
365

Generate User Interface Using Xtext Framework

Dragana Aleksić1, Dušan Savić1, Siniša Vlajić1, Alberto Rodrigues da Silva2 Vojislav Stanojević1, Ilija Antović1, Miloš

Milić1,
Faculty of Organizational Sciences, University of Belgrade

 1
Department of Computer Science and Engineering,IST / University of Lisbon

2

Abstract- A very important aspect of the software
development process is the cost of completing the software
project. The development of the user interface is a significant
part of such a process. Typically, the graphical user interface of
an interactive system represents about 48% of the source code,
requires about 45% of the development time and 50% of the
implementation time. Therefore, if this part of the software
development process can be automated in some way, it can
reduce the cost of a software project. In this paper we propose a
small domain-specific language for specification of a graphical
user interface and present a generator for Java desktop
applications. The generator should facilitate the development of
a software system by automatic creation of immutable code and
creation of variable code based on parameters of the input
specification of the generator. For this purpose we have used an
Xtext open-source framework. A small but representative
example is shown to describe the whole process.

Keywords: generator, prototype, user interface, domain
specific language

I. INTRODUCTION

While creating software one comes across various
problems. Many of them are related to collecting user
requirements and overall time needed for designing and
creating graphical user interface (GUI). User
requirements are often represented by verbal description
provided by end user or/and domain expert together with
programmer. Discovered in later phase of lifecycle
development of software system, incomplete and
incorrect user requirements can increase cost and overall
time needed for development of entire system.

In accordance with this a very important aspect in
software development is the cost of completion of a
software project. Development of the user interface is a
significant part of such a process [1].Development of user
interfaces (UIs), ranging from early requirements to
software obsolescence, has become a time-consuming
and costly process. Typically, the graphical user interface
of an interactive system represents about 48% of the
source code, requires about 45% of the development time
and 50% of the implementation time, and covers 37% of
the maintenance time [2].

A step forward in software industry towards solution of
above problems is creation of various code generators

which generate parts or even entire software systems of
particular domain. Code generator is a component that
generates appropriate software system from input
specification model usually expressed in some modeling
language. Modeling language as a set of all possible
models that are conformant with the modeling language's
abstract syntax, represented by one or more concrete
syntaxes and that satisfy a given semantics [3]. The code
that is generated by generator is divided into: 1) Generic
codes that represents a code which is independent of
concrete applications and can be used in other
applications of the same type without changes, and 2)
Specific codes that represents the code that is specific to a
particular application or can be seen as some templates,
upon which program code is created. In this paper we
introduce a UIL domain specific language (DSL) for user
interface specification implemented using Xtext
framework, and appropriate generator. Xtext is based on
openArchitectureWare generator framework, the Eclipse
Modeling Framework and Another Tool for Language
Recognition (ANTLR) parser generator. This paper is
organized as follows. Section II describes the background
of this work while Section III present related work.
Section IV presents proposed DSL and appropriate code
generator. Section V concludes the paper and outlines
future work.

II. BACKGROUND

According to [4], domain specific language is a
programming language of limited expressiveness focused
on particular domain. The term “limited expressiveness”
refers to the fact that DSLs only have minimal features
needed to support its domain as opposed to general
purpose languages (GPLs) which provide a lot of
capabilities that can be applied on various domains.

Language workbenches were created after some time
as supporting tool for creation of external DSLs. They are
specialized environments which facilitate development of
DSL by providing a good support for creation of both
concrete and abstract syntaxes, automatic creation of
underlying parser and complete editing environments for
using DSLs with all the necessary support needed for
creating a program like syntax highlighting, code

6th International Conference on Information Society and Technology ICIST 2016

366

completion, customizable outline and real-time constraint
checking.

Model Driven Development (MDD) looks at the
software development lifecycle through modeling and
transformation of one model into another. MDD’s goal is
to replace traditional methods of software development
with automated methods with domain-specific languages
which efficiently express domain concepts and directly
represent domain problem. Such development directs
traditional programming into creating domain-specific
models and code generators which further leads into
higher software productivity, therefore, increased
satisfaction of the end user.

