
A Meta-Model and Code Generator for Evolving

Software Product Lines

Tijana Lalošević, Željko Vuković, Gordana Milosavljević

 Faculty of Technical Sciences, University in Novi Sad, Serbia

tijana.vdn@gmail.com, zeljkov@uns.ac.rs, grist@uns.ac.rs

Abstract—Software Product Line (SPL) engineering is a

paradigm which allows reducing development time, effort,

and costs for development of products with the same core

features and some variations needed for every client that

purchases the product. Instead of writing the variations

code from scratch, we can follow the Model-Driven

development approach, which aims to generate software

from design models automatically. Incorporating Model-

Driven Software development in an existing large scale

software product line (SPL) can be challenging and full of

obstacles due to constant development and changes in the

SPL core and product architecture. The introduction of the

Model-Driven approach to such solutions often must be

done in an iterative and incremental manner to embrace the

changes. In order to achieve this goal, it is necessary to

fulfill two preconditions: the existence of the domain-

specific modeling language and transformation programs

for automatic code generation from a model. This paper

presents a meta-model and a code generator that enables

rapid development and customization of the SPL

applications. Our solution enables the core product line to

be automatically expanded in any segment (e.g. method,

data structure, etc.).

Keywords: MDE, Code Generator, SPL, meta-model, Domain-

specific modeling language

I. INTRODUCTION

The software industry has experienced expansion over the

last twenty years. Dr William Raduchel, a professor at

Harvard and later a chief executive at Sun Microsystems,

Xerox and AOL Time Warner, describes the software as

"the core of most modern organizations, products and

services."[1] Most companies produce products for a

specific market, therefore the products contain a common

basis that often requires customization for a particular

client. Development software market like any other

market falls under the rules of supply and demand. This

market is highly variable and customer appetites are

increasing, so it is crucial for software companies to

quickly develop a product in order to sell and retain

customers and stay competitive. One solution to this

problem is Model-Driven Software Development

(MDSD).

For companies that are already building product lines,

MDSD can further increase productivity because[1]:

• Variability can be described more concisely since, in

addition to the traditional mechanisms, variability is

also described on model level.

• The mapping from problem to solution domain can

be formally described and automated using model-to-

model transformations.

• Aspect-oriented techniques enable the explicit

expression and modularization of crosscutting

variability on the model, code, and generator level.

• Fine-grained traceability is supported since tracing is

done on the model element level rather than on the

level of code artifacts.

Model-Driven Software Development (MDSD) is a

paradigm that focuses on models as the primary concept.

From the standpoint of MDSD, modeling is successful if

the model makes sense from the perspective of the user

who is familiar with the domain and if they can serve as

the basis for implementing the system.

Agile methodologies (Figure 1) are project management

methodologies that uses short development cycles to

prioritize continual improvement in the development of a

product or service where requirements and solutions

evolve through collaboration between self-organizing

cross-functional teams. Agile project management is an

approach based on delivering requirements iteratively and

incrementally throughout the project life cycle. At the

core of agile methodologies is the requirement to exhibit

central values and behaviors of trust, flexibility,

empowerment, and collaboration. [3] These

methodologies have proven to be the most effective today

and becoming the industry standard, as it provides

constant feedback from users (Figure 2). Creating

models can be hard in situations where they require

extensive communication between product managers,

designers, developers, and users of application domains.

Software Product Line (SPL) engineering is concerned

with systematically reusing development assets in an

application domain. It is similar to mass customization in

a traditional industry, aiming to develop and evolve

software systems as quality products, with reduced

development effort and time-to-market.[4] Systematic

and planned reuse is facilitated within the system by

integrating common and variable aspects into reusable

artifacts. The integration of these artifacts is most often

made possible by the fact that basic software components

have an adaptive architecture. However, despite all the

facilitation, just putting together the final product is

usually a repetitive job. The most important factors in

achieving profit in the field of software development are

implementation time and the possibility of rapid

Copyright 2020 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 123

adaptation to the ever-changing client requirements. Our

solution can help reduce time and increase efficiency.

Figure 1 Iterative software development [4]

Figure 2 Product Development [5]

Domain-Specific Language (DSL) languages are

languages that are designed for a specific, narrowly

defined domain, context, or company to make it easier for

people to describe the domain concepts. If the language is

modeling oriented, it can also be called domain-specific

modeling language (DSML) [5].

