
A Hash Based Archiving System

Anton Kos, Sašo Tomažič

University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

E-mail: anton.kos@fe.uni-lj.si

Abstract - The amount of data created annually is
growing exponentially. Some of the newly created data
is important enough to be kept for shorter or longer
time, therefore the need for data archiving is grow-
ing proportionally to data growth. We designed an
efficient and scalable archiving system that can easily
be adapted to the needs of different archiving applica-
tions and scenarios. A Fast Hash-based File Existence
Checking algorithm is the core of the system. It out-
performs other algorithms for file uniqueness checking.
The proposed archiving system is a distributed pro-
cessing and storage system that works with metadata
hashes and file hashes. We implemented the archiving
system in a form of a backup-like application for files
on personal computers in the laboratory. The appli-
cation operational tests yielded very favourable results,
for example, the need for archive storage almost halved
just because of the elimination of files with exactly the
same content. We expect the proposed archiving sys-
tem will find many uses in the present and future data
archiving efforts.

1 Introduction

In the information society, reliance on data is contin-
ually growing and the amount of data being created
worldwide is increasing exponentially.

According to the study [1], in 2011, more than
1.8 zettabytes (1021) of data in more than 500
quadrillion (1015) files were created and replicated to
hard disks, DVDs, shared in the cloud, or stored in
other data storage∗. The amount of data created an-
nually is reported to more than double in two years and
is expected to grow to around 8 zettabytes in 2015. It
is also expected that the number of files or contain-
ers that encapsulate data will grow even faster, by the
factor of 8 in the next five years. The study states
that the data growth continues to outpace the growth
of storage capacity. The study predicts that in the
next decade the number of servers (physical and vir-
tual) will grow by the factor of 10, the amount of data
managed by datacenters by the factor of 50, and the
number of files in datacenters by the factor of 75.

∗These numbers represent only the amount of data being
stored. The amount of transient data is typically not stored
(e.g., digital TV signals we watch but don’t record, digital voice
calls in the network backbone for the duration of a call) can be
up to a few magnitudes bigger.

A certain portion of the newly created data is im-
portant enough to be kept for longer time periods.
The storage that keeps such data is usually called
an archive and the process that transfers data to the
archive is called archiving. Let us briefly list two of
the many definitions of the term archive that can be
found on the Internet. In [2] it reads: ”An archive is
a collection of historical records, or the physical place
they are located.”. In [3] it reads: ”A long-term stor-
age area, often on magnetic tape, for backup copies of
files or for files that are no longer in active use.”

The need for archiving is in proportion to the vol-
ume of data created, which is increasing exponentially.
Therefore a good archiving system should be prompt,
efficient, capable, and above all future proof†.

The paper is organised as follows: in section 2 we
present the motivation for our work, expose some gen-
eral problems connected to archiving and propose the
solutions for them. In section 3 the design of the pro-
posed archiving section and descriptions of its main
modules is given. Its implementation is presented in
section 4, and some of the results of its operational
analysis in section 5. We conclude with section 6.

2 Motivation, problems and proposed

solutions

Our goal is to design an efficient and future proof
archiving system that would satisfy as many archiv-
ing needs and scenarios as possible. We can get its
main properties by answering the following questions.

Why do we need an archiving system? Data is archived
for different reasons and for different purposes. For
instance: some data is being kept for long periods of
time, data from different sources must be kept in the
same location, changes in data are being tracked, etc.
What kind of data do we archive? We archive all data
that we find important to keep for a certain period of
time. What do we expect from an archiving system?
Because of many different uses, an archiving system
should be very flexible and should be offering many
archiving options and scenarios. Since the volume of
data is growing exponentially, the archiving system

†As archive is by the definition long-term data storage, the
core part of the archiving system is expected to work relatively
unchanged for the duration of the archive data validity.

200



should also be highly scalable. What data (files) are
eligible for archiving? An efficient archiving system
stores only originals. By that we mean only files with
unique contents. For instance: two files with different
names and exactly the same content should only be
archived once. All versions of the same document with
different content are all archived separately. What are
general archiving system requirements? Above all a lot
of expandable storage space for archived files. An ex-
cellent archivist∗ that is fast, efficient and accurate.
What does a simple archiving process look like? A
client submits the file to the archiving system, the
system checks file uniqueness, archives the file if nec-
essary, and informs the client of archiving activities
and results. All the necessary archiving information is
kept by the archiving system.

