
159

Transforming an Enterprise E-Health System

from Process Oriented to

Model Driven Architecture

Blagoj Atanasovski*, Miloš Bogdanović**, Goran Velinov
&
, Leonid Stoimenov**, Dragan Sahpaski*, Irena

Skrceska
!
, Margita Kon-Popovska

&
, Dragan Janković**, Boro Jakimovski

&

* Sorsix International, Skopje, Macedonia
** University of Nis, Faculty of Electronic Engineering, Niš, Serbia

&
Faculty of Computer Science and Eng., Ss. Cyril and Methodius University in Skopje

!
Faculty of Informatics, European University, Skopje

blagoj.atanasovski@sorsix.com milos.bogdanovic@elfak.ni.ac.rs goran.velinov@finki.ukim.mk

leonid.stoimenov@elfak.ni.ac.rs dragan.sahpaski@sorsix.com irena@eurm.edu.mk

margita.kon-popovska@finki.ukim.mk dragan.jankovic@elfak.ni.ac.rs boro.jakimovski@finki.ukim.mk

Abstract— The e-health platform Pinga is an integrated

health information system represents a central electronic

system, in which all medical and health related information

about patients, health workers, facilities, documents, and

procedures is stored and processed. The platform is

implemented in Serbia as MojDoktor (My Doctor), and

Macedonia as MojTermin (My Appointment). The

architecture of the system was designed to allow for process

oriented development with agile methodologies. This

methodology allowed for fast deployment and adoption but

a change in the architecture to a more formal approach is

required to assure its extensibility, soundness,

interoperability and standardization. In this paper we

propose a transformation of the design framework from

Process Oriented to a Model-Driven Architecture.

I. INTRODUCTION

The health platform Pinga represents a central
electronic system, in which all medical and health related
information is stored and processed on-line. The system
allows integration with existing and future systems used
by hospitals, clinics, the Ministry of Health, and other
public health institutions [1]. Pinga can be classified as a
system that integrates several components: an EHR
(Electronic Health Record), Electronic Prescriptions,
Electronic Referrals, Hospital Stay and Surgeries
Information System, Laboratory Information System and a
Radiology Information System.

Pinga keeps the data in a centralized system. The
various health organizations integrated with the system
have autonomous heterogeneous systems who keep data
locally, but a part of that data is written in the central
database in the process of integration with Pinga. The
platform was implemented in Macedonia as MojTermin
(MyAppointment). Pinga integrates all existing electronic
information systems used in public and private health
organizations that have an agreement with the Public
Health Fund. Integration is done through a precisely
defined API accessible through web services with a
HTTPS connection. The access to the web services can be

public or protected. Public services provide access to
public data about the health organizations and specialties,
doctors, resources, available timeslots etc. Protected
services provide access to patient data, referral, exam and
prescription details etc. Protected services require
authentication. For the functionalities not covered by any
existing system a web interface provides authorized
access. The organizations, that did not use any kind of
information system before, use the web interface. A
complete high-level architecture of the system is given in
Figure 1.

From a data collection point of view the system
continuously creates new and updates existing records. In
Serbia, the system creates records for over 250000
prescriptions, 80000 referrals and 190000 exams, each
working day. The system handles over 4800000 requests
through the APIs.

The authors in [8] recognize that long term strategy
targets for a national e-health system should be
standardization on a national level, progressing to full
interoperability on a European level. The current
architecture design enabled an implementation of the
processes and to create a functional system. This allowed
MojDoktor to be built and functional in 9 months.

A change to a more formal approach is required in
order to transform the platform to be interoperable and
standardized, and do so in a secure and sound way. The
current implementation uses standardized international
codes for doctor specialties, diagnosis (ICD10), drug
generics (ATC). And the next step is to make the system
compliant with EHR standards like HL7 or OpenEHR.

II. RELATED WORK

When building an integrated health information system,
the potential to incorrectly implement the requirements is
very high, due to the complexity of the processes in health
care. A change in any of the requirements introduces a
need for a correction of the implemented system, and can
lead to regression.

