
108

Software dependability management in

 Big Data distributed stream computing systems

Aleksanadar Dimov*, Nikola Davidovic**, Leonid Stoimenov **, Krasimir Baylov*
* Faculty of Mathematics and Informatics, University of Sofia, Bulgaria

** Faculty of Electronic Engineering, University of Niš, Niš, Serbia

aldi@fmi.uni-sofia.bg, {nikola.davidovic, leonid.stoimenov}@elfak.ni.ac.rs, krasimirb@uni-sofia.bg

Abstract — Recently there is a rapid increase in application

of software intensive systems in the domain of Electric

Power Distribution (EPD). EPD companies use a significant

number of field devices that are usually connected via a

cloud infrastructure. While communicating with each other

such devices produce enormous amounts of data that should

be processed in order to be of any value for the EPD and the

software that is deployed into its infrastructure. Systems

that deal with processing of such data, especially in cloud-

based environment are denoted as Stream Computing

Systems. They usually have very strong quality

requirements for reliability, performance, scalability and

etc. In this paper we propose an architectural approach to

manage dependability and more specifically – reliability of

stream computing systems. For this purpose we apply the

principles of autonomic computing to an architecture that is

based on microservices.

I. INTRODUCTION

Internet of Things (IoT) is an emerging concept that
comprises the interconnection of various hardware
devices, such as, end user devices, home appliances,
smartphones, field sensors and etc. Such devices are
usually connected via a cloud infrastructure that should be
based on the concept of microservices [18]. The
communication of such devices naturally leads to
production of enormous amounts of data, which requires a
lot of processing in order to be available for other devices
and software systems. Moreover, in many cases this data
should be processed simultaneously with real time
requirements. The tendency is to have such devices to
communicate via software services in cloud based
environment. Main purpose of stream computing systems
is to make this possible. In this context, usually the quality
requirements, both for stream computing systems and the
IoT devices are very high and this holds not only for the
hardware, but also for the software.

Software quality in terms of dependability becomes an
important quality characteristic of contemporary software
systems [2]. Dependability has several attributes like
availability, reliability, safety, maintainability and etc.

Traditionally, software dependability is determined by
the means of software testing [8]. In the context of IoT,
however it is very difficult to rely only on testing, because
of the natural obstacles that arise for testing into a
distributed environment. Additionally, wide class of
embedded IoT systems have ultra-high reliability
requirements.

Currently there is a trend to increase usage of
information systems in the domain of Electric Power

Distribution (EPD). One of the main problems of Electric
Power Distribution Companies (EPDCs) is to properly
and on time have a calculated value of the delivered
energy. EPDC in Serbia and its regional center in Nis is
obtaining it by having monthly meter readings. Such
monthly meter readings are later used to properly bill
customers for delivered energy. Lately, with introduction
of the smart meters, measures can be remotely read every
15 minutes, so it becomes easier for EPCDs to have meter
readouts ready for monthly bills. However, most of the
currently used meters are analog devices that just display
the currently consumed power. Such meters require
human operator to collect the data. But timely data on
power consumption are not only needed for the billing.
Such data are needed for proper calculation of technical
loses and estimation of the commercial loses. Reducing
such loses is of the highest importance for the local
EPCDs.

In order to obtain accurate and timely data for such
analyses, Serbian EPDC’s regional center in Niš is
introducing various devices that are being used in day to
day operations [20]. Each person on the field is equipped
with a ruggedized Android based PDA smart device that is
used for electric meter readings. Also, the company is
purchasing modern grid analyzers, systems that can be
used to remotely read various measurements, such as
voltage lever, electric currency strength, delivered energy
and so on.

Having these devices deployed on the field and set up
and connected, it is possible to harvest all needed data to
do various kinds of analyses. Based on the meter readings
and readings from grid analyzers, it is possible to make an
estimation of the level of the technical losses and
afterwards make a calculation of the commercial loses.
But such readings are usually applied on 15 minutes
readings. Making required data to be accurate and
received on time is the major requirement of the presented
system. Given that such operations are time constrained
but rely on the network connection, human input and can
reveal sensitive business and personal data of the
consumer, the main research question that arises is: how
to raise dependability of the results of operation of the
future stream computing system that will incorporate
analyses of presented 15 minute resolution readings.