Code generators make software development process
easier by shortening time necessary for writing
programming code as well as time for testing the
generated code, considering that generated parts of
system was tested already. Generators can be used for
creating parts of the system or for creating whole system
as a prototype which can be rejected, upgraded or kept as
a final solution.

III. RELATED WORK

Today there are so many modeling languages.
Modeling languages might be classified as general
purpose or domain-specific modeling language [5], [6]
The one part of them are User-Interface Modeling
Languages such as UMLi, UsiXML, WebML (with
IFML), XIS, DiaMODL, XIS-Mobile and etc. Morais and
Silva [7] introduce ARENA framework and evaluate the
quality and effectiveness of modeling languages [8].
Ribeiro and Silva in their paper [9] present XIS-Mobile
language which is defined as UML profile and supported
by the Sparx Systems Enterprise Architect. XIS-Mobile
is part of the broader XIS project that considers three
major groups of views: Entities, Use-Cases and User-
Interfaces. [10] [11]. XIS focuses on the design of
interactive software systems at a Platform-Independent
Level according to MDA. XIS-Mobile language reuses
some concepts proposed on the XIS language and
introduces new ones in order to be more appropriate to
mobile applications design. It has a multi-view
organization and supports two design approaches: the
dummy approach and the smart approach. Dejanovic at
al. [12] present an extensible domain specific language
(DOMMLite) for static structure definition of database-
oriented applications. Also, they developed appropriate
textual Eclipse editor for DSL from which they generate
complete source code for GUI forms with CRUDS
operations. [13]. Popovic at al. [14] proposed
IIS*CFuncLang DSL to enable a complete specification

of application-specific functionalities at the PIM level
and developed algorithms for transformation of
IIS*CFuncLang specifications into PL/SQL program
code. Furthermore, they presented tree-based and textual
editors that are embedded into IIS* Case development
tool. Tran at al. REF [15], [16] proposed a process that
combines the task, domain, and user model in order to
design user interface and generate source code. They
propose framework as well as software prototype tools
named as DB-USE. Kennard has emphasized the need for
UI generation within mainstream software development
and explains five characteristics, which he believes, are
key to a practical UI generator. These characteristics are
discovered through interviews, adoption studies and close
collaboration with industry practitioners [17]. Cruz an
Faria proposed an approach to create platform
independent UI models for data intensive applications, by
automatically generating an initial UI model from domain
and use case models. [18], [19] defined extensions for
domain model and use case model to support user
interface generation. They describe how both of these
models could be mapped in user interface features.
Pastor at al. proposed full Model Driven Development
approach from requirements engineering to automatic
code generation by integrating two methods:
Communication Analysis and OO-Method [20]. Smiałek
and Straszak presented a tool that automates transition
from precise use case and domain models to code
[21]. Smiałek at el. defined RSL as a semiformal natural
language that employs use case for specifying
requirements [22]. Each scenario in a use case contains
special controlled natural language SVO (O) sentence.
RSL has been developed as a part of ReDSeeDS project
[23]. ReDSeeDS approach covers a complete chain of
model-driven development – from requirements to code
[24]. Requirements is described in form of use cases
using constraint requirements specification language
which can be used to generate complete MVC/MVP code
structure.

Inside our Laboratory we developed integrated
SilabMMD approach [25] that use SilabReq language
[26], [27] for specifying user requirement which is
implemented inside JetBrains Meta Programming System
and can be used as plug-in for IntelliJ IDEA or for the
MPS tools. In [28] we proposed use cases specification at
different levels of abstraction to promote better
integration, communication and understanding among
involved stakeholders. Using this approach different
software development artifacts such as domain model,
system operations, user interface design can be
automatically generated or validated. In [29] we
identified the correlations between the use case model,

6th International Conference on Information Society and Technology ICIST 2016

367

data model and the desired user interface, and purpose
different ways of user interaction with the system and
recommended the set of most common user interface
templates.

