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Abstract— Smart homes consist of electronic devices that 

consume electricity from the electricity grid (EG) or 

renewable energy sources. The system proposed in this 

paper aims to lower the cost of consumed energy in smart 

homes. Cost reduction can be achieved by training a smart 

HEMS (House Energy Management System) to orchestrate 

the schedule of loads energy consumption according to the 

time-varying energy price and the residents' preferences. 

HEMS can be trained by Reinforcement Learning (RL) if 

provided a realistic environment. In this paper, we propose 

a simulated household environment with the help of the 

Typhoon HIL application. To make our simulated 

environment realistic, we need realistic measurements of 

external conditions, such as external temperature and solar 

irradiation. Thus, we use the Mainflux platform that 

supplies the simulated environment with real-world data.  

This paper focuses on integrating the Mainflux IoT 

platform with Typhoon HIL simulation of smart home 

devices. In this paper, Mainflux provides two real-world 

parameters: solar irradiation and outdoor temperature, 

vital inputs for the realistic simulation of smart home 

devices such as PV panels and Air Conditioners. 

I. INTRODUCTION 

Today’s smart homes contain multiple electronic 
appliances that consume electricity from the electricity 
grid or renewable energy sources such as solar panels and 
electric vehicles. In such a compex system, residents rely 
on HEMS (House Energy Management System) to 
perform the complex orchestration of various devices. 
Ideally, HEMS should reduce the electricity cost while 
satisfying the residents' electricity demands. 

HEMS can be trained with Reinforcement Learning 
(RL) if provided a realistic training environment. While 
training, RL agent needs to explore various scenarios, 
some of which might negatively impact the residens' daily 
life. Thus, we need a realistic simulated environment to 
train the HEMS. This paper, similar to [4] and [6], 
proposes a simulated environment for training a RL-based 
HEMS. To make our simulation realistic, we combine it 
with real-world data. The Typhoon HIL application [2] 
enables us to accurately simulate the behavior of smart 
home devices. However, the simulation of some devices 
such as a PV panel1 and Air conditioner, requires 
information about real-world weather conditions.  

 

 
1 PV represents a form of renewable energy resource. 

The possibility of integrating real-world data in a 
simulated environment enables a degree of reality while 
representing a real-world scenario via simulation. 
Working with “real” data gives us the potential to make 
accurate predictions for real-world problems. The data 
used in this paper to supplement Typhoon HIL simulation 
is solar irradiation and external temperature in the city of 
Berlin. There is also a level of flexibility in using different 
types of data from different parts of the world. This data is 
acquired from Solcast (https://solcast.com/), a global solar 
forecasting and historical solar irradiance data company 
[7]. 

Our Multi-Agent System (MAS) Siebog [1] 
orchestrates the TyphoonHIL Control Center [2] and the 
Mainflux platform [3] to provide a realistic household 
simulation with maximum flexibility and a variety of 
internal and external factors. Internal factors, i.e., various 
smart home environments containing different types and 
numbers of devices, can be simulated with the Typhoon 
HIL Control Center [2]. The simulated smart home 
receives external factors, i.e., irradiation and external 
temperature from the Mainflux platform, and later these 
parameters affect other components in the simulation (PV 
panel and AC). 

The new real-world input data is evaluated by 
comparing the average energy produced from real-time 
irradiation and external temperature data and the 
computed average energy generated in our HEMS 
simulation using the Solcast data as input.  

The paper is organized as follows. Section 2 gives a 
brief overview of existing solutions that are multi-agent 
based architectures for simulating household 
environments. Section 3 represents a MAS based HEMS 
framework and we describe the compomenets that 
preserve this framework. In section 4 we presents the 
results that we acquired with the integration of the 
Mainflux platform and section 5 consists of the conclusion 
of our system and future work. 

