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Abstract—Collaborative Filtering technique is a state-of-the-

art method in recommender systems. This technique has 

proved to be successful both in research and industry. 

However, it is challenging to find an adequate algorithm for 

calculating user similarity, which enables the recommender 

system to generate the best recommendation for given 

domain and data set. In this paper, we proposed an 

architecture which allows users to additionally personalize 

the recommendation by letting them choose algorithm for 

calculating user similarities, or to implement their own 

algorithm on a distributed service. Online tests on 

implemented application for movie recommendation show 

that architecture proposed in this paper gives users the 

ability to personalize recommendation for more efficient 

results. 
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I. INTRODUCTION 

Collaborative Filtering [1] is a subfield of Machine 
Learning that aims at creating algorithms to predict user 
preferences based on past user behavior in purchasing or 
rating items. It is a technique that has been acclaimed both 
in research and industry.  

The input for the Collaborative Filtering prediction 
algorithm is set of user’s ratings on items. Collaborative 
Filtering algorithm is typically decomposed into three 
generic stages [2]: 

(1) calculating the similarity of all users to the active 
user (the user for whom a recommendation is 
searched), 

(2) selecting a certain number of most users most 
similar to the active user, 

(3) computing the active user rating prediction. This is 
done for a target item whose rating is unknown, 
and is obtained by calculating the normalized and 
weighted average of the ratings of the certain 
number of most similar users,  found at (2) on the 
target item according to the user-to-user similarity 
computed at (1). 

In a Collaborative Filtering recommender system, the 
items that are finally recommended to the active user are 
typically those with maximum rating prediction. In some 
cases all the items are suggested, but in this case they are 
ranked according to the predicted ratings [2].  

Over the last 20 years, a great effort has been invested 
in research on how to automatically recommend different 
things to people. During that period, a wide variety of 

methods have been proposed. The Recommender System 
Handbook [3] provides in-depth discussion of a variety of 
recommender methods and topics, focused primarily on 
Collaborative Filtering. There is also a growing interest in 
problems surrounding recommendation. Algorithms for 
understanding and predicting user preferences are merely 
one piece of a broader user experience. A recommender 
system must interact with the user, both to learn user’s 
preferences and provide recommendations; these concerns 
pose challenges for user interface and interaction design. 
There is room for algorithm refinement and much work to 
be done on user experience, personalization, data 
collection and other problems which make up the whole of 
the recommender experience [4]. 

A wide variety of algorithms is used for calculating user 
similarities. Finding an adequate algorithm which enables 
the recommender system to generate the best 
recommendation for given domain and data set is 
challenging. 

The specific problem our work addressed was to find an 
architecture which allow system users to additionally 
personalize the recommendation by letting them choose 
the algorithm for calculating user similarities, or to 
implement their own algorithm for the same task. In order 
to maintain the efficiency of the recommender system, 
users can use distributed execution of newly implemented 
algorithms for calculating user similarities. Research has 
shown that no other party has found a solution to this 
problem. 

The rest of this paper is organized as follows. In Section 
II, several related works are presented and discussed. In 
section III, we first introduce architecture and design of 
our system, and after that we describe the implementation 
of our system. In Section IV the experimental results of 
our system are presented and analyzed. Finally we make a 
brief concluding mark and give the future work in Section 
V. 

II. RELATED WORK 

Berkovsky, Kuflik and Ricci [2] showed that reliability 
of user-to-user similarity computation can be solved, and 
the accuracy of Collaborative Filtering recommendations 
can be improved by partitioning the collaborative user 
data into distributed repositories and aggregation 
information coming from these repositories. Their work 
explores a content-depending partitioning of collaborative 
movie ratings, where the ratings are partitioned according 
to the genre of the movie and presents an evaluation of 
four aggregation approaches. Evaluation demonstrated 
that the aggregation improves the accuracy of a 
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centralized system containing the same ratings and proved 
the feasibility and advantages of a distributed 
Collaborative Filtering. Main shortcoming of their work is 
the difficulty to apply it in recommendation applications. 
It requires additional work to classify the items into 
several topics or domains. 