From the above answers, it is evident that the sin-
gle most critical operation in the archiving process is
finding out if the submitted file is unique. This is espe-
cially important in archiving scenarios where a lot of
unchanged files, or files having exactly the same con-
tent as files that have already been archived from other
sources, is expected to be submitted to the archiving
process, sometimes even on a periodical basis. An ex-
ample of such a scenario is a periodical (daily, weekly,
monthly, etc.) archiving of all the data of all com-
puter systems in a certain environment, where a lot of
unchanged files, that have already been archived, are
repeatedly submitted to the archiving system.

Comparing each submitted file to all the files already
in the archive is time consuming and would make an
archiving system too slow. It is more elegant and suf-
ficient to compare only the digests of a submitted file
to digests of all already archived files. A file digest is a
fixed-length bit pattern that uniquely identifies a file.
Digests are usually much shorter than its files, what
can cause a collision, an event where two or more dif-
ferent files have the same digest. The probability of a
collision can be made low enough or negligible, if the
algorithm for creating the file digest is chosen properly,
and if the digest is long enough.

According to [4], cryptographic hashes as MD5, SHA-
1, and SHA-2, are suitable candidates for file digests.
They have good resistance to collisions and satisfac-
tory probability distribution of hash values. The prob-
ability of collision is given in [4] as:

Pcoll

.
=

K(K − 1)

2 · 2n
(1)

where n represents the length of the hash in bits and
K the number of hashes (files) in the archiving system.

For an archiving system that holds a billion (109) of

∗An archivist is a person or in our case a process that makes
sure the archiving is done in the right way.

160-bit hashes, the probability of collision is approxi-
mately 10−30. If the number of hashes in the system
increases to a quadrillion (1015), then the probability
of collision increases to approximately 10−18. But if
the length of a hash is then increased to 256, the colli-
sion probability drops to approximately 10−48. It can
be seen that with controlling the hash length, proba-
bility of collision can be kept low enough to be declared
as negligible.

When a file is submitted to the archiving system, its
hash is created first. The file hash is then compared
to all the file hashes already stored in the system. The
system archives the file itself only if the submitted hash
does not yet exist in the system’s hash table. At the
time of archiving the file hash is added to the system’s
hash table.

Figure 1. Hashes of n bits length are divided into r bits rep-
resenting the region the hash belongs to, and m remaining
bits specifying the exact hash in the region. Hash storage
structure is based on a pointer array. The address of the
pointer in the pointer array is defined by the first r bits of
a hash. A null pointer (empty circle) in the pointer array
denotes that no hash from that region exists in the system,
other pointers (filled circle) point to the first stored remain-
der of the hash from that region. Each hash remainder in
a non-empty region is accompanied by a pointer pointing
to the next hash remainder in the same region. The last
hash remainder in a region has a null pointer attached.

The hash comparison process would commonly use a
Binary Index Search (BIS) algorithm, or alternatively
a B+tree algorithm. BIS requires a sorted list (index)
of hashes and does not need additional storage apart
from that for the hashes themselves. It performs fast
search in logarithmic time, but takes a lot of effort to
insert a new hash into the sorted list. B+tree performs
fast search and insertion in logarithmic time, but needs
additional data storage for the tree structure. In [4]
a new Fast Hash-based File Existence Checking (FH-
FEC) algorithm is proposed. It has been proven by
theoretical analysis, simulation and implementation,

201



that for hash (file) existence checking, FHFEC out-
performs both of the above mentioned algorithms.

Hash existence checking is done by the following proce-
dure (see figure 1 for help). When a file is submitted
for archiving, its hash is calculated first. Then the
pointer at the address defined by the first r bits of the
hash is checked. If it contains a null value, the region
is empty, meaning that the hash does not exist yet. It
is stored into the system by writing m bits of the hash
remainder to the available location. Null pointer of the
region is updated to point to the location of the added
remainder, and the added remainder is attached a null
pointer denoting that this is the last remainder in this
region. The file is archived. If the corresponding re-
gion is not empty, the linked list of hash remainders of
the region is checked for the match. If found, the hash
already exists, the file is not archived. If not found
the remainder is added to the end of the linked list
and corresponding pointers are updated accordingly.
The file is archived. Further details and comparisons
to BIS and B+tree can be found in [4].