The goal of this paper is to define an approach, and a
reference architecture for management of reliability of big
stream computing system in the EPD domain. The
approach presented here is based on the concept of self-
adaptation of microservice architecture, as the latter is
currently the most common case used in cloud based IoT
systems. From purely scientific perspective, it is also of

7th International Conference on Information Society and Technology ICIST 2017

109

significant importance, to apply and validate the notion of
autonomic computing in different application domains.

The rest of the paper is organized as follows: Section 2
describes some related work in terms of employment of
stream computing in EPD; Section 3 presents the
theoretical background of our approach; Section 4 shows
the main concepts of our architectural solution for
software dependability management of EPD stream
computing systems and finally Section 5 concludes the
paper and gives some directions for further research in the
area.

II. STREAM COMPUTING IN ELECTRIC POWER

DISTRIBUTION

With the introduction of Smart Grid [1],
interdependency of electric power grid and information
and communication technology is rapidly emerging [21].
This means that not only electric power grid devices are
shifting from analogue technology to digital, which in
turns provides more possibility of data measurement and
control, it also means that these devices are starting to be
interconnected.

But Smart Grid also means that more stakeholders are
involved into the power generation and distribution
process, hence more data are being gathered and more
diversified analyses of such data are needed. Nowadays,
dynamic load tracking, dynamic tariffs, clients that can
consume but also produce electricity that can be delivered
to the grid is becoming a reality [17]. This induces
possibilities for massive data collection in different
locations of the power grid. But in order to be able to
process such high volumes of data, conventional
approaches cannot be used anymore. If such data are only
stored into the data warehouse and analyzed later, it will
not have the same impact as if the analyses are obtained in
real-time or in near real time. One of the possible
approaches is to use stream computing systems to be able
to process such high volumes of data as they come.

Stream computing and stream mining of real-time or
near-real-time data is not a novel approach. It is already
being used for quite some time in various specific fields
such as monitoring of highway traffic [3]. But also there
are generic approaches with platforms that can be
customized for the real-life deployments, such as S4 [15].
Only lately, after the Smart Grid development has
influenced such high data volumes being obtained [7], it is
starting to be used in the field of EPD. In [18] authors are
identifying the most important technologies that are used
in the Smart Grids, namely: Streaming Data Analytics,
Load Forecasting, Cloud, Demand Response and Static
Analytics. Obviously, first three and the fifth require
streaming computing of incoming data to make the system
adaptable to dynamical changes that happen throughout
the grid. Predicting power supply and demand is one of
the big challenges that can be solved using Stream
Computing [6]. But not only academia is trying to give
answers to such demands for the real-time data analysis,
companies like Accenture are already providing solutions
that can fulfil such needs [22].

In order to have streaming computing implemented, the
underlying infrastructure needs to be able to answer
different loads of data that are happening in different time
periods. Periods with high consumption but also with high
production of electricity can push the hardware to the

limits. Such redundancy in the equipment can pose a
significant financial requirement. The best answer today is
migrating the infrastructure to the cloud. Stream
computing big data analytics in Smart Grids is going hand
in hand with the Cloud technology [14]. Its characteristics
like cost effectiveness, reliability, scalability, availability
and elasticity are very useful for such environments. It
also means that EPDs can focus on maintaining
infrastructure on which their core business is based,
namely the power grid and devices that are needed for its
functioning. Using the Cloud, the need for the computer
hardware infrastructure becomes obsolete.

Most solutions that can be found in the literature are
focusing on smart meters that are possible to be read
automatically. This is undesired prerequisite since the
process of changing meters from the old analogue ones
into digital ones is long and tedious and won’t be
completed in some countries for the foreseeable future.
Therefore, alternative approaches should be sought to
include manual readings and human input into such big
data streaming computing to enable self-adaptiveness and
reconfiguration based on the input stream of data from
various sources.

III. THEORETICAL CONCEPTS

In this section we are going to briefly present some of
the three fundamental notions that are used in our solution
– Software reliability and dependability, Autonomic
computing and Microservices.

A. Software reliability and dependability management

Software reliability is significant software quality
parameter, for large variety of systems in different
domains. Formally, it is the continuity of correct service
delivering, i.e. the belief that a software system will
behave as per specification over a given period of time
[1]. It is measured by statistical values and may be
represented as:

 Probability of failure
 Failure rate
 Mean time to failure

Generally, reliability is part of a broader notion of
dependability. The latter is defined as the ability of a
computing system to deliver services that can justifiably
be trusted [2]. It is depicted by a number of attributes as
follows:

 Availability represents readiness of the system to
deliver correct service.