Han, Xie, Yang and Shen [5] proposed a distributed 
Collaborative Filtering algorithm together with 
significance refinement and unanimous amplification to 
further improve scalability and prediction accuracy. Their 
experiments showed that distributed Collaborative 
Filtering-based recommender system has much better 
scalability than traditional centralized ones with 
comparable prediction efficiency and accuracy. 

Ekstrand, Riedl and Konstan [4] presented various 
algorithms for calculating user similarity. They proved 
that the appropriate algorithm for a particular application 
should be selected based on a combination of the 
characteristics of the target domain and context of use, the 
computational performance requirements of the 
application, and the needs to the users of the system. They 
concluded that understanding what those needs are can 
simplify algorithm selection. 

Liu, Hu, Mian, Tian and Zhu [6] analyzed the shortages 
of the existing similarity measures in Collaborative 
Filtering. Also, they proposed new similarity model to 
overcome drawbacks of existing algorithms. Comparison 
of many similarity measures on real data sets showed that 
Collaborative Filtering recommendation system can reach 
different performance on same dataset depending on used 
similarity measure. 

III. ELABORATION 

The only way to accurately assess recommendation 
efficiency is to do an online evaluation – to test a system 
with real users. Therefore, majority of recommendation 
systems nowadays are incorporated in Web applications 
[4]. In this paper we propose an architecture that allows 
the user to implement algorithm for calculating user 
similarity. Due to performance, this calculation is safe to 
be executed on distributed service. 

A. System Architecture and Design 

    We present a recommendation system, implemented as 

a Web application using Model-View-Controller (MVC) 

design pattern [7]. The system modular design contains 

four modules, shown in Figure 1. 

 
Figure 1. The system modular design 

    Data acquisition and analysis module is based on 

Linked data [8] and NoSQL databases [9]. This module 

contains data about user ratings from data set, and data 

about target items used for recommendations. 

Recommendation systems must handle accurate data in 

order to compute their recommendations and preferences, 

which is why it is important to collect reliable data and 

reduce the noise in user preferences data set. 

    Presentation module connects system user with 

Recommendation module. This module allows users to 

register themselves on the system and manage their 

distributed services. Beside this, this module forwards 

user’s data and displays recommendations. 

    Communication module communicates with 

distributed services. This module attempts to conform to 

the design principles of Representational State Transfer 

(REST) [10].  

    Recommendation module communicates with other 

modules and performs recommendation. This module is 

basis of our architecture. System users can choose 

between already implemented user similarity algorithms, 

and their own algorithms implemented on distributed 

Web services. 

B. Implementation 

Data  acquisition and analysis module stores data about 
users and target recommendation items in two separate 
collections in MongoDB [11] database. For every user in 
users collection, there are data about user ratings of items 
stored in JavaScript Object Notation – Linked Data 
(JSON-LD) [12] format. This format enables easier usage 
of data later in recommendation and eventual transfer to 
distributed user similarity calculation services via 
Communication module of the system. Target 
recommendation items data is stored in separated 
collection, using JavaScript Object Notation (JSON) 
format. According to information domain, there are 
libraries in this module  for easier collection of the data.  
For movies as information domain, omdb [13] Python 
library was used to communicate with OMDb API

1
 Web 

service to obtain movie data from the Internet Movie 
Database (IMDb)

2
. 

Presentation module is realized as a single page 
application using AngularJS framework [14].  
Communication with Recommendation module relies on 
Representational State Transfer (REST). This module 
interacts with the user, collects it’s preferences and 
provide recommendations. Therefore, our implementation 
of this module provided solution respecting good practices 
of user interface and interaction design. 

Communication module performs user similarity 
calculation on distributed services. Using HTTP protocol 
this module sends data about two users, received from 
Recommendation module, to distributed services in JSON 
format. After user similarity calculation on distributed 
service, results are delivered to Communication module 
which forwards them back to Recommendation module. 
Although the implementation of Communication module 
was done using Django REST framework [15] and Python 
programming language, usage of HTTP protocol allows 

                                                           
1
 http://www.omdbapi.com/ 

2
 http://www.imdb.com/ 
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user to implement distributed calculation service using 
any programing language and framewrok. 