Based on the study of above problems and solutions
we have designed a simple lab-size archiving system.

3 Proposed archiving system

We designed our system to be a general purpose
archiving system able to store archived files and the
corresponding archiving history. Archived files are
unique, meaning that no two files in the archive can
have the same content. Archiving history includes all
events and corresponding event data that relate to any
archived file. Two most common events are a success-
ful archiving of a file and a finding that the file with
the same content has already been archived.

Such general purpose archiving system can be easily
adapted to many specialised archiving tasks, scenarios,
and applications. Among them are a classical file or
document archiving, long term archiving, law enforced
archiving of research or business documentation, com-
puter system backups, and many others.

The proposed archiving system is a distributed com-
puter system shown in figure 2. Its modules are in-
terconnected through a data network, in our case IP
network. The archive is generally a distributed, redun-
dant, and expandable data storage with enough capac-
ity to hold all the unique file instances expected to be
submitted to the system during its lifetime. Directory
and file servers are processing systems that process
archiving submissions and hold a database of archiv-
ing history and logs. Metadata∗ and file FHFEC mod-

∗Metadata is a collection of attributes of a file such as:
filename, date and time of creation and/or last modification,
size, location, etc. Metadata hash is a hash created from file’s
metadata.

ules are storage/processing systems that hold archived
metadata hash list and archived file hash list. They
also perform the operation of hash uniqueness check-
ing (and through it the file uniqueness), which is the
most important archiving process in the archiving sys-
tem. It relies on the proposed FHFEC algorithm
that is briefly explained in the previous section and
extensively in [4]. The most numerous and diverse
are clients. They are processing systems that per-
form numerous and heterogeneous tasks required by
the archiving scenarios or applications. Clients actu-
ally define the behaviour of the archiving system. For
instance, the operation of a client for classical docu-
ment archiving is very different from the operation of
a client for system backup. The operation of other
archiving system modules does not depend on a client
operation, all the diversity is on the side of clients.

Figure 2. The proposed archiving system is a distributed
computer system. It consists of several modules that com-
municate over the network. Archive is a data storage that
holds archived files. FHFEC modules hold metadata and
file hash storage structures based on pointer arrays and
lists (see figure 1). Directory server performs the process
of metadata hash checking and stores the metadata hash
submission history. File server performs the process of file
hash checking and stores the file hash submission history.
Clients decide about file submissions and control the en-
tire archiving process from metadata hash submission to
possible file archiving.

The described architecture, where each module is an
independent processing system, is most suitable for
large-size systems with heavy archiving activity and
good networking infrastructure. For small-size sys-
tems a certain degree of module and resource pooling
is possible. For instance: directory server and meta-
data FHFEC modules can be combined, file server and
file FHFEC modules can be combined, archive storage
can be a part of any other module, or at the highest
degree of pooling, all modules, except clients, can be
one processing system.

The detailed process of a single file archiving is shown
and briefly described in a flow diagram in figure 3.
Let us emphasize here that the process of choosing
which files are to be submitted to the archiving process

202



Get File

MetaData

End

Create File

MetaDataHash

Client Directory Server File Server

Start Client Start DS Start FS

Check

MetaDataHash

MetaDataHash

Exists

Write MetaData,

MetaDataHash and

FileHash to the

Archived file DB
Yes

No

Create FileHash

FileHash Exists

Add MetaDataHash

to

MetaDataHashTable

Yes

Check FileHash

Wait for Request Wait for Request

No
Send File to

Archive

Last File

Yes

No

Write File to

Archive

Add FileHash to

FileHashTable

FHFEC(f)FHFEC(m)

Start

FHFEC(m)

Wait for Request

Start

FHFEC(m)

