
29

A Recommendation System with Personalizable

Distributed Collaborative Filtering

Dragan Vidaković, Milan Segedinac, Đorđe Obradović, Goran Savić

Department of Computing and Control Engineering

University of Novi Sad, Novi Sad, Serbia

{vdragan, milansegedinac, obrad, savicg}@uns.ac.rs

Abstract—Collaborative Filtering technique is a state-of-the-

art method in recommender systems. This technique has

proved to be successful both in research and industry.

However, it is challenging to find an adequate algorithm for

calculating user similarity, which enables the recommender

system to generate the best recommendation for given

domain and data set. In this paper, we proposed an

architecture which allows users to additionally personalize

the recommendation by letting them choose algorithm for

calculating user similarities, or to implement their own

algorithm on a distributed service. Online tests on

implemented application for movie recommendation show

that architecture proposed in this paper gives users the

ability to personalize recommendation for more efficient

results.

Keywords–Machine Learning; Collaborative Filtering;

Recommender system;

I. INTRODUCTION

Collaborative Filtering [1] is a subfield of Machine
Learning that aims at creating algorithms to predict user
preferences based on past user behavior in purchasing or
rating items. It is a technique that has been acclaimed both
in research and industry.

The input for the Collaborative Filtering prediction
algorithm is set of user’s ratings on items. Collaborative
Filtering algorithm is typically decomposed into three
generic stages [2]:

(1) calculating the similarity of all users to the active
user (the user for whom a recommendation is
searched),

(2) selecting a certain number of most users most
similar to the active user,

(3) computing the active user rating prediction. This is
done for a target item whose rating is unknown,
and is obtained by calculating the normalized and
weighted average of the ratings of the certain
number of most similar users, found at (2) on the
target item according to the user-to-user similarity
computed at (1).

In a Collaborative Filtering recommender system, the
items that are finally recommended to the active user are
typically those with maximum rating prediction. In some
cases all the items are suggested, but in this case they are
ranked according to the predicted ratings [2].

Over the last 20 years, a great effort has been invested
in research on how to automatically recommend different
things to people. During that period, a wide variety of

methods have been proposed. The Recommender System
Handbook [3] provides in-depth discussion of a variety of
recommender methods and topics, focused primarily on
Collaborative Filtering. There is also a growing interest in
problems surrounding recommendation. Algorithms for
understanding and predicting user preferences are merely
one piece of a broader user experience. A recommender
system must interact with the user, both to learn user’s
preferences and provide recommendations; these concerns
pose challenges for user interface and interaction design.
There is room for algorithm refinement and much work to
be done on user experience, personalization, data
collection and other problems which make up the whole of
the recommender experience [4].

A wide variety of algorithms is used for calculating user
similarities. Finding an adequate algorithm which enables
the recommender system to generate the best
recommendation for given domain and data set is
challenging.

The specific problem our work addressed was to find an
architecture which allow system users to additionally
personalize the recommendation by letting them choose
the algorithm for calculating user similarities, or to
implement their own algorithm for the same task. In order
to maintain the efficiency of the recommender system,
users can use distributed execution of newly implemented
algorithms for calculating user similarities. Research has
shown that no other party has found a solution to this
problem.

The rest of this paper is organized as follows. In Section
II, several related works are presented and discussed. In
section III, we first introduce architecture and design of
our system, and after that we describe the implementation
of our system. In Section IV the experimental results of
our system are presented and analyzed. Finally we make a
brief concluding mark and give the future work in Section
V.

II. RELATED WORK

Berkovsky, Kuflik and Ricci [2] showed that reliability
of user-to-user similarity computation can be solved, and
the accuracy of Collaborative Filtering recommendations
can be improved by partitioning the collaborative user
data into distributed repositories and aggregation
information coming from these repositories. Their work
explores a content-depending partitioning of collaborative
movie ratings, where the ratings are partitioned according
to the genre of the movie and presents an evaluation of
four aggregation approaches. Evaluation demonstrated
that the aggregation improves the accuracy of a

7th International Conference on Information Society and Technology ICIST 2017

30

centralized system containing the same ratings and proved
the feasibility and advantages of a distributed
Collaborative Filtering. Main shortcoming of their work is
the difficulty to apply it in recommendation applications.
It requires additional work to classify the items into
several topics or domains.

Han, Xie, Yang and Shen [5] proposed a distributed
Collaborative Filtering algorithm together with
significance refinement and unanimous amplification to
further improve scalability and prediction accuracy. Their
experiments showed that distributed Collaborative
Filtering-based recommender system has much better
scalability than traditional centralized ones with
comparable prediction efficiency and accuracy.

Ekstrand, Riedl and Konstan [4] presented various
algorithms for calculating user similarity. They proved
that the appropriate algorithm for a particular application
should be selected based on a combination of the
characteristics of the target domain and context of use, the
computational performance requirements of the
application, and the needs to the users of the system. They
concluded that understanding what those needs are can
simplify algorithm selection.