7th International Conference on Information Society and Technology ICIST 2017

160

Figure 1. High Level Architecture of the Pinga platform

This can be avoided if the system is established using a
well-defined framework/architecture. Model Driven
Architecture (MDA) has proven to be one of the best
choices when requirements changes are expected [11].
MDA focuses on the consequent utilization of
diagrammatic models, to describe the contextual situation,
which is successively transferred through different model
layers into a technical model [2]. MDA specifies three
layers:

1. Computation Independent Model (CIM), the
business model;

2. Platform Independent Model (PIM), software
engineering model without technology aspects;

3. Platform Specific Model (PSM), technology-
related aspects of the target platform.

Business models extracted from domain experts are
transformed through the layers, to derive the software.
Rules defined for transformation between the layers allow
changes in the business process to be easily transformed
into correct code changes [3, 4].

Several attempts in using MDA for e-health systems
have been published. The authors in [5] attempt to create a
specific MDA for the healthcare domain. They needed a
mechanism that fosters a sustainable tele-health platform
in terms of a methodology that provides an efficient way
to deploy new artifacts on the platform and ensure these
artifacts are compliant to the platform properties. They
show how and MDA approach can be used in order to
build a methodological fundament for a systematic
creation of an application system. Their use-case is an
application for IT based workflow support for an
interdisciplinary stroke care project.

In [6], with MDA, tools are developed for data
collection to allow non-informatics experts to model
requirements in their local domain. They recognized a
problem in the process of implementing local

improvement initiatives in healthcare systems, so they
developed a Model - Driven framework and
implementation that allows local teams in medical
organizations to specify the metrics to track their
performance during an intervention, together with data
points to calculate these metrics. Based on the metric
specification the software generates appropriate data
collection pages.

In [7] MDA augmented with formal validation was
used to develop m-health components promising
portability, interoperability, platform independence and
domain specificity. The authors are developing systems
based on inter-communicating devices worn on the body
(Body Area Networks) that provide an integrated set of
personalized health-related services to the user. This
mobile healthcare application feeds captured data into a
healthcare provider’s enterprise information system.

In their previous work [13] the same authors propose an
extension of the model-driven approach where formal
methods are used to support the process of modelling and
model transformation. The semi-formal modeling with
UML is verified by using tools such as SPIN [17] for
model checking and TORX [18] model testing. They
present [14], [15] and [16] as possible formal approaches
to the transformation.

In this paper we present a transformation from Process
Oriented design to a Model-Driven architecture for the
Pinga platform.

III. METHODOLOGY

By analysis of the requirements of health institutions,
several functional modules have been discovered and
implemented in Pinga (Public Portal [9] [10], Electronic
Health Record, Reporting and BI, Integration etc.).
Different modules have disjoint sets of processes; each
can depend on one or more processes from other modules.

7th International Conference on Information Society and Technology ICIST 2017

161

Figure 2. High Level Architecture of the Pinga platform

The processes have already been defined from a business
perspective, out of the functional requirements of our
client. We documented them using BPMN, and those
definitions represent the CIM layer of our architecture.

For each module we define a process-domain-library
(process-meta-model). This domain library

enforces semantic restrictions on the processes and allows

us to develop tools that guarantee the soundness of the
model (safe invocation, safe termination). This domain-
library is part of the PIM of our architecture. Using class
diagrams, models for specific processes can be created
that conform to the domain-library.

A change in the definition of a process, or a new process,
will update the PIM and run verification. Problems can be
discovered before any code is written. When a new
standard is implemented a PIM→PIM transformation can
be applied to obtain a design that will generate PSM
models compliant with the standard.

IV. SOLUTION

A state’s healthcare is an enormous collection of
processes, rules, people and resources backed by
legislative. To create a holistic model is impossible in one
iteration. In each iteration focus is given to certain
processes or improvements. We present an example of
how we model the Electronic Health Record (EHR)
module. By using workshops with domain-experts,
models using BPMN or UML Activity Diagrams of the
processes are created.

The domain-library for the EHR defines Resources,
Documents and Processes. Resources and Documents
have an identifying type. A resource can consume a set of
documents of a certain type, and produce a set of
documents. A process can be represented as a directed
graph with a starting vertex and an ending vertex. Its
execution is a graph traversal. Each vertex can be a sub
process (subgraph) or a resource.

A process is invoked by a set of documents and a set of
available resources. The results from one vertex are given
to the adjacent vertexes as input. The ending vertex
produces the output of the process. Only vertexes with
satisfied input requirements can be executed. Each process
can be validated with the following conditions being
fulfilled: process can start and end, no loops exist or no
unwanted scenarios can happen.

