

Communication based on MQTT protocol

Milan Miloji ć1

 1Morena Inženjering, Niš

Abstract – MQTT is a messaging protocol that enables
efficient and lightweight telemetry transport that is required
in the modern era of communications. Many devices are
communicating directly to each other, thus forming the
Internet of things, a new Machine to Machine (M2M)
communication network. Aim of this paper is to present
MQTT key concepts, most notably publish/subscribe model
that is well suited for smart sensors and smartphones, as
they require efficient means of communication due to their
limited processing power and short battery life. Some
successful MQTT application examples will be considered
and it will be discussed on how they can benefit today’s
world. It will be discussed with more detail how Android
devices among others can benefit most out of MQTT, by
using a Service implementation of a push mechanism for
receiving important notifications.

1. INTRODUCTION

Message Queue Telemetry Transport (MQTT) is a
messaging protocol that is lightweight enough to be
supported by the smallest devices, yet robust enough to
ensure that important messages get to their destinations
every time. With MQTT devices such as smart energy
meters, cars, trains, satellite receivers, and personal
healthcare devices can communicate with each other and
with other systems or applications. [1]

There is a revolution happening right now, the whole client-
server concept and the way we experience internet is rapidly
changing. “Internet of things”[2] is here, “things” as diverse
as smartphones, cars and household appliances to industrial-
strength sensors are being linked to each other and the
internet. And while we currently only have some simple
intercommunication and autonomous machine-to-machine
(M2M) data transfer, the potential benefits to lifestyles and
businesses are huge.

Telemetry technology allows us to measure and monitor
things from a distance. By improving technology we made
it possible to interconnect devices at remote places and
reduce cost of building and maintaining these systems.

Information is more important today that any gold, black or
regular, and challenges lie in getting the information from
the devices to the people and applications they are using in
timely manner. Information is only as good as the time
received allows it to be and ability to respond accordingly
only increases its value. If the devices are widely distributed
geographically, or if they have limited storage or
computational abilities, the challenges increase
considerably, as do costs. Fortunately, these challenges are
being overcome through the use of improved telemetry
technologies and communication protocols that are making
it possible to send and receive this information reliably over
the Internet, even if the network is unsteady or the
monitoring device has little processing power. MQTT
provides telemetry technology to meet the information
challenges of today’s internet users.

2. MQTT PROTOCOL KEY CONCEPTS

As we said previously MQTT is very simple and
lightweight messaging protocol with open and easy to
implement server architecture which can support thousands
of remote clients. As such it is ideal to be used in
environments with low network bandwidth and/or high
latency. Also it does not require powerful devices to run;
instead it can be used on devices that have very little
memory and processing power. Key concepts MQTT
protocol is built upon are all aimed at overcoming
aforementioned obstacles in the best possible way.

Publish/subscribe
MQTT protocol follows the Observer design pattern where
one end is publishing messages while the other end is
listening (“observing”) for those messages. Clients are
subscribed to topics of interest and receive any messages
that are published to those topics.

Topics and subscriptions
Topics are subjects of interests for users. Messages in
MQTT protocol are published to those topics and clients, in
turn, signup to receive messages by subscribing to a topic.
Subscriptions can be explicit, and received messages are

95

limited only to that topic, or can be more general by using
wildcard designators and thus receiving messages for many
related topics.

Quality of service levels
As with any network protocol, quality of service (QoS)
plays an important role. MQTT defines three levels for
message delivery, each level gradually increasing the level
of effort by the server to ensure that the message gets
delivered. Higher QoS comes at a price of increased
bandwidth consumption and latency.

Retained messages
It is important that any new client that subscribes to a topic
does not miss out on any previous messages. That is why
with MQTT, the server keeps the messages even after they
are sent to all of the subscribers. When a new client
subscribes to an existing topic, any retained messages are
being sent to the new subscribing client.

Clean sessions and durable connections
Optional clean session flag is used to mark whether client
subscriptions are removed when it disconnects from the
server. If the flag is set to true then all of the client’s
subscriptions are removed, otherwise the connection is
treated as durable and the client’s subscriptions remain in
effect after any disconnection. This has the effect of keeping
any messages that are received after disconnection and
resending them after the connection is reestablished.

Wills
When a client connects to a server, it can inform the server
that it has a will, or a message, that should be published to a
specific topic or topics in the event of an unexpected
disconnection. A will is particularly useful in alarm or
security settings where system managers must know
immediately when a remote sensor has lost contact with the
network.