IV. DEVELOPMENT OF DSL AND USER
INTEREFACE GENERATOR

Developed generator creates GUI based on model
description which is user defined with UIL DSL.
Depending on model description, developed generator
can produce limited scope of different user interfaces.

Desired DSL should be able to describe domain model
like any other modeling language (for instance UML) in
addition with information how domain object and their
attributes are represented in GUI. Based on detail model
description, developed generator automatically generates
executable code, providing user with functional GUI in a
few seconds. If not satisfied with the look, user can easily
change DSL script and quickly see how changes he or she
made are reflected in the final design.

Creation of user interface generator can be divided into
several phases. First phase represents development of
domain specific language for describing input
specification of generator. The second phase refers to
designing the architecture of software which is the
expected output from the generator. Third phase covers
the analysis of reference code implementation during
which are noticed general and specific parts of the
system. And final, fourth phase represents defining code
generator.

A. DEVELOPMENT OF DOMAIN SPECIFIC

LANGUAGE

As [4] points out, development of external DSL is very
similar to development of GPL in a way that both have
key parts that makes programming language: abstract
syntax, one or more concrete syntaxes and whole process
of parsing input including lexical and syntactic analysis.

For each domain object, user chooses whether the
object will have representation or not. Attribute type

supported are int, double, boolean, String,

Date and reference type. Based on type of attribute, UIL
DSL provides several graphical implementation choices,
from which user, while describing attribute of certain
object, can choose. Graphical representations supported

are TextField, TextArea, NumberPicker,

RadioButton, CheckBox and ComboBox which is
default representation for reference. For establishing
relation between object UIL DSL provides two graphical
components: table and list which are visually placed in

separate window and populated with collection of
appropriate objects Also, user is able to customize certain
configuration of graphical component, like minimal or

maximal value in NumberPicker component or add
some validation like regular expressions to text based
components. An extract of our UIL DSL grammar is
represented below.

Model: 'Domain objects:'
 objects+=Object*;
Object:
'{' (createForm?='create form' (',''number of columns:'
columns = INT ',''number of rows:' rows = INT)? ',')?
'name:'name = ID ',''attributes:' attributes+=Attribute*
'}';
Attribute: (PrimitiveType | ReferenceObject);
ReferenceObject:
 '{''name:'name=ID ':' type= [Object] '['minLimit=
Limit '..' maxLimit = Limit ']'
 (',''representation:' representation =
('ComboBox') (',''label name:' label= STRING)?)?
 (',''position:''['column = INT ';' row = INT']')?
 (',''selection:' selection = SelectionType)?
'}';
PrimitiveType: '{''name:'name=ID ':' type= Type
(',''position:''[' column = INT ';' row = INT ']')?
(',' required?='required')?
'}';
SelectionType: name = ('List' | 'Table');
Type: (TypeString | TypeInt | TypeBoolean | TypeDouble |
TypeDate) ;
TypeString:name ='String' (',''representation:'
representation = (TextArea |TextField))?;
TypeInt: name ='int' (',''representation:' representation =
(TextField | NumberPicker))?;
TypeDate: name ='Date' (',''representation:' representation
= (TextField | NumberPicker))?;
TypeBoolean: name ='boolean' (',''representation:'
representation = (RadioButton | CheckBox))?;
RepresentationType: TextField | TextArea | NumberPicker |
RadioButton |CheckBox;
TextField: name ='TextField' (',''label name:' label=
STRING)? (',''regex:' regex= STRING)?;
NumberPicker: name = 'NumberPicker' (',''label name:' label=
STRING)? (',''initial value: ' initial = STRING)? (',''min
value: ' min = (STRING /*|'null' */))?
(',''max value: ' max = (STRING /*| 'null' */))? (',''step:
' step = STRING)? (',''format: ' format = STRING)?;
RadioButton: name = 'RadioButton' (',''label name:' label=
STRING)? (',''option true:' optionTrue = STRING)?
(',''option false:' optionFalse = STRING)?;