II. EXISTING SOLUTIONS FOR SIMULATING 

HOUSEHOLD ENVIRONMENTS BASED ON MULTI-AGENT 

SYSTEMS 

In [4], the authors describe a multi-agent system that 
loads the outdoor temperature and outdoor illumination as 
predefined values that are constrained and normalized. 
These values are later used in an agent that applies fuzzy 
logic to compute the electric energy consumption for 
indoor lighting and temperature. The observed 
temperature and illumaniation values are used during the 
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seasons when the AC is required to cool indoor 
enviroment.The outdoor temperature and illumination 
values are discretized into three categories: LOW, 
MEDIUM, and HIGH [4]. This discretization can limit a 
simulation of an everyday household rendering a less 
realistic scenario, as more subtle changes in the 
temperature affect the simulated values for indoor 
temperature. Moreover, the defined categories can vary 
between systems depending on the observed interval of 
the outdoor values. Our solution uses continuous realistic 
values of outdoor temperature while simulating energy 
consumption in a household. The values vary depending 
on the location from where the temperature and solar 
radiation data are collected. This flexibility enables us to 
simulate households regardless of their actual location.    

Paper [5] represents a system that contains several 
multi-agent systems that have the goal of energy 
consumption reduction based on case-based reasoning 
(CBR) recommender system. Their solution provides a 
complex system that uses the K-Nearest Neighbor 
algorithm and Support Vector Machine to optimize energy 
consumption in a building based on historical data. A 
multi-agent system proposes a solution for energy 
consumption reduction. Another MAS system appointed 
to simulate a building will consider using this solution by 
applying an auction-based system. The system that 
simulates an everyday household also manages and 
controls the devices. Similarly, the system we propose in 
our paper will regard historical data for decision-making 
and simulating household appliances. The task of 
simulating, controlling, and managing devices is 
decoupled in our solution, which allows for greater 
simulation flexibility (i.e., simulating various household 
cases in different climates and with various household 
devices). While the Typhoon HIL Center simulates a 
household environment and the appliances, the Multi-
agent system Siebog manages and controls these devices. 
This enables us to obtain scalability in our application 
with the number of devices that we will add to our future 
system.  

In the solution given in [6], we have another system that 
describes a set of multi-agent systems that aim to optimize 
energy consumption in a smart building. They propose a 
solution where the system evaluates a day ahead strategy. 
The system predicts and chooses the optimal solution to 

optimize energy consumption. They also have an 
additional layer that considers the possibility of 
uncertainties in their decision-making before the 
conclusion.  

Most of the previous solutions use real-world data in 
the form of hardware appliances. While this is the most 
realistic setting, a trained HEMS is limited to a single 
scenario (i.e., a particular household). On the other hand, 
simulation offers more flexibility for training different 
HEMS for different households. In our system, a realistic 
simulation will be possible with the Mainflux platform’s 
addition that enables us to store or read real-time data 
from different devices. Currently, we are storing historical 
illumination and outdoor temperature and using this data 
in a simulated household environment, and in the future, 
we can easily modify our system to handle values 
measured in real-time. 

III. METHODOLOGY 

Our system (Figure 1) encompasses:  

• the MAS that handles the creation of agents and 

interaction between agents,  

• the Typhoon HIL Control Center that simulates 

household device,  

• the Mainflux platform that serves as a 

middleware – it can collect real-world 

information from various household sensors and 

forward it to the MAS.   
Mainflux represents a scalable, secure, open-source 

platform for the Internet of Things (IoT). Through this 
platform, solar radiance and outdoor temperature are 
loaded and later used to simulate a household environment 
in the Typhoon HIL simulator. In our solution, the 
MainFlux was used as a repository for real-world data. 
The data is first uploaded into the Mainflux and later from 
MainFlux distributed to Typhoon HIL simulator. 
Currently, Mainflux is used as a tool to import historical 
data. Our future goal is to read real-world data in real-time 
from physical devices which is the main purpose 
(function) of Mainflux. 

The Typhoon HIL center offers an application for 
simulating everyday household appliances. In this paper, 
we have included controllable and uncontrollable devices. 
Controllable devices are intended to be controlled by 

 
Figure 1 Communication between the Mainflux, Siebog and TyphoonHIL applications 
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HEMS, while uncontrollable devices are those used on-
demand by the residents. Controllable loads include air 
conditioning, Boiler, Refrigerator, Washing Machine, 
Dishwasher, PV panel. Uncontrollable loads are loads 
produced by cooking, lighting, entertainment.  

