
Ontology Enabled Internet of Things System for

Smart Buildings

Dušan Popadić*a, Lazar Berbakova, Marko Jelić*a, Marko Batića
* School of Electrical Engineering, University of Belgrade, Belgrade, Serbia

a Institute Mihajlo Pupin, University of Belgrade, Belgrade, Serbia

{dusan.popadic, lazar.berbakov, marko.jelic, marko.batic}@pupin.rs

Abstract – Irrational energy consumption and waste of energy

are two of the main problems that we face today. A lot of the

energy is wasted by people in their homes or offices because they

are not paying much attention to their energy consumption. In

order to increase energy efficiency of the general population and

to raise general awareness, a system based on Internet of Things

(IoT) is developed to influence users to be more energy efficient.

Because of the great number of different entities in the buildings

and their complex relationships, a semantic ontology is used to

store contextual knowledge about spatial arrangements of the

rooms, devices and sensors in the buildings.

I. INTRODUCTION

Irrational energy consumption and waste of energy are two

of the main problems that we face today. A lot of the energy

is wasted by people in their homes or offices because they are

not paying much attention to their energy consumption (e.g.

leaving lights or turned on multimedia devices in an

unoccupied room). It is expected that technological

advancement will require people to be more energy efficient

and to be more aware of the energy they use. It will require

change of habits to the most people which is not easy to do.

In order to increase energy efficiency of the general

population and to raise general awareness, a system based on

Internet of Things (IoT) is developed to influence users to be

more energy efficient.

In this paper, the architecture of the Energy Conservation

Measures (ECM) system is presented. ECM helps users to

monitor their energy consumption, alerts them about

potentially problematic situations and in the end influence

them to be less wasteful (Figure 1). There are examples of

IoT approaches to this problem [1] [2], however, the majority

of systems does not recognize problematic situations but

rather just displays raw measured data. ECM aims to be

proactive and alerts users about problems and even

recommends actions to perform. Because of the great number

of different entities in the buildings and their complex

relationships, a semantic ontology [3] is used to store

contextual knowledge about spatial arrangements of the

rooms, devices and sensors in the buildings. ECM uses a

mobile app developed in [4] to communicate with users.

II. EVENTS

Each potentially problematic situation has its own

predefined logical conditions that determine whether that

situation is currently taking place. However, instantly

notifying a user could be problematic, e.g. a user could open

a window just to tell something to a neighbor and close it after

few seconds. In that case, it is not good to bother the user with

an alert that the window is open because sending notifications

too soon in such situation could cause the user to start

disregarding notifications very quickly. Therefore, a new

logic value, called event activity indicator, is introduced. This

indicator determines if the event is really active so the

notification can be sent. Even when the logical conditions for

a problematic situation are satisfied, an event will not be

activated for a certain amount of time, called trigger timeout,

as shown in Figure 2. Trigger timeout is predefined and can

be different for different events.

After the event is activated, a notification will be sent to

the user alerting them of a potentially problematic situation

so they can react. If the user does not react, the notification

will be resent after notification timeout, which is (as in case

of trigger timeout) predefined and event-specific.

The user can now choose to snooze, dismiss or disable the

notification. If the notification is snoozed, then it will be

repeated after notification timeout if the event is still active,

as shown in the Figure 2. If the user dismisses the

notification, it will not be repeated until the event is restarted

(deactivated and activated again). If the user disables the

notification, it will not be repeated until enabled again.

ECM uses four types of sensors:

 Window sensors

 Motion, light, temperature (MLT) sensors

 VOC sensors

 Smart cables/plugs

Window sensors consist of two parts that can be joined

together or separated. When a window is open, parts are

separated and when window is closed, parts are joined. In

addition, window sensors also measure temperature. MLT

sensors can detect motion in a room, measure illuminance

Figure 1. ECM overview

Copyright 2020 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 119

and temperature. VOC sensors monitor volatile organic

compound (VOC) levels in the air. Based on the level of

VOCs in the air, air quality can be determined. Besides, it

also measures humidity and temperature. Smart plugs/cables

measure demand of the appliances that have been plugged in

them. ECM uses them to determine if a device is turned on.

All these sensors provide the engine with the measurements

which are used to detect problematic situations.

There are three types of events in ECM: Energy

conservation issues, Security issues, and Health issues. Also,

events can be divided spatially into two groups: room-related

events and apartment-related events. The collection of the

event conditions that are being monitored by ECM is as

follows:

1. Energy conservation issues

1.1. Heating is turned on while at least one window is

open in the same room.

1.2. A room is unoccupied while the heating is on.

1.3. A room is unoccupied while a multimedia device is

turned on.

1.4. A room is unoccupied while the lights are turned

on.

1.5. The temperature in the room is larger than a

predefined threshold while the heating is turned on.

1.6. The house is unoccupied while the heating is on.

2. Security issues

2.1. A room is unoccupied while a window is open in

that room.