 Safety is concerned about absence of catastrophic
consequences on the user(s) and the environment
in case of system failure.

 Confidentiality is the absence of unauthorized
disclosure of information,

 Integrity means absence of improper system state
alterations;

 Maintainability is the ability of the system to
undergo repairs and modifications.

In the contemporary IoT context reliability is gaining
even more attention, because of the high customer and
industry requirements towards the distributed smart
devices. The most common way to evaluate reliability is
to use data from system testing [8]. There exist a number
of software reliability models, tailored to process such
data and more specifically – number of failures and testing

7th International Conference on Information Society and Technology ICIST 2017

110

(or execution) time elapsed between two subsequent
system failures [10], [11]. This way practical importance
of software reliability is to determine when enough testing
is been performed and the system is ready to be shipped to
the market. However, it is inherent for all reliability
models to make assumptions in order to make estimation
possible and such assumptions may reduce applicability of
model into development industry.

However, most IoT systems and their constituent parts,
like embedded and safety critical systems have ultra-high
reliability requirements. Studies have shown that
satisfying such requirements is practically infeasible, as
one needs to test with uncorrelated test data for thousands
of years [4].

This way in many IoT domains, like EPD, alternative
approaches for reliability management are needed. In next
section we continue with the description of the concept of
autonomic computing, which we are going to employ in
our reliability management approach.

B. The notion of autonomic computing

Autonomic computing has been introduced several
years ago as an attempt to define structural approach
towards design and development of dynamic and self-
adaptive software systems.

Self-adaptive systems can be viewed from multiple
points depending on their direction of autonomy. These
points are called self-* properties of the system. They
represent the ability of the system to take autonomous
actions in the following 4 areas [13]:

 Self-configuration – the system is able to configure
itself in order to comply with initially defined high
level goals;

 Self-optimization – the system is able to detect and
optimize weak points or places that can be
improved in terms of specific requirements;

 Self-healing – the system is able to detect
problems, create a strategy for fixing them and to
apply it;

 Self-protection – the system is able to detect
potential threats and defend itself against external
attacks.

The idea behind our reference architecture is to design
an approach that will target the Self-configuration and
Self-optimization properties of the distributed system.

Main aspect of autonomic computing is the so-called
control loop (fig. 1).

Figure 1. Autonomic Control Loop

The idea behind this is that self-adaptive systems can
dynamically change their behavior or properties based on
external stimulus. A key mechanism used for running the
self-adaptation is the so called control loop or feedback
loop [5]. It contains the following main phases:

 Collect – the relevant data is obtained from the
surrounding environment and stored for further
processing. Usually, this data is collected through
agents or sensors.

 Analyze – the data is analyzed and related to
existing models.

 Decide – the best action from a list of options is
selected

 Act – the system puts the change in place and the
loop starts over.

C. Microservices

Service Oriented Architecture (SOA) is well known
architectural concept for building distributed software
systems that has dominated this software engineering
domain during the last two decades. Main reason is that it
is claimed to enable reusability and straightforward
integration of the main building blocks, called services.
However recently, mainly because of quality requirements
for system that operate in cloud environment, the
architectural style of microservices has emerged [12],
[16]. Microservices and SOA share some common
characteristics, but also differ in the following:

 Service Granularity – microservices are small and
fine-grained. Their small codebase allows
developer to quickly identify and fix issues and
also easily test them in isolation. In contrast, SOA
doesn’t provide any recommendation regarding
service granularity. Services could vary in size
significantly and developers could easily be
tempted to build large enterprise services that are
hard to maintain.

 Component Sharing – the approach of
microservices tend to make each service
independent to other shared components. A
common technique is to copy the same
functionalities to all services and evolve them
independently. This approach gives developers
freedom to update their services independently by
reducing the external dependencies and team
coordination. On the contrary, SOA follows the
principle of share-as-much-as-possible of given
functionality. Although this approach solves the
problem with code duplication, it increases the
coupling between service components. When a
shared component needs to be updated, teams need
to analyse the impact on other services and align
their release plans to the other services.