Let’s define domain object called Pet with attribute

race as type String, for which we don’t want graphical
representation. Next, we define Person with attributes
first name and last name as type String, attribute date of
birth as type Date and relation towards Pet with
cardinality zero – to – many since in our model person
can have none or many pets. While defining attributes of
object, we have to specify required graphical

representation that is textfield for first and last

name, numberpicker for date of birth and combobox
for relation. Since Person has relation with Pet we have to
specify desired selection, in this case we choose table.
For all graphical representation we can specify
accompanying text as decryption of attribute that will be

seen on GUI as label. Further, for numberpicker we
can specify initial, minimal and maximal value as the
format in which date will be represented. Also, we have

6th International Conference on Information Society and Technology ICIST 2016

368

an option to specify positions where concrete attribute
will be placed inside of GUI by providing desired number
of columns and rows and exact index of pair column/row
for each attribute. We want all attributes of Person to be
arranged in one column.

Domain objects:{

 name: Pet,
 attributes:
 {name: race: String} }
{create form,
name: Person, number of columns:1, number of rows:
attributes:

{name: firstName: String, label name:"First name"
representation:TextField,position: [1; 1],required
{name: lastname: String, label name:"Last name"
representation:TextField,position: [1; 2]}
{name: dateOfBirth: Date,
representation:NumberPicker,

label name:"Date of bith",
 initial value: "05.02.1900",
 step: 'Calendar.YEAR',
 format: "dd.MM.yyyy",
 position: [1; 3] }
{name: pets: Pet [0..*],
 representation:ComboBox,
 position: [1; 4],
 selection:Table}
}

Figure 1 – Meta – model of UIL DSL

Abstract syntax describes concepts of programming
language and their relationships. Fig.1 presents
model of our UIL DSL. Concepts that are used in
developed domain specific language are concepts that are
tightly connected to the concepts of problem domain for
which generator is developed. Given that the main
concepts of UIL DSL are objects of domain model, their
attributes, types and graphical representation of attributes.
Concepts of abstract syntax can be represented with
various concrete syntaxes. In Xtext, abstract syntax is
represented in a form of ecore model and it is
automatically created by Xtext based on defined concre
syntax.

Semantics defines the meaning for syntactically valid
program by providing a set of rules which unambiguously
specifies the meaning of a program. According to
semantics of language is translation of inputs into some
target language which already has some
definition for its elements.

an option to specify positions where concrete attribute
will be placed inside of GUI by providing desired number
of columns and rows and exact index of pair column/row
for each attribute. We want all attributes of Person to be

number of rows:4,

"First name",
required }

"Last name",

DSL

describes concepts of programming
presents a meta –
that are used in

developed domain specific language are concepts that are
tightly connected to the concepts of problem domain for
which generator is developed. Given that the main

DSL are objects of domain model, their
es and graphical representation of attributes.

Concepts of abstract syntax can be represented with
various concrete syntaxes. In Xtext, abstract syntax is
represented in a form of ecore model and it is
automatically created by Xtext based on defined concrete

the meaning for syntactically valid
program by providing a set of rules which unambiguously

According to [30],
semantics of language is translation of inputs into some
target language which already has some behavior

One way that DSLs usually differ from GPLs is that
DSLs introduce one more intermediate layer called
semantic model which is created after the parsing pro
is done and populated with data from abstract syntax tree.
[4] points out that the semantic model defines semantic of
DSL.. We implemented various validation rules, which
will prevent end user from making semantically incorrect
statements. Below is given one validation rule for
cardinality between objects which prevents upper bound
to be smaller than lower bound and also prevent upper
bound to be zero.