To facilitate the maintenance of existing SPLs and

accelerate development of new large-scale SPLs using a

Model-Driven Engineering (MDE) approach, we have

developed a meta-model, a code generator, and

accompanying tools. Since the introduction of MDE to

the original SPL came in later phases of its development

and deployment, it was not possible to alter the existing

SPL architecture. This posed various challenges and

constraints during this research and resulted in some

specific solutions.

When a client purchases an existing SPL solution, its

entities and processes usually have to be adapted to

accommodate established business processes of the

client’s system. This customization of the software to

individual client’s needs is a good example of the use of

the SPL workspace, in which SPL core is expanded and

configured to get the product in accordance with the

requirements.

Our goal is to build meta-model and code generator

which provide the following activities for SPL developed

using .NET technologies:

1. Extension of data models and configuration

files;

2. Extension of the database schema used for data

persistence;

3. Extending the user interface to allow the user to

update and view documents;

4. Extending the validation of the documents

entered and changing their life cycle.

II. RELATED WORK

Model-driven software development (MDSE) within SPL

is one of the current topics addressed by a number of

scientific papers.

A. Perspectives on combining model-driven

engineering, software product line engineering, and

version control

This paper describes the SCT (specification-

configuration-templates) specification of a source code

generator that is independent of the target programming

language and problem domain.[7] The code generator is

defined as a multi-level structure, which allows the

nesting of a generator, similar to nesting programming

structures in structured and object-oriented programming.

Figure 3 SCT framework [7]

This solution is different from our CG (CodeGen)

solution in that it contains inside its meta-model the

information which template should be used to generate

which element, as well as a list of all the templates. In

CG, this information is stored as code generator

configuration for every generated file type.

B. Perspectives on Combining Model-Driven

Engineering, Software Product Line Engineering, and

Version Control

Another challenge was file versioning, which is one of

the biggest challenges with SPL where certain

components are developed by different teams. In [8] the

authors deal with the problem of mutual referencing of

artifacts and their versioning. As stated in [8]: “The three

most important aspects of modeling the evolution of

architectures and product lines are versions, options, and

variants. Versions record information about the evolution

of architectures and elements like components,

connectors, and interfaces. Options indicate points of

variation in an architecture where the structure may vary

124

by the inclusion or exclusion of an element or group of

elements. Variants indicate points in an architecture

where one of several alternatives may be substituted for

an element or group of elements." However, this solution

does not support the ability to insert a piece of code into

an existing file depending on the context.

C. ReingIS: A Toolset for Rapid Development and

Reengeneering of Bussines Systems

A particular challenge is reengineering, that is,

transferring the solution to multiple versions. One of the

interesting solutions is described in [8]. This solution

involves the entire development framework, which in

addition to generating code, also deals with system

security. Its most complex element is the analyzer, a

component that creates a specification of a business

system user interface based on a database specification,

with support for CRUD (create, update, delete)

operations, lookup fields, form connections, etc. The

latter implies that the analyzer can recognize the

hierarchy of documents. This solution is one of the

starting points for designing our generator.

III. CODEGEN REQUIREMENTS

The Code Gen requirements are quite complex and will

be grouped into several sections for a better explanation.

The first section will explain how the CG influences an

existing solution, as well as the differences between

conventional solutions and good practices. Next, the

generation and integration requirements will be

presented.

A. Requirements related to the generation and

integration of generated content

The most important requirement is that CG should

generate a new project, as well as to support the

development of an existing project. Also, it should

provide support to the various development teams that

maintain certain technological segments (web, desktop,

relational database, etc.). It is necessary to allow the user

to extend a specific group of functionalities, that is, to

make the graphical user interface intuitive and easy for

the user with domain knowledge. For example, if a user

wants to extend only the desktop application, the

generator should provide him/her only with these

extensions.

All generated files must be integrated with an existing

project core. The desired result is an extended system that

is successfully compiled and executed.

B. Requirements that affect the structure of an existing

solution

MDSE's recommendation is to keep handwritten and

generated code in separate files on disk and to use some

of the known mechanisms for their integration:

inheritance, extension (delegation), aspects, partial class

mechanism etc. Error! Reference source not found..

Most of these mechanisms require careful design of the

architecture of the system over which the code will be

generated, before embarking on the development of the

code generator.

However, when code generators are built for existing

systems where the architecture must not be changed,

different concepts are required, which will be outlined

below.

The code generator directly changes handwritten code in

situations where a strict separation of handwritten and

generated code is not possible (various XML

configuration files, XAML, HTML and javascript files).