2.2. The entrance door is open while there is no one in

the hall.

2.3. The entrance door is open while there is no one in

the house.

2.4. The house is unoccupied while a window is open.

3. Health issues

3.1. Moderate air quality has been detected while all the

windows in the room are closed.

3.2. Poor air quality has been detected while all the

windows in the room are closed.

3.3. Unhealthy air quality has been detected while all

the windows in the room are closed.

3.4. Unhealthy air quality has been detected while the

windows are open.

1 https://github.com/influxdata/influxdb-python

Some of the events imply that other events are also active

e.g. event 1.6 implies that several events of type 1.2 (for each

of the rooms in the house) will also be active. It would bother

users to get a notification for an event of type 1.6 for their

apartment and then to get several more notifications for each

of the rooms. To deal with that problem, the concept of event

prioritizing is introduced, so the events of lower priority (in

this example 1.2) will not be shown as active due to being in

a shadow of higher priority event (1.6). Also, if there is a

room which is unoccupied, has a heating turned on and an

open window events 1.1, 1.2 and 2.1 will all be active.

However, the user will get redundant information because

activity of 1.1 and 1.2 events implies that 2.1 will also be

active. Event grouping is introduced in order not to bother

users. These three events are grouped into one single event

and only one notification is sent to the user.

III. SYSTEM ARCHITECTURE

ECM service consists of five parts: reasoning engine,

Influx database, ontology, MySQL database and mobile

application as shown in Figure 3.

Influx database is used for the purpose of storing real time

data gathered from the sensors installed on the sites. Each

sensor works “on change” and sends changes in

measurements to the database which are then stored in

different data groups according to the type of measurement

(e.g. temperature, demand etc.). This data is later used by the

reasoning engine to determine whether or not an event is

active and whether a notification should be sent. Influx

database is hosted on the server and can be accessed by ECM

using influxdb-python1 library. Queries are written in

InfluxQL language.

Mobile application is used by end users, owners of the

apartments, to receive notifications sent by ECM and to react

upon them. Since some of the devices such as radiators and

multimedia devices are connected to the power source using

smart cable or smart plug, users have the opportunity to turn

them off immediately. For example, if a user receives a

notification saying that there is no one in a room and a

Figure 2. Event activity diagram

Figure 3. System Architecture

120

multimedia device is active, he or she will have an option to

turn that device off by clicking on a button in the notification

itself. In the app, users can see some basic information about

their house or apartment such as temperature and total

consumption (see Figure 4, left). It also shows all the

notifications generated by ECM service (Figure 4, right), but

displays them as push notifications as well. Users can

customize the notifications by naming certain rooms and

devices in their apartments e.g. “Mark’s bedroom” or

“Radiator under the kitchen window”. Since ECM gets new

data from the ontology once a day, updating the ontology

with information about customization directly from the app

is not good enough. If it was done like that, users would have

to wait for hours until the notifications they receive start

using custom names. Because of that, the reasoning engine

has to be notified immediately. In order to allow

asynchronous communication from the app to the reasoning

engine, MQTT protocol implementation [5] is used. The

same protocol is used to notify the engine if the user snoozed

or disabled notification.

The ontology stores data about all the sites, houses,

apartments, rooms and installed sensors and links between

them. It provides the system with conceptual knowledge

about spatial arrangements of the sites. Ontology provides the

information which sensors are installed in which rooms,

which rooms belong to which apartments, which apartments

are in which buildings etc. It also stores information about the

area of the rooms, geo location of the sites, devices that are

connected to sensors (e.g. radiators or TVs) and user-defined

labels of rooms and devices. Beside knowledge that is

directly put into the ontology, the ontology can infer some

knowledge using its semantic reasoner so it can simply

provide list of all sensors from a certain apartment or

building, not just the room. The ontology is hosted on an

Apache Jena Fuseki server and it can be queried by ECM

service using HTTPS POST requests. In the listing below,

two examples of SPARQL queries used by ECM to query the

Ontology are given:

2 Italic letters mark placeholder for real values.

Get all devices from all rooms and apartments

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX owl: http://www.w3.org/2002/07/owl#

PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#

PREFIX xsd: http://www.w3.org/2001/XMLSchema#

PREFIX bot: https://w3id.org/bot#

PREFIX inb: <http://www.semanticweb.org/sipeticm/ontologies

/2019/0 /inbetween#>

SELECT ?device ?device_type ?room ?apartment

WHERE {

 ?room a bot:Space.

 ?apartment a bot:Space.

 ?room inb:containedInZone ?apartment.

 {

 ?room bot:containsElement ?device.

 }UNION{

 ?EWI bot:interfaceOf ?room.

 ?EWI inb:hostsElement ?window.

 ?window inb:hostsElement ?device.

 }UNION{

 ?apartment bot:adjacentElement ?IW.