MQTT brokers
MQTT broker is a server that implements the MQTT
protocol. It is used to relay messages from clients
publishing messages to a certain topic to those who are
subscribed to it. WebSphere MQ is the best known broker
as it is developed and maintained by MQTT founders, IBM.
Other open source broker implementations are Really Small
Message Broker (RSMB) and Mosquitto. Mosquitto is an
open source message broker that implements the MQ
Telemetry Transport protocol version 3.1.[3]

3. APPLICATIONS

One of the first projects that popularized MQTT protocol
was “Andy’s Twittering House”. Dr. Andy Stanford-Clark,
one of the authors of MQTT gained media attention in the
late 2000s by connecting his home automation system via
MQTT to Twitter, a popular micro-blogging site.[4][5]

Of course, sensors tweeting about what is going on in your
house may not be that much of a breakthrough, but the idea
was to get people’s attention. Any messaging protocol can
work in two directions, so if we were to reverse the whole
“tweet house” idea, we could tweet to our house to turn off
the lights or turn on the air-conditioning. Even though this
may not seem as a smart thing to do it is a good proof of
concept. MQTT provides users with efficient transport
protocol for sending commands to home automation system
from a remote location. And because it is so lite, it doesn’t
require huge investments. MQTT broker such as Mosquitto
can run even on 35$ Raspberry Pi.[6]

Figure 1: Home automation system controlled from

smartphone

As shown in Figure 1, user can use his smartphone to send
command over internet to MQTT broker which would
publish that command. Home automation server that can
control various devices inside of the home would be
subscribed to that topic and upon receiving the message it
would issue a command to a device targeted inside the
message. And if the users subscribes to the predefined topic
he can receive command response, statuses and notification
from the sensors that are directly connected to those
devices. Smoke detector in the kitchen, humidity sensor on
the bathroom floor or window opening alert could trigger an
alarm that would be published to MQTT broker. Home
owner need not be the only person subscribed to these
topics. Fire department, police and etc. can adapt their
systems to receive these messages as well. This can provide

96

the user with the necessary information needed to deal
proactively with everyday situations that arise with home
automation.

Another popular project relying heavily on MQTT
“FloodNet”, initiated by the University of Southampton.
Their primary goal is to demonstrate a methodology
whereby a set of sensors monitoring the river and functional
floodplain environment at a particular location are
connected by wireless links to other nodes
"intelligent" sensor network. [7]

Unlike many other systems FloodNet focuses on power
conservation and low maintenance of instrumentation in the
field and this is best achieved by using MQTT protocol.
Figure 2 below describes the system arc
FloodNet. The ad hoc network is based on 802.11, and
consists of powerful nodes that host IBM's Websphere MQ
software. The nodes which are essentially
data at regular intervals via GPRS to a micro
gateway, and the gateway subsequently transmits the data to
an IBM's Messaging Broker. The sensor data is transcoded
and transformed at this end, and is delivered to any
application that subscribes to the data. The sensor data
might be used for various applications such as s
models, GIS Visualization and database services.

Figure 2: FloodNet architecture [8]

In healthcare MQTT has been successfully implemented
a solution for cardiac patient monitoring system. The
solution needed to address the following aspect
care:

• Monitoring cardiac patients after they leave the
hospital

• Improving the efficiency of later checkups

• Meeting new industry data-capture standards

the user with the necessary information needed to deal
proactively with everyday situations that arise with home

Another popular project relying heavily on MQTT is
Net”, initiated by the University of Southampton.
primary goal is to demonstrate a methodology

whereby a set of sensors monitoring the river and functional
floodplain environment at a particular location are
connected by wireless links to other nodes to provide an

Unlike many other systems FloodNet focuses on power
of instrumentation in the

field and this is best achieved by using MQTT protocol.
below describes the system architecture of

FloodNet. The ad hoc network is based on 802.11, and
consists of powerful nodes that host IBM's Websphere MQ

which are essentially sensors transmit
data at regular intervals via GPRS to a micro-broker or

teway subsequently transmits the data to
an IBM's Messaging Broker. The sensor data is transcoded
and transformed at this end, and is delivered to any
application that subscribes to the data. The sensor data
might be used for various applications such as simulation

alization and database services.

Figure 2: FloodNet architecture [8]

In healthcare MQTT has been successfully implemented in
a solution for cardiac patient monitoring system. The
solution needed to address the following aspects of patient

Monitoring cardiac patients after they leave the

Improving the efficiency of later checkups

capture standards

The solution included an embedded MQTT client in a home
monitoring appliance that collects d
patient is in close proximity to a base unit.
sends the diagnostic data over the Internet to the central
messaging server, where it is handed off to an application
that analyzes the readings and alerts the medical staf
there are signs the patient might be having difficulty

Figure 3: Home pacemaker monitoring solution with MQTT

This solution provides patients with better and more
proactive level of service from their hospitals and increases
their chances for recovery because they are constantly
monitored by their appointed doctors. It can also save
money as patients have less need to travel and schedule an
appointment with their doctors.