Both the developers and the CG are expected to work on

these files. The C# classes are divided into two physically

separated files (the concept of partial class from .NET),

where one part of the class can be modified by the

developer and the other part is under the responsibility of

the CG. The developer should not modify the CG part.

If CG needs to change a part of the file that was modified

by the developer and it finds out that there is a conflict, it

must consult the user.

C. An example of a concrete system

The first challenge was to develop a meta-model that is

not tied to any programming language so that any

changes to the underlying architecture would result in

minor changes to the code generators themselves.

The second challenge was to give context to the elements

we want to generate that depends on domain knowledge.

For example, the existence of different aggregations,

where aggregation between type A and B and aggregation

between type C and B do not behave in the same way.

Figure 4 Example for aggregations with context

Thus, the documents themselves do not contain

references to another type of document, but instead,

contain auxiliary models that represent a "logical

reference" to another type of document. In order to better

understand the problem, a sketch of the screen format of

the Failure Record document will be presented.

Using the sketch form of the Failure Record document

screen (Figure 5), we can see that the fields of the other

two documents (Client and ClientCall) are also contained

within it. However, Client and ClientCall models were

not used within the Failure Record, but auxiliary models

were created represented by the diagram in the Figure 4.

125

Figure 5 Screen format of the Failure Record document

IV. META – MODEL

A meta-model can be considered as a model of a

modeling language. The term “meta” (“behind” or

“above” something) is therefore relative – depending on

the perspective, a model is either a model or a meta-

model. It is important to note that a meta-model is a

model at a different level of abstraction that makes

statements about the structure of another model (or a

whole set of other models), without making statements

about their content.[11]

Figure 6 shows the core meta-classes that support the

description of evolving SPL configuration.

Figure 6 CG meta-model

126

The NamedElement meta-class is one of the basic

concepts of most metamodels. It has a name and a

unique identifier.

Project is a container of all specified elements. It

contains a collection of earlier versions of the project,

which enables comparison of the project versions and

incremental code generation, so that code is generated

only for new, edited or deleted elements, which

minimizes the possibility of conflicts with manually

edited code.

FileConfig is used to configure names and locations of

project artifacts. It has three references to CGFile:

product (artifact in SPL core), project (artifact in SPL

customization that can be manually edited by the

developer) and generated (artifact in SPL customization

which is maintained exclusively by the code generator).

ElementFileConfig inherits FileConfig and has a

reference to it in order to avoid redundant file

descriptions if the situation arises that it should be

expanded while expanding other documents.

Configuration consists of the following collections:

fileConfigs, projectFileConfigs, and

templateFileConfigs. FileConfigs is a collection of all

configuration files. ProjectFileConfigs is a collection of

configuration files that are independent of the specific

project element (there is usually one such file in the entire

project code base, e.g. configuration files for services or

localization files). TemplateFileConfigs is a collection

of the configuration files that are used when creating a

new document.

Part is a generic element that is used to model any piece

of either the resulting application or software

development constructs used to implement it. Parts can be

methods, method calls, different parameters depending on

the referenced element, but also various dialogues,

documents, document sections, etc. The Part meta-class

contains a reference to the parent part as well as a list of

required parts which generation is mandatory when

generating the given part. Parts enable automation of

development of mutually dependent documents and

artifacts, when a change in one part of the document

causes changes in other documents, across different

artifact types and application layers (user interface,

domain classes, database scripts, etc.).

V. IMPLEMENTATION

As each client has specific features that SPL needs to

address. The target software product is formed by

expanding the SPL core using one of the seven

mechanisms provided:

1. Inherit C # classes from core. The descendants are

generated as partial classes [12], so CG and

developers can have their dedicated parts to change;

2. Roslyn parser for C# can be used for direct

manipulation of C# code in existing projects [13];

3. Extending the configuration of XML files – by using

XML parser Error! Reference source not found.;

4. Extending XAML documents as XML-based syntax

to describe the WPF (Windows Presentation

Foundation) desktop application GUI – manipulate

with elements by using parser [14] and also provide

support for lay-outing;

5. HTML extension or web client GUI extension –by

using XPath [15];

6. Javascript methods for web client – by using Jint

parser [16];

7. SQL database extension – generating T-SQL code

for new tables and changing the existing code using

TSQL parser [17].

VI. CODEGEN USER INTERFACE

Figure 7 shows the graphical user interface (GUI) of CG

when creating a blank project.

Figure 7 CG GUI

We can see on the left a tree view of the project structure,

which shows which documents are being expanded in the

project, as well as the core classes included in the project.