 Remote Access Protocols – Microservices favour
Representational State Transfer (REST) [9] for
exchanging messages. Compared to other protocols
REST is relatively simple and lightweight and
allows easy ad hoc development and integration.
This helps development teams to quickly
implement and deploy new services that can
exchange messages with others. However, classical
SOA doesn’t have any specific prescriptions
regarding remote access protocols. In result,

7th International Conference on Information Society and Technology ICIST 2017

111

protocols are often heavyweight for simple and
well-separated applications.

To complement what have been stated above, it should
be noted that simplicity is fundamental factor that
distinguishes SOA and microservices. The latter strive for
simplicity at any level of implementation. Microservices
are fine-grained because this way, they are simpler to
support. Protocol and message options are reduced, as it is
much easier to operate with limited set of interfaces that
need to be supported. In consequence, microservice
applications are more robust and resilient. They could
easily be adapted to new market requirements and attract
new customers.

SOA doesn’t provide any guideline in terms of
simplicity. Although service-oriented systems can be built
for simplicity, most times you will encounter large and
complex service-based applications. They can integrate
with a large set of heterogeneous systems, work with large
amount of data and support complex rules for processing
messages. But such applications are hard to support and
change rapidly. Often such complexity introduces more
troubles that solutions.

In general, microservices are a form of SOA. Since
SOA practices are significantly less restrictive than
microservices it is reasonable to think of microservices as
a “form of SOA, perhaps service orientation done right”
[12].

In next section we are going to discuss design issues of
the system for dependability management based on the
notions of microservices and autonomic computing.

IV. ARCHITECTURAL APPROACH FOR DEPENDABILITY

MANAGEMENT IN EPD SMART COMPUTING SYSTEMS

A. System design and analysis

Following the approach of autonomic computing, we
should first consider the collection phase. In our proposed
system, data is collected using three main sources [19]:

 Smart meters that will be read automatically in 15
minute resolutions.

 Mobile PDAs, that will send data using 3G or WiFi
network. The resolution of these readings will rely
on the workers on the field.

 Grid analyzer devices that will be deployed on
various points of the electric grid. These devices
provide data readings in 15 minutes or smaller
resolutions.

The presented collection phase can have two potential
problems. Namely, reliable and secure data transfer of
massive amounts of data form the autonomous working
devices such are smart meters and grid analyzers, as well
as form the field PDA devices needs to be assured. Human
error detection needs to be applied for data received from
PDA devices.

Reliable data transfer from smart meters and grid
analyzers is addressed by the retailer that needs to provide
appropriate technology that assures it. It is in most cases
based on the data transfer through the power grid itself.
But the reliability problem arises from the grid instability
where fault reduction and elimination needs to be applied.
Moreover, storing and working with such massive data on
the company side, requires proper hardware capabilities,
in the form of data warehouses that need to provide
mechanisms which prevent data loss. Given that sensitive

business data but also data that relate to consumer’s
privacy is transferred, measures for assuring safe and
secure data transfer need to be applied. Since PDA mobile
devices depend on the human data insertion, system needs
to provide proper signals to the users in cases when
inserted values are not within defined threshold. Such
threshold can be statically set in advance, but it is better if
it is dynamically calculated based on already received
data.

When system starts receiving data related to the
targeted part of the grid, the analyze phase of the control
loop starts. This is made by grid analyzers that are usually
deployed on transformer station feeders, but can be also
used on any power line that powers some smaller part of
the grid. Based on the type of the electricity meters in that
part of the grid, metering data are read automatically or
are collected by workers carrying mobile PDA devices.
Two types of analyses are taking place, first one is
primary and addresses the electricity losses by estimating
technical and commercial losses. Knowing the power line
characteristics and the energy and the electric current on
the output as well as the amount of energy delivered to the
consumer, it is possible to calculate technical losses.
When calculated technical loses and delivered energy are
subtracted from the energy measured using the grid
analyzer, the amount of commercial loses is determined.
The second type of analysis is used for further
improvement of the system. All possible values that
deviate from the average values for the given period of
year are check on the human error. Also the human error
warning threshold is calculated and sent back to devices
after each block of analysis.

The planning phase relates on the products of the
analyses. Based on analysis results, if commercial losses
are above the given threshold, the system should plan its
reconfiguration in order to narrow down the source of the
loses. Whether it can be one customer or one subpart of
the grid, in planning phase the system should mark the
locations where grid analyzers should be deployed for the
next session. Such locations should be shown on the GIS
module of the system. In addition, based on the meter
types, meter reading locations should be also marked.