@Check
publicvoid checkMinAndMaxLimit(ReferenceObject
 if (object.getMaxLimit().equals(
error("Max limit cannot be 0",
FormDslPackage.Literals.REFERENCE_OBJECT__MAX_LIMIT
 if(object.getMinLimit().equals(
!object.getMaxLimit().equals("*")){
error("Min limit cannot be greater than max
limit",FormDslPackage.Literals.REFERENCE_OBJECT__MIN_LIMIT
}}

After all changes in DSL script have been saved,
generator begins with parsing process. Behind the scene,
Xtext is integrated with ANTRL which generates parser
for defined concrete syntax and population of abstract
syntax tree with input data. Semantic model is
automatically built from abstract syntax tree

B. DESIGNING OF ARCHITECTURE OF SOFTWARE

After development of DSL, next phase is designing
desired architecture of software system which will be
generated. Software system needs to be well structured so
it can be easily extended and maintained. We
accomplished good structure of the system by
implementing design patterns and SOLID principles.

C. ANALYSIS OF REFERENCE CODE

IMPLEMENTATION

Third phase deals with creation and analysis of
reference code implementation. Reference code
implementation is done manually and serves as reference
to what is the expected output from the generator.
Reference software system should complet
architecture designed in previous phase and should be
extensive enough to cover all different use cases of
generator and their implementations. After creation of
reference software system, analysis is carried out during
which specific and generic parts of system are diagnosed.
Generic parts are ones that stay unchanged for different
domains while specific parts are ones that change for
particular domains.

D. DEFINING CODE GENERATION

Creation of code generator covers defining a
transformation of concepts of DLS’s meta
appropriate concepts of target platform

One way that DSLs usually differ from GPLs is that
ermediate layer called

s created after the parsing process
is done and populated with data from abstract syntax tree.

out that the semantic model defines semantic of
We implemented various validation rules, which

will prevent end user from making semantically incorrect
statements. Below is given one validation rule for
cardinality between objects which prevents upper bound

han lower bound and also prevent upper

checkMinAndMaxLimit(ReferenceObject object) {
.getMaxLimit().equals("0")) {

REFERENCE_OBJECT__MAX_LIMIT);}
.getMinLimit().equals("*") &&

"Min limit cannot be greater than max

REFERENCE_OBJECT__MIN_LIMIT);

all changes in DSL script have been saved,
generator begins with parsing process. Behind the scene,
Xtext is integrated with ANTRL which generates parser
for defined concrete syntax and population of abstract
syntax tree with input data. Semantic model is
automatically built from abstract syntax tree.

DESIGNING OF ARCHITECTURE OF SOFTWARE

development of DSL, next phase is designing
desired architecture of software system which will be

system needs to be well structured so
extended and maintained. We

accomplished good structure of the system by
patterns and SOLID principles.

ANALYSIS OF REFERENCE CODE

phase deals with creation and analysis of
reference code implementation. Reference code
implementation is done manually and serves as reference
to what is the expected output from the generator.
Reference software system should completely implement
architecture designed in previous phase and should be
extensive enough to cover all different use cases of
generator and their implementations. After creation of
reference software system, analysis is carried out during

eric parts of system are diagnosed.
Generic parts are ones that stay unchanged for different
domains while specific parts are ones that change for

DEFINING CODE GENERATION

of code generator covers defining a
transformation of concepts of DLS’s meta – model into
appropriate concepts of target platform – Java. Defining a

6th International Conference on Information Society and Technology ICIST 2016

369

transformation means defining a set of rules of translation
of inputs into outputs. For example we have to define

translation between NumberPicker concept of UIL

DSL and JSpinner component in Java. Given
transformations, i.e. code generation is considered as
translation semantics of programming language. Actual
input in code generator is semantic model, created and
populated with data (description of model which user
defined) by XText after the parsing process is done. In
other words, code generator is tightly coupled to semantic
model since it reads all input data from it

For generic and specific parts diagnosed in the third
phase, we look up for pattern they represent not related to
any particular domain and upon that pattern we write
transformations which will produce desired output. Code
generation can be done in two ways, via transformer
generation and template generation. In transformer
generation we write programming code – transformation
which represents logic of transforming input data into
instructions of desired language. In template
transformation we write templates which consist of static,
generic parts that are same for all inputs and dynamic,
specific parts that vary based on input. Specific parts,
often called markers, retrieve data from semantic model
and during compilation are replaced with real data. In our
generator we use both approaches since they both have
their advantages. Below is given a part of one template
which generates table model for table component of UIL
DSL. Table models consist of parts that vary based on
different domain object, but there are still parts that are
same for all, together those parts make a pattern –
template upon which all table models will be generated.