Wait for Request

UDP port 55100 UDP port 55200 UDP port 55300 UDP port 55400 UDP port 55500

Figure 3. File archiving in the proposed system is a three-stage process. On the first stage the client decides, which file
to submit for archiving, collects its metadata, calculates metadata hash and sends it to the metadata FHFEC module
for existence checking. If the metadata hash exists, the client chooses the next file. If it does not exist, the client starts
the second stage, calculates file hash and sends it to the file FHFEC module for existence checking. If the file hash does
exist, the directory server updates archiving history and metadata FHFEC adds the metadata hash to its hash list. If it
doesn’t exist, the client start the third stage, the file is sent to the archive, directory and file server history is updated,
metadata and file hashes are added to the corresponding hash lists in FHFEC modules.

depends on the archiving application using it and it is
always done by the client.

The three-stage archiving process may not seem effec-
tive and in many parts redundant. This observation
holds in the archiving scenarios where a great majority
of submitted files are unique. In such cases the meta-
data hash creation and checking is superfluous. But in
many scenarios, especially when only a small portion
of the submitted files is unique, the three-stage process
is very effective and reduces the processing load of core
modules of the archiving system. Even the client ben-
efits in such scenarios. Calculation of metadata hash
is on average much faster than calculation of the file
hash, and when the metadata hash already exists in
the system, the file hash is not calculated at all, what
saves processing time and speed up the client opera-
tion. Because of that we see the three-stage process
more as an advantage as a disadvantage.

4 Archiving system implementation

In order to test the proposed archiving system, we de-
veloped an application for archiving files on personal
computers. The application is intended to periodically
back up all files, or any subset of files, on each of the
PCs in our laboratory. We made all the modules of
the system and tested them on the local area network
inside the laboratory. We used IP protocol stack.

We dedicated two personal computers for hosting and
running archiving system modules. We pooled the
metadata and file FHFEC modules inside one dedi-
cated PC, on the second dedicated PC we pooled the
directory and file servers. Client is run separately
on each of the test computers that have files to be
archived. Despite pooling, each system module still
works independently and has its own port number in
the IP protocol stack (see figure 3).

203



5 System operation analysis

The first step of the system analysis was its validation.
We conducted the attestation of the correctness of the
message exchange protocols ∗ , hash calculation exact-
ness, calculation and recording of results, and archiv-
ing algorithm operation. The later we did partly with
the help of many file duplicate finders that are freely
available on the Internet. This test is probably the
most important as it shows not only that the algo-
rithm itself is able to find duplicate files, but also that
the hash calculation is correct.

After successful system validation we defined archiving
scenarios and expected archiving outcomes. Based on
scenarios and outcomes we also defined the test archive
parameters.

In the base scenario we start with an empty archive
and consecutively archive personal computers in our
laboratory. Since we only have Windows 7 and XP
computers, it is to be expected that there will be many
duplicate files during the archiving process. This is
particularly true for the operating system files, and in
smaller extent for user files. We followed many archiv-
ing parameters. The most interesting are: the number
of new (original) metadata and file hashes, the number
of old (duplicate) metadata and file hashes, the size of
files being archived, and the size of duplicate files.

The number of old metadata hashes indicates all the
files whose metadata has not changed. Basically it
means that the file itself has not changed at all. The
number of new metadata hashes indicates files whose
metadata has changed. Only for these files the client
calculates the file hash. The number of old file hashes
indicates all the duplicate files, meaning that files with
the exact same content have already been archived.
The number of new file hashes indicates all the files
that are being archived. On graphs below the hori-
zontal axis determines the number of PCs archived.

Figures 4 to 6 show the archiving process for the base
scenario. We see that for all the tests the number
of old metadata hashes stays zero. This result was
expected because we archive each personal computer
for the first time on an empty archive. Because of that
all the metadata, that among other parameters include
also the host name, was new to the system, hence all
metadata hashes were also new.

More interesting are the curves for old and new file
hashes, where we can notice an interesting difference
between Windows 7 (figure 4) and XP (figure 5) com-
puters. Since XPs are older, they have accumulated
a greater number of user files. Because of that the
old (duplicate) file hashes, surpass the number of new

∗Messages are being exchanged between the system modules.
Most of the modules act as a client and server, only the client

module acts only as a client.