In the Multi-Agent System, all the devices in the smart 
home simulation are represented with corresponding 
agents. The PV Panel and the Air Conditioning 
components of this environment use outdoor temperature 
and solar irradiation as input values. The data for 
irradiation and temperature are downloaded from the 
Solcast [7]. The information can be obtained in different 
resolutions, ranging from 5, 10, 15, 30, or 60 minutes. 
With the help of the various irradiation and temperature 
values worldwide, our system has a better grasp of energy 
requirements by different households worldwide. The 
Typhoon HIL simulates energy consumption in a typical 
household and, after a defined period, waits for the MAS 
to evaluate a cost function we defined in [8]. This cost 
function balances the costs of energy used by simulated 
devices with user comfort. 

The entire architectural solution has been presented in 
[8]. In the following section we will describe a detailed 
description of the Mainflux middleware which is a novelty 
to our system. 

IV. MAINFLUX MIDDLEWARE 

Our system incorporates a Middleware, Siebog, used as 
a mediator between the Typhoon HIL Control Center and 
the Mainflux platform. The information regarding the 
solar irradiation and outdoor temperature is represented as 
rows in a CSV file. As a first step in starting the platform, 
the system loads the information from the CSV file and 
into the Mainflux platform with the CSV Reader. During 
the simulation, the data is sent from the Mainflux every 15 
minutes of simulation time to the Siebog. The parameters 
are forwarded to the Typhoon HIL Control Center and 
used to evaluate the energy produced in a PV panel and an 
Air Conditioner unit's temperature. In our model, 
simulating 1 minute takes 5 microseconds in real-time.  

Figure 1. presents a simplified view of the 
communication between our three systems. The diagram 
shows that Siebog has the role of a mediator between the 
Mainflux and Typhoon HIL Center. Siebog obtains 
temperature and irradiation from Mainflux every 15 min 
of simulation time and forwards this information to the 
Typhoon HIL Center. Typhoon HIL simulates household 
devices using the new input values and calculates the 
energy consumed for the 15 min of simulation time. 
Siebog acquires the resulted energy consumption from the 
Typhoon HIL Center and calculates the cost. In the future, 
this simulation will be used as an environment for training 
a reinforcement learning algorithm. 

A. Modeling the HEMS in Typhoon HIL  

The household is modeled in the Typhoon HIL 

Schematic Editor. The Schematic Editor is a software that 

is part of the Typhoon HIL Center.  

The first model (Figure 2.) represents the irradiation 

input. We have the signal switch that indicates if our 

system is using data from the Mainflux or generated data.  

 
Figure 2 The irradiation component is represented in the Typhoon HIL 

Schemantic Editor. The value of irradiation output depends if the 
system is randomly generating irradiation values or real-world values 

are provided from the Mainflux 

 

The same is presented in Figure 3. where we have the 

input for temperature.  

 

 
Figure 3 The temperature component that is presented in the Typhoon 

HIL Schemantic Editor. The value of temperature output depends if the 

system is randomly generating temperature values or real-world values 

are provided from the Mainflux 

 

This is later used in household appliances PV and AC 

Figure 4. 

 
Figure 4 The PV panel and Aircondition components that are presented 

in the TyphoonHIL Schemantic Editor. The input values are the 
temperature and irradiation values generated from the previous 

components. The output values are the produced and consumed electric 

energy from the PV panel and AC. 

 

The inside temperature will later be used to generate the 

power usage of the boiler and refrigerator in future 

household models. For now, we use the consumed power 

for our cost evaluation function. This function is the cost 

function described in [1] and in the future, it will 

represent a reward for an RL model.   

V. RESULTS 

Figure 5. [10] shows a diagram representing electricity 
generated in Germany from 08.05.2020. untill 08.05.2021. 
This electric energy was generated with renewable energy 
sources (biomass, hydro, solar, and wind). The graph 
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shows the amount of power generated in gigawatts (GW). 
The electricity generated by wind onshore is dominant 
during the fall and winter period, and during the spring 
and summer solar is more frequent. The top squiggly line 
represents electricity consumption. The average power 
consumption in Germany per capita, in a household, is 
6,771 kWh [10].  Currently, there are not enough 
renewable energy resources to cover the demand for 
electricity consumption. Figure 6. [11] presents the change 
in electricity production. Fossil fuels are having less of an 
impact on generating power, and the use of renewables is 
making a trend in Europe [11]. We can see a rising trend 
in renewable energy resources over the years, and the 
predictions are that it will keep on growing. 