public class
TableModel«UtilMethods::toFirstUpperCase(obj.name)» extends
TableModel { String columnNameFK[] = { "yes/no",
«UtilDomainAttribute::getAttributesName(obj)» };
public
TableModel«UtilMethods::toFirstUpperCase(obj.name)»(List<Wra
pperObject> lista) {
 this.columnName = columnNameFK;
 this.lista = lista;}
@Override
public Object getValueAt(int rowIndex, int columnIndex) {
 WrapperObject object = lista.get(rowIndex);
 switch (columnIndex) {
 «UtilDomainAttribute::getCasesForGetValueAt(obj)»
 }
 return "error";
}}

Based on output type of generator, transformation
belongs to group M2C (model - to - code) since we
transform input semantic model into Java source code.
Generated source code is ready for execution without any
modification, although user needs to populate a list of
domain objects which will be used for selection if object
has one – to – much relationship and wants to show that
relation in GUI. Mixing generated and hand written code

is not a good practice simply because all hand written
changes will be overwritten next time generator runs.
Given problem is solved by implementing Generation
Gap pattern which with concept of inheritance decouples
generated from hand written code. Fig.2 shows the results
of code generation that are two forms, main form for
inserting data about person and selection form for
choosing objects of pets. User needs to populate
decoupled list of pets with desired objects.

Figure 2 – Form for creating Person and Selection form for relations

IV. CONCLUSION

Fully developed generator eases the process of creating
UI by freeing the user from direct implementation of
programming code. Authors have acknowledged
strengths of domain-specific languages, huge advantages
of developing a code generator, in this case, GUI
generator and great potential of MDD.

For creating a case study found in this paper, we have
spent far less amount of time than for the development of
similar projects using a traditional approach (general-
purpose language). It can be concluded that the
development of domain-specific language and code
generator is definitely one of the ways to solve the
problem of total amount of time necessary for full system
software development and significantly reduce number of
problems related to collecting of user’s requests.

REFERENCES

[1] Kennard, R., Leaney, J.: ‘Towards a general purpose
architecture for UI generation’, J. Syst. Softw., 2010, 83,
(10), pp. 1896–1905

[2] Myers, B.; Rosson, M. B.: Survey on User Interface
Programming. Proc. of the 10th Annual CHI Conference
on Human Factors in Computing Systems, pp. 195-202,
2000.

[3] Alberto Rodrigues da Silva, Model-Driven
Engineering: A Survey Supported by a Unified
Conceptual Model, in Computer Languages, Systems and
Structures, Elsevier, 43, 2015

[4] Martin Fowler, Domain-Specific Languages. The
Addison-Wesley signature series, Addison-Wesley 2011,
ISBN 978-0-321-71294-3, pp. I-XXVIII, 1-597

6th International Conference on Information Society and Technology ICIST 2016

370

[5] Mernik, M., Heering, J., and Sloane, A. M. (2005).
When and how to develop domain-specific languages.
ACM Computing Surveys, 37:316–344.

[6] Luoma, J., Kelly, S., and Tolvanen, J.-P. (2004).
Defining domain-specific modeling languages: Collected
experiences. In OOPSLA 4th Workshop on Domain-
Specific Modeling.ACM.

[7] Francisco Morais and Alberto Rodrigues da Silva,
Assessing the Quality of User-Interface Modeling
Languages

[8] André Ribeiro, Alberto Rodrigues da Silva,
Evaluation of XIS-Mobile, a Domain Specific Language
for Mobile Application Development

[9] André Ribeiro & Alberto Silva, XIS-Mobile A DSL
for Mobile Applications

[10] Silva, A.R.: The XIS Approach and Principles, Proc.
of the 29th Conf. on EUROMICRO (EUROMICRO '03),
IEEEComputer Society (2003)