Figure 4. Archiving results for consecutive archiving of ten
Windows 7 PCs. The graph shows the cumulative number
of new and old metadata hashes together with new and old
file hashes.

Figure 5. Archiving results for consecutive archiving of six
XP PCs. The graph shows the cumulative number of new
and old meta hashes together with new and old file hashes.

Figure 6. Archiving results for consecutive archiving of ten
Windows 7, followed by six XP PCs. The graph shows the
cumulative number of new and old meta hashes together
with new and old file hashes.

(original) file hashes only at the end of the curve, while
with Windows 7 PCs that happens very early. This is
a very encouraging result indicating there are more
duplicate files, than there are originals. Consequently,
the required archive size is smaller.

We can expect that with higher number of comput-
ers archived, the number of old files would surpass
the number of new files even by even greater extent.

204



Figure 7. Archiving results for consecutive archiving of ten
Windows 7 PCs. The graph shows the cumulative values
for the size of all files submitted for archiving, the size of
files that have been archived, and the size of duplicate files.

Figure 8. Archiving results for consecutive archiving of six
XP PCs. The graph shows the cumulative values for the
size of all files submitted for archiving, the size of files that
have been archived, and the size of duplicate files.

Figure 9. Archiving results for consecutive archiving of
ten Windows 7, followed by six XP PCs. The graph shows
the cumulative values for the size of all files submitted for
archiving, the size of files that have been archived, and the
size of duplicate files.

We gain correct archive size by examining the results
in figures 7 to 9. They show the cumulative size of
archived and duplicate files. Again the difference in re-
sults between Windows 7 (figure 7) and XP (figure 8)
are caused by greater number of user specific files on
XPs. Although the difference between sizes of old and
new files is smaller that it would seem by the number
of file hashes, the result is still encouraging. Only by

preventing the archiving of duplicate files, almost half
of the capacity of the archive can be saved.

In the progressive scenario we re-archive the same per-
sonal computers after a certain time period. We expect
that not many files would change during that time pe-
riod, meaning that the archiving process will find most
of the metadata hashes unchanged. Consequently the
file hashes would not be calculated, thus saving pro-
cessing time and effort, but for the files with changed
metadata and new files the process will of course run
in its entirety. Results of re-archiving one of the PCs
after two months show that, out of the total number
of files on the PC, the archiving system found: 2.21%
of new metadata hashes, out of those 1.36% were new
files, and 0.85% were old files with changed metadata.
Thus, for our archiving application the real benefit lies
in the periodical re-archiving of a PC, which is done
with far less effort than the first archive episode.

6 Conclusion

In this paper we propose a new general purpose dis-
tributed archiving system that can be easily adapted
to many different archiving scenarios, tasks and ap-
plications. The core module of the system works us-
ing the FHFEC algorithm [4], proven to outperform
other file existence checking algorithms. Based on
the proposal, we have developed and implemented a
test application that archives files from personal com-
puters connected to an IP network. The test results
show that the application saves almost half of the re-
quired archiving storage space. Even better results are
achieved by re-archiving where only a small percent of
files go through the entire archiving process.

There is a lot of possible future tasks and work to be
done on the proposed archiving system. One of them
is working with fixed size file chunks instead of working
with entire files. It is expected that even more storage
space can be saved in this way.

7 References

[1] John Gantz, David Reinsel, Extracting Value from
Chaos, Research paper sponsored by IDC and EMC
corporations, June 2011.

[2] http://en.wikipedia.org/wiki/Archive,
referenced on 22.1.2013.

[3] http://www.thefreedictionary.com/archive,
referenced on 22.1.2013.

[4] Sašo Tomažič, Vesna Pavlović, Jasna Milovanović,
Jaka Sodnik, Anton Kos, Sara Stančin, Veljko Miluti-
nović, Fast file existence checking in archiving sys-
tems, ACM transactions on storage, vol. 7, no. 1,
June 2011

[5] Anton Kos, Sašo Tomažič, Hash Based Archiving: A
Study System, YUINFO 2009, conference proceed-
ings, Kopaonik, Srbija, 2009

205