 ?IW inb:hostsElement ?door.

 ?door inb:hostsElement ?device.

 }

 ?device a ?device_type

 OPTIONAL

 {

 ?device inb:controlsElement ?element.

 ?element a ?element_type.

 FILTER(?element_type != owl:NamedIndividual)

 }

 FILTER(?device_type != owl:NamedIndividual)

}

ORDER BY ?apartment ?room

Replace old custom name for a device with a new one

PREFIX inb: <http://www.semanticweb.org/sipeticm/ontologies

/2019/0 /inbetween#>

PREFIX bot: <https://w3id.org/bot#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

DELETE{

 inb:device_serial_number2 rdfs:label ?old_custom_name.

}

INSERT{

 inb:device_serial_number rdfs:label custom_name.

}

WHERE{

 OPTIONAL{

 inb:device_serial_number rdfs:label ?old_custom_name. }}

Figure 4. Mobile Application

121

A MySQL database is used by the mobile application to

store its data and to store configurable parameters for the

ECM such as trigger and notification timeouts for different

events.

ECM engine works in a loop that is constantly checking if

an event is activated. In every iteration of the loop, the

reasoning engine needs to go through all the apartments and

rooms, get all the devices from that apartment or room from

the ontology and then gather measurements for those sensors

from Influx database. After that, it needs to go through all

events for each of the rooms and check if they should be

activated. In order to be useful, the ECM system must work

in real time or close to real time. Therefore, efficiency is

crucial. Trigger timeouts for the events are usually not less

than 10 minutes long and they could go up to 1 hour. If one

iteration of the main loop of the reasoning engine takes no

longer than 1 minute (which is no more than 10% of trigger

timeouts of most events), practical needs would be satisfied.

Currently, there are 1013 sensors, 551 rooms and 39

apartments in the system. The problem is that if the ontology

is queried in every iteration and Influx database is queried for

the latest change in measurement value for each sensor, it

would take several minutes for each iteration to complete. To

deal with this problem, all the contextual knowledge from the

ontology is loaded into local memory of the system and the

loaded data is organized into a tree of buildings, apartments,

rooms, sensors and devices. When the ontology is loaded,

reasoning engine goes through all the sensors and gets their

latest measurements, and this process takes several minutes

to complete. However, in all the following iterations, it is not

needed to go through every sensor to load measurements. The

solution is to get all the measurements from the Influx

database that happened in the past 5 minutes. It will get more

data from the database than querying for every single sensor

independently. However, only one query will be needed

instead of 1013 and this will accelerate the system

significantly! With this change one iteration takes around 20

seconds of time which satisfies the needs of our system. Since

the measurements from the past 5 minutes are taken and this

is done approximately every 20 seconds, it is certain that no

measurements will be missed. Reducing the time of 5 minutes

will not improve performance significantly.

It is possible that changes occur on the sites by moving a

device from one room to another, adding new sensors,

including new apartments or buildings etc. Since the

ontology is loaded into dynamic memory of the system,

updates of the contextual knowledge cannot be seen by the

reasoning engine. To include those updates, ontology is

reloaded every day during the night. Apart from reloading the

ontology, configuration parameters from MySQL database

(e.g. trigger timeouts) are also reloaded. For more urgent

updates such as user changing name of a device via mobile

application, MQTT broker is used as already stated above.

The flowchart that illustrates the algorithm that the ECM

performs is shown in Figure 5.

ACKNOWLEDGMENT

The research presented in this paper is partly financed by

the European Union (H2020 LAMBDA project, Pr. No:

809965, H2020 InBetween project, Pr. No: 768776), and

partly by the Ministry of Science and Technological

Development of Republic of Serbia.

REFERENCES

[1] H. N. Rafsanjani and A. Ghahramani, “Towards

utilizing internet of things (IoT) devices for

understanding individual occupants’ energy usage of

personal and shared appliances in office buildings,” J.

Build. Eng., vol. 27, p. 100948, Jan. 2020, doi:

10.1016/j.jobe.2019.100948.

[2] J. Iqbal et al., “A generic internet of things architecture

for controlling electrical energy consumption in smart

homes,” Sustain. Cities Soc., vol. 43, pp. 443–450,

Nov. 2018, doi: 10.1016/j.scs.2018.09.020.

[3] “Ontologies - W3C.”

https://www.w3.org/standards/semanticweb/ontology

(accessed Jan. 15, 2020).

[4] L. Berbakov, M. Batic, and N. Tomasevic, “Mobile

application for energy management in smart buildings,”

presented at the International Conference on

Information Society and Techology, 2019.

[5] R. Light, “Mosquitto: server and client implementation

of the MQTT protocol,” J. Open Source Softw., vol. 2,

no. 13, p. 265, May 2017, doi: 10.21105/joss.00265.

Figure 5. ECM flowchart

122