[11] Silva, A.R. et al.: XIS-UML Profile for eXtreme
Modeling Interactive Systems, Proc. of the 4th
International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MOMPES'07),
IEEE Computer Society (2007)

[12] A Domain-Specific Language for Defining Static
Structure of Database Applications

[13] Milosavljević, G., Perišić, B.: A method and a tool
for rapid prototyping of large-scale business information
systems, Computer Science and Information Systems
,vol. 1, pp. 57-82 (2004)

[14] A DSL for modeling application-specific
functionalities of business applications

[15] Generating User Interface from Task, User and
Domain Models

[16] Generating User Interface for Information
Applications from Task, User and Domain Models with
DB-USE

[17] Kennard, R., Leaney, J. Is there convergence in the
field of UI generation, Journal of Systems and Software,
2011

[18] Cruz, A.M.R., Faria, J.P..Automatic generation of
user interface models and prototypes from domain and
use case models. In Proceedings of the 4th ICSOFT
(ICSoft 2009) , vol. 1, pp 169-176, Sofia, Bulgaria,
INSTICC Press, July 2009.]

[19] Cruz, A.M.R. Automatic generation of user
interfaces from rigorous domain and use case models.
PhD thesis F.E.U.P., University of Porto, Portugal, 2010.

[20] Óscar Pastor, Marcela Ruiz, Sergio España (2011)
From requirements to code: a full model-driven
development perspective; Keynote talk at ICSOFT 2011.

[21] Michał Smiałek, Tomasz Straszak, Facilitating
transition from requirements to code with the ReDSeeDS
tool

[22] M. Smiałek, J.Bojarski, W.Nowakowski and T.
Straszak, “Scenario construction tool based on extended
UML metamodel”. Lecture Notes in Computer Science,
3713:414–429, 2005.

[23] M.Smialek and T.Straszak, “Facilitating transition
from requirements to code with the ReDSeeDS tool”. RE
2012: 321-322

[24] M.Smialek, W.Nowakowski, N. Jarzebowski, A
Ambroziewicz,” From use cases and their relationships to
code” MoDRE 2012: 9-18

[25] Dušan Savić, Siniša Vlajić, Saša Lazarević, Vojislav
Stanojević, Ilija Antović, Miloš Milić, Alberto Rodrigues
da Silva, SilabMDD - A Use Case Model Driven
Approach

[26] D.Savic, I. Antovic, S. Vlajic, V. Stanojevic and M.
Milic, “Language for Use Case Specification “,
Conference Publications of 34th Annual IEEE Software
Engineering Workshop, IEEE Computer Society, 2011,
Pages: 19-26, ISSN : 1550-6215, ISBN: 978-1-4673-
0245-6, Limerick, Ireland, 20-21 June 2011, DOI:
10.1109/SEW.2011.9

[27] D.Savić, A.Rodrigues da Silva, S.Vlajić,
S.Lazarević, I.Antović, V. Stanojević, M.Milić,
Preliminary experience using JetBrains MPS to
implement a requirements specification language, in
Proceedings of QUATIC’2014 Conference, 2014 , IEEE
Computer Society

[28] Savić, A.R. Silva, S.Vlajić, S.D.Lazarević,
V.Stanojevic, M.Milić, М.Milic, “Use Case Specification
at Different Abstraction Level“, 8th International
Conference on the Quality of Information and
Communications Technology, Lisbon, Portugal, 03-
06.09. 2012

[29] I.Antović, S.Vlajić, M.Milić,D.Savić and
V.Stanojević, "Model and software tool for automatic
generation of user interface based on use case and data
model," Software, IET , vol.6, no.6, pp.559-573, Dec.
2012 doi: 10.1049/iet-sen.2011.0060D

[30] A Taxonomy of Model Transformation. Mens, Tom
/ Gorp, Pieter Van. Amsterdam: Elsevier Science
Publishers , 2006, Electronic Notes in Theoretical
Computer Science, T. 152. 1571-0661

6th International Conference on Information Society and Technology ICIST 2016

	Volume 2
	Generate User Interface Using Xtext Framework

