the
required product fragments. It includes 12 patterns [12],
whereby the most important are:

1. Generic search for a given set of generic product
properties.

2. More specific search for products with a given set
of product properties.

ICIST 2015 5th International Conference on Information Society and Technology

Page 68 of 522

3. Finding similar products of a given product.
4. Retrieving detailed information on several

products.
5. Retrieving reviews for given products.
6. Getting background information about reviewers.
7. Retrieving offers for given products.
8. Checking information about vendors and their

delivery conditions.

Second group of queries is designed to test independent
analytical queries over the dataset. It includes 8 patterns
[13]. These are:

1. The first 10 of most discussed product categories of
products from a specific country which are based
on number of reviews by reviewers from a certain
country.

2. The first 10 products that are most similar to a
specific product, rated by the count of features they
have in common.

3. Products with the largest increase of interest (ratio
of review counts) from one month to the next.

4. Feature with the highest ratio between price with
that feature and price without that feature.

5. The most popular products of a specific product
type for each country - by review count.

6. Reviewers who rated products by a specific
Producer much higher than the average.

7. Products which are in first 1000 of most offered
products of a certain product type that are not sold
by vendors of a specific country

8. The top 10 cheapest vendors for a specific product
type by the ratio of products below and above the
average.

Both set of queries have been executed in random order
using SPARQL protocol on chosen RDF stores.

E. Measuring parameters

RDF benchmarks explained in the Section 2 primarily
measure these two variables:

 Time needed for loading and indexing of triplets
 Time needed for executing SPARQL queries

In our research we want to examine system
performances in more details by measuring more
parameters. Benchmark in this study is written in Java
programming language. JvmTop [14] open source console
application has been used for measuring the performances
of RDF stores. For all running JVM (Java Virtual
Machines) on a given system, JvmTop provides
monitoring of following resources:

 Process ID
 Name of measured class
 Current heap memory usage depending on

maximum allocated value
 Current non-heap memory usage depending on

maximum allocated value
 CPU usage
 Percentage of garbage collector usage
 Number of infinite loops

 Number of created threads
 Thread state
 CPU usage by threads
 Number of blocking threads

All these variables were used to determine the system
performance.

F. Method

Testing was done by implementing the following
procedure for all data sets and RDF stores:

1. Load one data set in an RDF store
2. Execute first group of SPARQL queries
3. Execute second group of SPARQL queries
4. Save measured parameters results

Table 2. shows total number of executed queries per
single data set. As mentioned, queries have been divided
into two groups. Total of 15000 queries have been
executed on each RDF store, where 10 000 queries belong
to first group, while the remaining 5 000 queries belong to
a second group of SPARQL queries.

TABLE II.
TOTAL EXECUTED SPARQL QUERIES

TOTAL EXECUTED QUERIES

Data sets Group 1 Group 2

1K, 10K, 100K 2500 1500
1M 2500 500

IV. RESULTS
This section presents the results of measuring four key

parameters – CPU usage, heap memory usage, individual
and total query execution time.

Table 3. shows CPU usage for all the tested RDF
stores for a separate execution of queries on all data sets.

TABLE III.
CPU USAGE PER RDF STORE

RDF DB systems Data sets CPU USAGE [%]

MIN MEAN MAX

Jena-Fuseki

1K 0 31.32 103.47
10K 0 27.19 105.85
100K 0 28.66 400.00
1M 0 21.54 100.00

Sesame-OWLIM
Lite

1K 0 19.42 117.86
10K 0 30.11 154.52
100K 0 35.74 363.89
1M 0 22.74 84.09

Virtuoso

1K 0 20.05 83.34
10K 0 21.15 129.17
100K 0 21.11 218.75
1M 0 18.75 62.50

ICIST 2015 5th International Conference on Information Society and Technology

Page 69 of 522

Results were shown in 3 columns representing
minimum, maximum and mean value, expressed in
percentages. We can notice that for Jena-Fuseki RDF store
the maximum value reached as far as 400%. It
corresponds to sum of usages of all loaded CPU cores. It
can be noted that for data sets beginning at million triplets
Virtuoso RDF store puts the lowest load on CPU.

Figures 1, 2, 3 and 4 show the charts of CPU usage in
time during queries execution. The chart series are derived
using 6th degree polynomial regression which by
definition introduces certain error. It can be noticed that
Sesame-OWLIM Lite store reached a slightly higher CPU
load than the other two RDF stores.

Figure 1. CPU usage for data set 1K

Figure 2. CPU usage for data set 10K

Figure 3. CPU usage for data set 100K

Figure 4. CPU usage for data set 1M

Given that all RDF stores use RAM memory to store the

data, the measurement of heap memory usage has been
necessary. Table 4. shows heap memory usage during
queries execution over all data sets. If we analyse mean
values, it can be noticed that Virtuoso occupies the least
amount of heap memory on average.

TABLE IV.
HEAP USAGE PER RDF STORE

RDF DB systems Data sets
HEAP USAGE [MB]

MIN MEAN MAX

Jena-Fuseki

1K 32.5 113.88 187
10K 21.75 96.49 182
100K 15.5 105.24 316.5
1M 24 86.09 397

Sesame-OWLIM
Lite

1K 9 69.93 175
10K 17 104.61 178
100K 16 108.12 292
1M 25 86.46 396.5

Virtuoso

1K 10.25 51.69 171.5
10K 17.25 64.82 175.5
100K 13.5 70.31 176
1M 20 67.67 173

Figures 5, 6, 7 and 8 show the charts of heap usage in

time during queries execution.