4. ANDROID CHAT APPLICATION BASED ON
MQTT PROTOCOL

Instant message communication is becoming more and
more integrated into everyday mobile phone use as phones
are getting smarter and data plans cheaper. SMS
message service) is rapidly becoming obsolete in modern
times where “on-line” time is equal t
advantage that SMS had was
practice, you were guaranteed that you would receive a
SMS message within seconds, provided you had network
coverage.

In order to achieve this on mobile clients running instant
messaging services we need an efficient message push
mechanism. This is a very important concept because many
other applications, not just instant messaging applications,
rely on efficiently responding to
used approach is to poll data from the server periodically
but this may result to delays. If an application polls too
often the device’s battery will be drained too quickly
frequent processor activation.
might respond to changes slowly
event. There is no good compromise here. The best solution
here would be for an application to just wait and receive the
message when it is sent, just as with SMS. Big companies
like Google, Apple, BlackBerry, various mobile providers,

The solution included an embedded MQTT client in a home
monitoring appliance that collects diagnostics whenever the
patient is in close proximity to a base unit. The base unit
sends the diagnostic data over the Internet to the central
messaging server, where it is handed off to an application
that analyzes the readings and alerts the medical staff if
there are signs the patient might be having difficulty.

Figure 3: Home pacemaker monitoring solution with MQTT

This solution provides patients with better and more
proactive level of service from their hospitals and increases

recovery because they are constantly
monitored by their appointed doctors. It can also save
money as patients have less need to travel and schedule an
appointment with their doctors.

ANDROID CHAT APPLICATION BASED ON

Instant message communication is becoming more and
more integrated into everyday mobile phone use as phones
are getting smarter and data plans cheaper. SMS (Short
message service) is rapidly becoming obsolete in modern

line” time is equal to 24 hours. Main
advantage that SMS had was its instant delivery time. In
practice, you were guaranteed that you would receive a
SMS message within seconds, provided you had network

on mobile clients running instant
we need an efficient message push

mechanism. This is a very important concept because many
, not just instant messaging applications,

rely on efficiently responding to received data. A widely
used approach is to poll data from the server periodically
but this may result to delays. If an application polls too
often the device’s battery will be drained too quickly due to
frequent processor activation. If it pools infrequently then it

t respond to changes slowly or even miss an important
. There is no good compromise here. The best solution

here would be for an application to just wait and receive the
message when it is sent, just as with SMS. Big companies

kBerry, various mobile providers,

97

have their own closed protocols for implementing push
messaging. And this is where MQTT protocol fits perfectly.

One other issue with mobile devices is the noticeable
latency issue. When social networking giant Facebook
created its first instant messaging application for mobile
clients, latency between messages was multiple seconds.
Large and scalable platform that has been used by millions
of users was struggling with efficient message delivery as
the method they used was reliable but slow and there were
limitations for improvement. This was unacceptable and
they needed a quick solution for this problem. They ended
up building a new mechanism that maintains a persistent
connection to our servers and to do this without killing
device battery life MQTT protocol was chosen. By
maintaining an MQTT connection and routing messages
through our chat pipeline, they were able to often achieve
phone-to-phone delivery in the hundreds of milliseconds,
rather than multiple seconds.[9]

The easiest way to start using MQTT protocol on Android
platform is by implementing Eclipse Paho project. “The
Paho project has been created to provide scalable open-
source implementations of open and standard messaging
protocols aimed at new, existing, and emerging applications
for Machine-to-Machine (M2M) and Internet of Things
(IoT). Paho reflects the inherent physical and cost
constraints of device connectivity. Objectives include
effective levels of decoupling between devices and
applications, designed to keep markets open and encourage
the rapid growth of scalable Web and Enterprise
middleware and applications. Paho initially started with
MQTT publish/subscribe client implementations for use on
embedded platforms, and in the future will bring
corresponding server support as determined by the
community”. [10]

Under the assumption that there is already an instant
messaging application developed for Android it will be
demonstrated here how such application can benefit from
push notification based on MQTT protocol. In order for an
Android application to receive push notifications it needs to
be active. Due to operating system limitations only one
Android Activity can be active at any time. On the other
hand there can be many active Services on Android. “A
Service is an application component representing either an
application's desire to perform a longer-running operation
while not interacting with the user or to supply functionality
for other applications to use”.[11] However, it is important
to realize that Service is not a separate process nor it has its
own thread. While this may not be appropriate for use “out
of the box”, it is possible to create a separate worker thread

when creating the Service object in onCreate() method. The
Android system will attempt to keep the process hosting a
service for as long as the service has been started or has
clients bound to it. Process manager will award it the
highest priority when the system is running low on memory
and there are decisions to be made about process killing.