 
Figure 6 “Europe’s Power Sector in 2020”, published by Ember and 

Agora Energiewende [11] 

 

External factors such as the weather, outdoor 

temperature, and solar irradiation are variant and 

unpredictable. As discussed in [9] it is hard to predict 

weather conditions and because of this there is a level of 

uncertainty in regards to the available energy in 

households that use both energy provided from a PV 

panel and atmospheric conditions, such as solar 

irradiation. In [9] one of the more costly household 

appliances is an AC. The importance of adjusting a 

system with valid data is major, given the high demand 

and usability of this device. In our proposed application 

we use irradiation to represent a working model of an 

AC. 

Figure 7 presents an average per month of generated 

power from the PV. The PV panel is a component in the 

simulated environment and it produces electric energy. 

This energy can directly supply the house loads. In the 

future, it will also be used to charge the electric storage 

(eg. house battery) or be sold to the distribution grid. 

Similar to Figure 1 we can see that in Figure 7 the PV 

panel on average produces more power during the spring 

and summer seasons, and less in late fall and early winter. 

We were able to recreate a realistic PV electric energy 

production, which we can use in the simulated 

environment.  

 

 
Figure 7 Average monthly electric energy production of a PV panel in 
kilowatt-hour(kWh) 

Observing the average energy generated from renewable 

enery sources Figure 5 and the average computed energy 

production in our HEMS Figure 7 we can see that in both 

cases during the late spring and summer most of the 

generated energy is provided from irradiation and less 

during fall and winter.  

 
Figure 5 Power Generation and Consumption from May 2020 to May 2021, published by Agora Energiewende [10] 
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Figure 8 represents the computed average values of the 

cost function during the simulation of the HEMS. The 

simulated devices are the refrigerator, uncontrollable 

loads and the pv panel. Power usage of the simulated 

devices hava a negative impact to the cost function, while 

their benefit has a positive impact. The refrigerator is a 

high priority device, which means that the benefit of 

having this device in an activated state is desired by the 

systems cost function. Uncontrollable loads consist of 

devices for lighting and entertainment. Their activated 

state is not beneficial to the system. All of the previous 

devices consume energy. On the other hand, the pv panel 

is a device that produces energy and as such it only has a 

positive effect to the cost function. [8] 

Other parameters that are taken into account are user 

defined priorities of individual controllable devices, and 

the energy that needs to be bought from the grid. The 

negative values of the cost function indicate that more 

energy is being consumed than produced, and positive 

values denote the opposite, more energy is produced than 

consumed. Currently, only one device produces energy 

and the rest consume it. During the spring and summer 

period when the level of irradiation and temperature is 

higher, more electric energy is produced. This is also 

depicted in the evaluation of the cost function in Figure 8.  

 
Figure 8 Average monthly cost function evaluation, with uncontrollable 

loads, refriegerator and pv panel turned on 

VI. CONCLUSION 

In this paper, we presented our HEMS solution that 
manages household appliances to optimize the cost of 
energy consumption. The system is split into three 
independent software entities. We expanded our previous 
application [8] with a third-party software Mainflux, to 
include data provided from sensors. This data consists of 
irradiation and outdoor temperature. We presented the 
trend of renewable energy sources, and how they have a 
significant impact on energy generation  in  household 
environments.  

We discussed the importance of a HEMS architecture 
and how integrating third-party software benefits in 
simulating an everyday household. Тhere is uncertainty 

when we observe appliances such as AC and PV. These 
devices depend on unpredictable factors. The habits of 
individual households and climate conditions vary. The 
usage of real-world data in a simulated environment gives 
us the possibility of simulating profiling in a way we can 
focus on different family profiles and habits. In our final 
results we plotted the value of the computed energy 
production in our system and compared these values with 
real-time power generation data. These results will later 
have an impact in training an RL model. The end goal is 
to achieve a self-learning model that will optimize energy 
consumption and indulge users’ preferences.  
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