Figure 5. Heap usage for data set 1К

ICIST 2015 5th International Conference on Information Society and Technology

Page 70 of 522

Figure 6. Heap usage for data set 10К

Figure 7. Heap usage for data set 100К

Figure 8. Heap usage for data set 1M

The third measured parameter is execution time of
individual queries over all data sets. It is shown in Table
5.

TABLE V.
EXECUTE QUERY TIME PER RDF STORE

RDF DB
systems Data sets

EXECUTION TIME [ms]

MIN MEAN MAX

Jena-Fuseki

1K 3.08 12.08 1157.53
10K 3.25 12.32 1114.64
100K 3.01 20.41 1451.98
1M 3.08 275.25 135709.74

Sesame-
OWLIM Lite

1K 2.39 10.16 1081.49
10K 2.31 9.10 1039.85
100K 1.90 13.76 1057.26
1M 2.30 136.28 65660.16

Virtuoso

1K 2.67 66.86 852.82
10K 2.88 52.45 875.35
100K 2.90 55.11 2300.94
1M 3.04 58.59 3248.01

By observing mean values of execution queries, we can
notice that Sesame-OWLIM Lite store takes considerably
less time to execute SPARQL queries.
Figure 9, 10, 11 and 12 show the charts of individual
query execution in time. Although Virtuoso has best
performances in CPU and heap usage benchmarks, it
doesn’t show good results in execution time benchmark.
However, for queries executed on data set of million
triplets Virtuoso retains the lead.

Figure 9. Execute time for data set of 1K triplets

Figure 10. Execute time for data set of 10K triplets

Figure 11. Execute time for data set of 100K triplets

Figure 12. Execute time for data set of 1M triplets

ICIST 2015 5th International Conference on Information Society and Technology

Page 71 of 522

Table 6 shows total execution time of both query

groups on different data sets. Rows represent data sets,
while columns represent RDF stores.

We can notice that Virtuoso store has notably better
total execution time for data set of million triplets. Still,
for data sets of less than one million triplets, Virtuoso
store has by far worse total execution time. Sesame-
OWLIM store has the best total execution time over data
sets of less then million triplets.

TABLE VI.
TOTAL EXECUTION TIME

TOTAL EXECUTION TIME [s]

Data sets
RDF DB systems

Jena-Fuseki Sesame-OWLIM Lite Virtuoso

1K 57.58 46.65 264.71
10K 72.36 52.07 215.27

100K 101.27 69.88 234.13
1M 838.89 410.01 192.91

In accordance with the results, we can determine which

RDF store is the most appropriate for the particular
scenario.

For data sets containing less than one million triplets we
have shown that Virtuoso has better results in heap and
CPU usage, but individual and total query execution time
over such data sets is significantly greater than for
Sesame-OWLIM Lite store.

For scenarios whose priority is the speed of query
execution, we would recommend Sesame-OWLIM Lite
store for data sets of less than one million triplets.
However, for data sets greater than one million triplets,
Virtuoso store is the most efficient regarding all
parameters measured in this study.

V. CONCLUSION
In this paper we presented performance tests of

commonly used RDF stores deployed on servers with
average characteristics. The test results should facilitate
the selection of RDF store for applications that do not
work with data set larger than one million triplets. We
tested Virtuoso and Jena-Fuseki as open source RDF
stores, as well as Sesame-OWLIM as a free version of a

commercial RDF store. The tests measured CPU and heap
usage as well as time needed for query execution. The
paper proposed recommendations for different scenarios,
depending of the importance of the specific performance
indicator.

Future research will be aimed on testing mentioned
RDF data stores in native-storage mode where data is
stored on a disk in contrast to the research presented in
this paper where data is stored in RAM memory. In that
case a commercial version of Sesame-OWLIM would be
needed.

ACKNOWLEDGMENT
Results presented in this paper are part of the research

conducted within the Grant No. III-47003, Ministry of
Education, Science and Technological Development of the
Republic of Serbia.

REFERENCES

[1] W3C RDF, http://www.w3.org/RDF/
[2] DB-Engines Ranking, http://db-engines.com/en/ranking_definition
[3] W3C RDF store benchmarking, http://www.w3.org/wiki/

RdfStoreBenchmarking.
[4] C. Bizer and A. Schultz. ”The Berlin SPARQL Benchmark.”, Int.

J. Semantic Web Inf. Syst., 5(2):1–24, 2009.
[5] Berlin BSBM benchmark machine, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html#
machine.

[6] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel. ”SP2Bench: A
SPARQL performance benchmark.”, ICDE, pages 222–233. IEEE,
2009.

[7] Virtuoso – OpenLink Software, http://virtuoso.openlinksw.com.
[8] A. Kiryakov, D. Ognyanov; D. Manov, OWLIM – a Pragmatic

Semantic Repository for OWL, WISE 2005, 20 Nov, New York
City, USA.

[9] Sesame-OWLIM Lite RDF store, http://owlim.ontotext.com/
display/OWLIMv54/OWLIM-Lite+Fact+Sheet

[10] Apache Jena-Fuseki RDF store, http://jena.apache.org/
documentation/

[11] BSBM generator, http://sourceforge.net/projects/bibm/
[12] SPARQL queries pattern – set 1., http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/spec/ExploreUseCase/
index.html#queriesTriple

[13] SPARQL queries pattern – set 2., http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/spec/
BusinessIntelligenceUseCase/index.html#queriesTriple

[14] JvmTop – Google code, https://code.google.com/p/jvmtop/wiki/
Documentation

ICIST 2015 5th International Conference on Information Society and Technology

Page 72 of 522

	VOLUME 1
	RDF Stores Performance Test on Servers with Average Specification