Recommendation module calculates recommendations 
using Collaborative Filtering, based on input data from 
Presentation and Data acquisition and analysis module. 
According to user’s choice, this module calculates user 
similarity using already implemented algorithms (in this 
solution: Euclidean Distance Score and Pearson 
Correlation Score [4]) or using external service through 
Communication module. To complete active user rating 
prediction, we are calculating the normalized and 
weighted average of the ratings of most similar users 
according to calculated user similarity. Calculated 
recommendations are then sent to Presentation module in 
order to be displayed to system user. Implementation of 
Recommendation module was done using Python 
programming language and the Django Rest Framework. 
Active user’s data, including account credentials and 
distributed services locations, are stored in SQLite 
relational database [16]. 

IV. EVALUATION 

In this section, we describe data set and experimental 
results in online evaluation. 

A. Data set 

The information domain for system evaluation consists 

of a data set collected from Turi Machine Learning 

platform 
3
 with 82000 user preferences for movies 

represented as a (User, Movie, Rating) triple. Within Data 

acquisition and analysis module, collected data set was 

analyzed and filtered in order to provide accurate data for 

Recommendation module. Triplets with missing and 

duplicated values were removed from data set, and rating 

values were scaled to fit [0, 10] interval. Triplets were 

grouped by user in order to create user profile, and movie 

names are used to collect movie data from Internet Movie 

Database. After performed work, users’ collection in 

MongoDB database was populated with 334 user profiles, 

and movies collection was populated with data of 5917 

movies collected using omdb Python library. 

B. Experimental results 

Recommendation algorithms with similar numeric 

performance have been known to return observably 

different results, and a decrease in error may or may not 

make the system better at meeting the user’s needs. The 

only way to accurately assess system accuracy is to do an 

online evaluation [4]. 

To evaluate our system, we decided to perform 

comparison of Collaborative Filtering recommendations 

using different user similarity calculation algorithms. 

Therefore, we implemented Jaccard Similarity 

Coefficient algorithm [4] on distributed service using 

Flask framework [17] and register it in our application. 

We then performed recommendation calculation for the 

same input data. We rate couple of movies and get 

Collaborative Filtering recommendations with three 

different similarity calculation algorithms:  

 

                                                           
3
 https://turi.com/ 

(1) Euclidean Distance Score, 

(2) Pearson Correlation Score, 

(3) Jaccard Similarity Score (on distributed service). 

 
 

Input 

- Forrest Gump (1994), 10 

 

- A Beautiful Mind (2001), 10 
 

- Sin City (2005), 10 

 

 

 

 

 

Output 

 

Pearson Euclidean Jaccard 

- Rory O’Shea 
Was Here (2004) 

 

- The 
Manchurian 

Candidate (2004) 

 
- The Terminal 

(2004) 

- Seal Team 
Six: The Raid 

on Osama Bin 

Laden (2012) 
 

- Crash (2004) 

 
- Secret 

Window (2004) 

- The Imitation 
Game (2014) 

 

-Mission: 
Impossible – 

Ghost Protocol 

(2011) 
 

- Tower Heist 

(2011) 

Table 2. Online evaluation results 

 

Results in Table 1. shows that for the same input data, 

user gets different recommendations, confirming that 

architecture provided in this paper gives user the ability 

to personalize recommendation by implementing 

distributed services using any programming language and 

framework to personalize recommendation for more 

efficient results. 

V. CONCLUSION 

 In this paper, we propose an architecture which allows 
users to additionally personalize Collaborative Filtering 
recommendation by letting them choose already 
implemented algorithm for calculating user similarity, or 
to implement their own algorithm for the same task with 
preserved efficiency of the recommendation by enabling 
distributed execution of newly implemented algorithm. 
Proposed architecture allows users to implement 
distributed service using any programming language and 
any framework which conforms with the design principles 
of Representational State Transfer (REST). Online 
evaluation for movies as information domain confirms 
that provided architecture gives users the ability to 
additionally personalize Collaborative Filtering 
recommendation results by selecting appropriate 
algorithm for given information domain and data set. 
Also, distributed execution of that algorithm preserves 
system efficiency. 

Our future work includes investigation on a data set 
extension by using Linked data benefits to include data 
from social media. We would also like to investigate 
abilities of collecting and analyzing feedback of system 
users to join Collaborative Filtering and Content Based 
recommendation into Hybrid recommender system.  
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