By executing the change plan, system will be
reconfigured. Given that grid analyzers require physical
location changes and proper mounting on the power line
as well as the analog meters require presence of workers
in the field, we can talk about semi-autonomous execution
phase. Once when the devices are properly deployed, the
new collection phase can start over. In the meantime, the
results in the form of calculations of commercial losses
can be consumed in order to prevent them in the future.
Generally, losses can come from broken equipment or
from theft. Therefore, system execution results should be
used by the technical and legal departments in order to
mitigate such problems.

B. Micro-services self-adaptive architecture

Next, we will present our microservice-based
architecture that implement the aforesaid approach. It
considers some of the specifics of microservices like
technology heterogeneity, the large number productive
services, highly distributed nature, service
componentization, etc. Therefore, it can be applied
regardless the technology that is used for developing the
services. Each of the deployed services could be self-

7th International Conference on Information Society and Technology ICIST 2017

112

adaptive. This means that is can monitor itself and the
operating environment and change based on internal or
external stimulus. The approach is still a work in progress
and many of the identified components need to be further
scrutinized and described in more details. The proposed
architecture is presented in Figure 2 and has a lot of
common characteristics with SOA. The reason for this is
that microservices and SOA are tightly connected – often
considered that microservices is proper way of
implementing SOA. However, it is the self-adaptation
components that distinguishes our proposed architecture
from standard SOA implementations.

Figure 2. Reference Architecture for Self-Adaptive Microservices in

EPD stream computing systems

Below we provide an overview for each of the
components shown above.

Service Consumer

Service consumers are the users or systems that
consume functionality exposed by the services. For
example these are the employees with the PDA devices,
other services and/or legacy components of the EPD
system or eventually – the smart sensors after they are
installed by the EPD Company. Consumers make service
invocations in order to use the desired functionality.
Service consumers will use REST protocol in order to
reach the services.

Service Registry

Service registries serve as a catalog that provides
information for the services. This includes information
about history of service invocations and about the service
itself. History of service invocations would be used to
calculate metrics about service quality and specifically to
monitor reliability. JDBC would be used to provide
metrics data.

Service Instance

The service instance is the actual service
implementation and in our architecture consists of two
components – managed component and autonomic
manager. Managed component contains the functionality
of the service instance. Autonomic manager implements
the adaptation rules and the data analyzer part of the
autonomic control loop. This way it handles service self-
adaptation capabilities. It monitors the managed

component and apply changes based on the identified
adaptation strategy.

Adaptation Registry

The adaptation registry is the key component that
allows scaling and quickly expanding the identified
adaptation mechanisms. It stores adaptation practices that
the service instances can use to manage themselves.
Services could search for adaptation practices, via their
autonomic managers, based on specific situations or
context but they could also register new adaptation
strategies based on their knowledge.

V. CONCLUSION

Electric power distribution (EDP) software intensive
systems represent a typical Internet-of-Things related
domain. EPD companies usually have to collect and
process information coming from large amount of
distributed smart meters, field sensors and other devices.
In this paper we have proposed an architectural approach
to manage reliability of software systems that deal with
processing of such information. Our solution is based on
adaptive architecture, based on microservices, this way
making it specifically oriented for execution in cloud
environment. Microservice based architecture also fosters
scalability of such systems.

Directions for further research include investigations of
other quality characteristics like performance. More
specifically, efforts should focus on algorithms for
caching of information flowing within the system.

ACKNOWLEDGMENT

Research, presented in this paper was partially
supported by the DFNI I02-2/2014 (ДФНИ И02-2/2014)
project, funded by the National Science Fund, Ministry of
Education and Science in Bulgaria.

REFERENCES

[1] Amin, S.M. and Wollenberg, B.F., 2005. Toward a smart grid:
power delivery for the 21st century. IEEE power and energy
magazine, 3(5), pp.34-41.

[2] Avižienis, A., Laprie, J-C., Randell, B., Basic concepts and
Taxonomy of dependable and secure computing, IEEE Trans on
Dependable and Secure computing, Vol. 1, Issue 1, Jan -March
2004.

[3] Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A.,
Verscheure, O., Koutsopoulos, H.N., Rahmani, M. and Güç, B.,
2010. Real-Time Traffic Information Management using Stream
Computing. IEEE Data Eng. Bull., 33(2), pp.64-68.