Figure 2 presents a part of the domain library using a
UML class diagram.

V. CONCLUSION

The Pinga platform is a working system, was
implemented in reasonable times, and is constantly
upgraded with new features. The current implementation
practice does not hinder the usage or improvement of the
system. However, problems can arise in the future if the
current implementation technology becomes outdated or

obsolete.

The lack of a formally defined Platform Independent
Model increases the risk the platform becoming stuck in a
state of inertia that will require a complete overwrite.
Additionally our goals for creating an architecture that
will support standardization and interoperability are
complemented by the nature of MDA itself.

By having an MDA design, new implementation
infrastructure can be integrated and supported, existing
functionality can be more rapidly migrated to new
platforms and environments, and quality can be gained by
the formal separation of concerns, plus the consistency
and reliability of artifacts produced contribute to the
quality of the overall system. And most importantly,
integration with external systems is significantly
facilitated [12].

REFERENCES

[1] MojDoktor technical documentation, internal document property
of Sorsix International

[2] Object Management Group: OMG Unified Modeling
LanguageTM (OMG UML), Super-structure, Ver. 2.4.1,
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/ (2011).

[3] Soley, R., Group, O.S.S.: Model driven architecture (2000). OMG
white paper. 308.

[4] Mellor, S.J.: MDA distilled: principles of model-driven
architecture. Addison-Wesley Professional (2004)

[5] Schlieter, Hannes, et al. "Towards Model Driven Architecture in
Health Care Information System Development."
Wirtschaftsinformatik. 2015.

[6] Curcin, Vasa, et al. "Model-driven approach to data collection and
reporting for quality improvement." Journal of biomedical
informatics 52 (2014): 151-162.

[7] Jones, Val, Arend Rensink, and Ed Brinksma. "Modelling mobile
health systems: an application ofaugmented MDA for the
extended healthcare enterprise." EDOC Enterprise Computing
Conference, 2005 Ninth IEEE International. IEEE, 2005.

[8] Velinov, Goran, et al. "EHR System MojTermin: Implementation
and Initial Data Analysis." MIE.2015.

[9] MojTermin Public Portal, http://mojtermin.mk. Accessed 30
January 2017.

[10] MojDoktor Public Portal, https://www.mojdoktor.gov.rs. Accessed
30 January 2017.

7th International Conference on Information Society and Technology ICIST 2017

162

[11] Loniewski, Grzegorz, Emilio Insfran, and Silvia Abrahão. "A
systematic review of the use of requirements engineering
techniques in model-driven development." International
Conference on Model Driven Engineering Languages and
Systems. Springer Berlin Heidelberg, 2010.

[12] Truyen, Frank. "The fast guide to model driven architecture the
basics of model driven architecture." Cephas Consulting Corp
(2006).

[13] Jones, V. M., et al. "A formal MDA approach for mobile health
systems." (2004).

[14] Correctness Preserving Transformations for the Early Phases of
Software Development; T.Bolognesi, D. De Frutos, R. Langerak,
D. Latella.I,IN Bolognesi T, van de Lagemaat J and Vissers C.A.
(ed), LOTOSphere: Software Development with LOTOS, pp. 348-
368, Kluwer Academic Publishers, 1995.

[15] Jones V (1995). Realization of CCR in C, In Bolognesi T, van de
Lagemaat J and Vissers C.A. (ed), LOTOSphere: Software
Development with LOTOS, pp. 348-368, Kluwer Academic
Publishers, 1995.

[16] Jones VM (1997) Engineering an implementation of the OSI CCR
Protocol using the information systems engineering techniques of
formal specification and program transformation. University of
Twente, Centre for Telematics and Information Technology
Technical Report series no. 97-19. ISSN 1381-3625.

[17] G.J. Holzmann, (2003) The Spin Model Checker: Primer and
Reference Manual, AddisonWesley, ISBN 0-321-22862-6

[18] J. Tretmans and A. Belinfante. Automatic testing with formal
methods. In EuroSTAR'99: 7th European Int. Conference on
Software Testing, Analysis & Review, Barcelona, Spain,
November 8-12, 1999. EuroStar Conferences, Galway, Ireland.

7th International Conference on Information Society and Technology ICIST 2017