On the right is a workspace. Activation of the Properties

button, depending on the selected item in the tree,

displays the attributes that the user can change to fit the

requirements. At the top, we see that it is possible to

select which section of the system we want to extend,

whether it is a desktop application, web, database

extension or configuration. This allows the user to

iteratively extend the elements of the system according to

the needs of the client and their development team.

Figure 8 Selection of parts of documents within a

reference document

By selecting the Client document, we can add a new field

to it. As it is shown in the previous picture, the user can

specify the name, description and a label that will later be

mapped to the GUI of the generated product. In addition,

127

parts of the referenced document, are shown in the

Figure 8.

By selecting a Part, the CG knows where to insert the

code to make the extension visible within another

document. The same goes for the web application.

After extending the model, it is necessary to perform

object-relational mapping to make the changes visible in

the database (Figure 9). This completes the project

extension.

Figure 9 Object-relational mapping

VII. CONCLUSION

This paper presented a meta-model and associated code

generator architecture designed to automate the

development of mutually dependent documents within

software product lines. One of the major challenges was

the need to support development of existing projects, as

well as newly created ones, which made necessary to use

various types of extension mechanisms, usually not

present in MDSD solutions:

• Direct manipulation of hand-written code using

different kind of parsers.

• Collaborative work of CG and developers on the

same software artifacts.

We plan future development in two directions:

1. To incorporate parsers for more languages to

support development of SPL solutions based on

different platforms.

2. To enable developers to create their own code

generation templates, in order to enhance CG

customizability.

REFERENCES

[1] Shapiro, R. J. (2014). The us software industry as an engine for
economic growth and employment. Georgetown McDonough
School of Business Research Paper, (2541673).

[2] Voelter, M., & Groher, I. (2007, September). Product line
implementation using aspect-oriented and model-driven software
development. In 11th International Software Product Line
Conference (SPLC 2007) (pp. 233-242). IEEE

[3] Agile project management manifesto
https://medium.com/@sudarhtc/agile-project-management-
methodology-manifesto-frameworks-and-process-f4c332ddb779
Web 5th April 2020.

[4] Urli, S., Blay-Fornarino, M., & Collet, P. (2014, September).
Handling complex configurations in software product lines: a
tooled approach. In Proceedings of the 18th International
Software Product Line Conference-Volume 1 (pp. 112-121).

[5] Software product lines presentation
https://pt.slideshare.net/pagsousa/software-product-lines/14 Web
5th April 2020.

[6] Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven
software engineering in practice. Synthesis lectures on software
engineering, 3(1), 1-207.

[7] Schwägerl, F., & Westfechtel, B. (2017, February). Perspectives
on combining model-driven engineering, software product line
engineering, and version control. In Proceedings of the Eleventh
International Workshop on Variability Modelling of Software-
intensive Systems (pp. 76-83).

[8] Dashofy, E. M., Van der Hoek, A., & Taylor, R. N. (2002, May).
An infrastructure for the rapid development of XML-based
architecture description languages. In Proceedings of the 24th
international conference on Software engineering (pp. 266-276).

[9] Gordana Milosavljević, Željko Vuković. (2016). ReingIS: A
Toolset for Rapid Develpoment and Reengeneering of Bussines
Systems. In ICIST 2016.

[10] Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Nazari, P.
M. S., Müller, K., ... & Rumpe, B. (2015, February). A
comparison of mechanisms for integrating handwritten and
generated code for object-oriented programming languages.
In 2015 3rd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD) (pp.
74-85). IEEE.

[11] Models and meta-models, https://www.transentis.com/methods-
techniques/models-and-metamodels/ Web 5th April 2020.

[12] https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/classes-and-structs/partial-classes-and-methods Web 5th
April 2020.

[13] Roslyn – C# parser, https://archive.codeplex.com/?p=roslyn Web
5th April 2020.

[14] Xml parser, https://github.com/KirillOsenkov/XmlParser Web 5th
April 2020.

[15] XPath for html, https://docs.microsoft.com/en-
us/dotnet/standard/data/xml/select-nodes-using-xpath-navigation
Web 5th April 2020.

[16] Jint parser, https://archive.codeplex.com/?p=jint Web 5th April
2020.

[17] TSQL parser, https://docs.microsoft.com/en-
us/dotnet/api/microsoft.sqlserver.transactsql.scriptdom.tsqlparser?
view=sql-dacfx-140.3881.1 Web 5th April 2020.

128