[4] Butler, R., and G. Finelli. "The infeasibility of quantifying the
reliability of life-critical real-time software." IEEE Transactions
on Software Engineering 19.1 (1993): 3-12.

[5] Brun, Y., et al. Engineering Self-Adaptive Systems through
Feedback Loops. In Software Engineering for Self-Adaptive
Systems. LNCS, Vol. 5525. Springer-Verlag. 2009. 48-70.

[6] Couceiro, M., Ferrando, R., Manzano, D. and Lafuente, L., 2012,
May. Stream analytics for utilities. Predicting power supply and
demand in a smart grid. In Cognitive Information Processing
(CIP), 2012 3rd International Workshop on (pp. 1-6). IEEE.

[7] Diamantoulakis, P.D., Kapinas, V.M. and Karagiannidis, G.K.,
2015. Big data analytics for dynamic energy management in smart
grids. Big Data Research, 2(3), pp.94-101.

[8] Dimov, A., S. Chandran and S. Punnekkat. (2010). How do we
Collect Data for Software Reliability Estimation? Proceedings of
the 11th International Conference on Computer Systems and
Technologies (CompSysTech). ACM ICPS, vol. 471. Sofia,
Bulgaria. June 17-18, 2010. 155-160.

7th International Conference on Information Society and Technology ICIST 2017

113

[9] Fielding, R. Architectural styles and the design of network-based
software architectures. Diss. University of California, Irvine,
2000.

[10] Farr, W. and M. Lyu, "Software reliability modeling survey" in
Handbook of Software Reliability Engineering, New
York:McGraw-Hill, pp. 71-117, 1996.

[11] Gokhale, S. "Architecture-Based Software Reliability Analysis:
Overview and Limitations", IEEE Transactions on Dependable
Security Computing, vol. 4, no. 1, pp. 32-40, 2007.

[12] James, L. and M. Fowler, “Microservices: A definition of this new
architectural term”,
http://martinfowler.com/articles/microservices.html, March, 2014

[13] Kephart, Jeffrey O., and David M. Chess. "The vision of
autonomic computing." Computer 36.1 (2003): 41-50.

[14] Naveen, P., Ing, W.K., Danquah, M.K., Sidhu, A.S. and Abu-
Siada, A., 2016, March. Cloud computing for energy management
in smart grid-an application survey. In IOP Conference Series:
Materials Science and Engineering (Vol. 121, No. 1, p. 012010).
IOP Publishing.

[15] Neumeyer, L., Robbins, B., Nair, A. and Kesari, A., 2010,
December. S4: Distributed stream computing platform. In Data
Mining Workshops (ICDMW), 2010 IEEE International
Conference on (pp. 170-177). IEEE.

[16] Richards, M., “Microservices vs. service-oriented architecture.”,
O'Reilly Media, Inc., 2015

[17] Siano, P., 2014. Demand response and smart grids—A survey.
Renewable and Sustainable Energy Reviews, 30, pp.461-478.

[18] Sornalakshm, K., Vadivu, G., 2015, A Survey on Realtime
Analytics Framework for Smart Grid Energy Management, In
International Journal of Innovative Research in Science,
Engineering and Technology, Vol. 4, Issue 3, pp. 1054-1058,
ISSN(Online) : 2319-8753

[19] Stoimenov, L., Davidovic, N., Stanimirovic, A., Bogdanovic, M.
and Nikolic, D., 2016. Enterprise integration solution for power
supply company based on GeoNis interoperability framework.
Data & Knowledge Engineering, 105, pp.23-38.

[20] Stoimenov, L., Davidović, N., Stanimirović, A., Bogdanović, M.,
Krstić, A. and Nikolić, D., 2011. GinisED Enterprise GIS-
Framework for the Utility of the Future. In CIRED 2011,
Frankfurt, Germany, 6-9. June.

[21] Taft, J.D. and Becker-Dippmann, A.S., 2015. The Emerging
Interdependence of the Electric Power Grid & Information and
Communication Technology (No. PNNL--24643). Pacific
Northwest National Laboratory (PNNL), Richland, WA (United
States).

[22] The Right Big Data Technology for Smart Grid – Distributed
Stream Computing, https://www.accenture.com/us-en/blogs/blogs-
the-right-big-data-technology-for-smart-grid-distributed-stream-
computing, last accessed 12.04.2017.

7th International Conference on Information Society and Technology ICIST 2017