But this doesn’t guarantee us that our connection to the
broker will be consistent. One way for us to achieve
persistent TCP/IP connection is to periodically ping broker
just to keep the connection alive. To ensure that the
connection wouldn’t be lost when, for example, the device
goes to sleep, it is possible for us to get the Wake Lock on
the system in order to control the connection keep-alive
process. WakeLock is part of the PowerManager class
available since Android API level 1.[12] But as we
mentioned before when we talked about poll mechanism,
this isn’t a good solution as it may waste device’s battery.

A better solution is to AlarmManager class that is available
in the Android API. This class provides access to the system
alarm services. These allow you to schedule your
application to be run at some point in the future. When an
alarm goes off, the Intent that had been registered for it is
broadcast by the system, automatically starting the target
application if it is not already running. The Alarm Manager
is intended for cases where you want to have your
application code run at a specific time, even if your
application is not currently running.[13] This allows us to
schedule when the next server ping needs to happen i order
for connection to stay alive.

By implementing an Android service in this way, it allows
us to receive messages from the broker almost
instantaneously. And because MQTT messaging protocol is
lite it does not eat much bandwidth. Received message can
then trigger various actions in the hosting application. In the
case of instant messaging application, Android application
would subscribe to a topic that is equal to user’s unique
name. When user receives a new message and he is not
connected to the instant message communication server,
that server would publish a message to user’s topic,
informing the user about pending messages. Android
application would receive published MQTT message and
then it could download pending messages from the
communication server and notify user that there are new
received messages.

5. CONCLUSION

Using the MQTT protocol extends our reach to tiny sensors
and other remote telemetry devices that might otherwise be
unable to communicate with a central system or that might
be reached only through the use of expensive, dedicated
networks. Network limitations can include limited
bandwidth, high latency, volume restrictions, fragile

98

connections, or prohibitive costs. Device issues can include
limited memory or processing capabilities, or restrictions on
the use of third-party communication software. In addition,
some devices are battery-powered, which puts additional
restrictions on their use for telemetry messaging. By being
simple and open, MQTT protocol helps us overcome these
obstacles by relying on a publish/subscribe model.

There are many examples of successful implementations in
healthcare where devices that communicated on MQTT
protocol were used for monitoring cardiac patients and
capturing potentially life-saving data. Utility companies that
produce energy are using MQTT for monitoring remote
locations and collecting important maintenance and failure
data. But perhaps most interesting application that has the
broadest reach is social networking. Social networking giant
Facebook has been using MQTT for their chat service as it
has proven to be reliable and much faster than their previous
solution.

6. REFERENCES

[1] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N.
Subrahmanyam, R. Xiang, Building Smarter Planet
Solutions with MQTT and IBM WebSphere MQ Telemetry,
IBM Redbooks, September 2012
[2] Wikipedia, “Internet of things”,
http://en.wikipedia.org/wiki/Internet_of_Things, retrieved 1.
2. 2013.
[3] http://mosquitto.org/, retrieved 1. 2. 2013.
[4] “Tweeting mouse trap and window”,
http://news.bbc.co.uk/2/hi/technology/8113914.stm,
retrieved 1. 2. 2013.
[5] “Andy’s house on Twitter”,
https://twitter.com/andy_house, retrieved 1. 2. 2013.
[6] Raspberry PI Adventures,
http://rasspberrypi.wordpress.com/2012/09/16/mosquitto-
mqtt-on-raspberry-pi-broker-publish-and-subscribe-client/,
retrieved 1. 2. 2013.
[7] FloodNet Project,
http://envisense.org/floodnet/floodnet.htm, retrieved 1. 2.
2013.
[8] FloodNet System Overview,
http://envisense.org/floodnet/images/system_architecture.gif
retrieved 1. 2. 2013.
[9] Facebook.com, “Building Facebook Messenger”,
https://www.facebook.com/notes/facebook-
engineering/building-facebook-
messenger/10150259350998920, retrieved 1. 2. 2013.

[10] Paho Project, http://wiki.eclipse.org/Paho, retrieved 1.
2. 2013.
[11] Android.com, “Service”,
http://developer.android.com/reference/android/app/Service.
html, Retrieved 1. 2. 2013.
[12] Android.com, “PowerManager”,
http://developer.android.com/reference/android/os/PowerM
anager.html, Retrieved 1. 2. 2013.
[13] Android.com, “AlarmManager”,
http://developer.android.com/reference/android/app/Alarm
Manager.htm, Retrieved 1. 2. 2013.

99