Liu, Hu, Mian, Tian and Zhu [6] analyzed the shortages
of the existing similarity measures in Collaborative
Filtering. Also, they proposed new similarity model to
overcome drawbacks of existing algorithms. Comparison
of many similarity measures on real data sets showed that
Collaborative Filtering recommendation system can reach
different performance on same dataset depending on used
similarity measure.

III. ELABORATION

The only way to accurately assess recommendation
efficiency is to do an online evaluation – to test a system
with real users. Therefore, majority of recommendation
systems nowadays are incorporated in Web applications
[4]. In this paper we propose an architecture that allows
the user to implement algorithm for calculating user
similarity. Due to performance, this calculation is safe to
be executed on distributed service.

A. System Architecture and Design

 We present a recommendation system, implemented as

a Web application using Model-View-Controller (MVC)

design pattern [7]. The system modular design contains

four modules, shown in Figure 1.

Figure 1. The system modular design

 Data acquisition and analysis module is based on

Linked data [8] and NoSQL databases [9]. This module

contains data about user ratings from data set, and data

about target items used for recommendations.

Recommendation systems must handle accurate data in

order to compute their recommendations and preferences,

which is why it is important to collect reliable data and

reduce the noise in user preferences data set.

 Presentation module connects system user with

Recommendation module. This module allows users to

register themselves on the system and manage their

distributed services. Beside this, this module forwards

user’s data and displays recommendations.

 Communication module communicates with

distributed services. This module attempts to conform to

the design principles of Representational State Transfer

(REST) [10].

 Recommendation module communicates with other

modules and performs recommendation. This module is

basis of our architecture. System users can choose

between already implemented user similarity algorithms,

and their own algorithms implemented on distributed

Web services.

B. Implementation

Data acquisition and analysis module stores data about
users and target recommendation items in two separate
collections in MongoDB [11] database. For every user in
users collection, there are data about user ratings of items
stored in JavaScript Object Notation – Linked Data
(JSON-LD) [12] format. This format enables easier usage
of data later in recommendation and eventual transfer to
distributed user similarity calculation services via
Communication module of the system. Target
recommendation items data is stored in separated
collection, using JavaScript Object Notation (JSON)
format. According to information domain, there are
libraries in this module for easier collection of the data.
For movies as information domain, omdb [13] Python
library was used to communicate with OMDb API

1
 Web

service to obtain movie data from the Internet Movie
Database (IMDb)

2
.

Presentation module is realized as a single page
application using AngularJS framework [14].
Communication with Recommendation module relies on
Representational State Transfer (REST). This module
interacts with the user, collects it’s preferences and
provide recommendations. Therefore, our implementation
of this module provided solution respecting good practices
of user interface and interaction design.

Communication module performs user similarity
calculation on distributed services. Using HTTP protocol
this module sends data about two users, received from
Recommendation module, to distributed services in JSON
format. After user similarity calculation on distributed
service, results are delivered to Communication module
which forwards them back to Recommendation module.
Although the implementation of Communication module
was done using Django REST framework [15] and Python
programming language, usage of HTTP protocol allows

1
 http://www.omdbapi.com/

2
 http://www.imdb.com/

7th International Conference on Information Society and Technology ICIST 2017

31

user to implement distributed calculation service using
any programing language and framewrok.

Recommendation module calculates recommendations
using Collaborative Filtering, based on input data from
Presentation and Data acquisition and analysis module.
According to user’s choice, this module calculates user
similarity using already implemented algorithms (in this
solution: Euclidean Distance Score and Pearson
Correlation Score [4]) or using external service through
Communication module. To complete active user rating
prediction, we are calculating the normalized and
weighted average of the ratings of most similar users
according to calculated user similarity. Calculated
recommendations are then sent to Presentation module in
order to be displayed to system user. Implementation of
Recommendation module was done using Python
programming language and the Django Rest Framework.
Active user’s data, including account credentials and
distributed services locations, are stored in SQLite
relational database [16].

IV. EVALUATION

In this section, we describe data set and experimental
results in online evaluation.

A. Data set

The information domain for system evaluation consists

of a data set collected from Turi Machine Learning

platform
3
 with 82000 user preferences for movies

represented as a (User, Movie, Rating) triple. Within Data

acquisition and analysis module, collected data set was

analyzed and filtered in order to provide accurate data for

Recommendation module. Triplets with missing and

duplicated values were removed from data set, and rating

values were scaled to fit [0, 10] interval. Triplets were

grouped by user in order to create user profile, and movie

names are used to collect movie data from Internet Movie

Database. After performed work, users’ collection in

MongoDB database was populated with 334 user profiles,

and movies collection was populated with data of 5917

movies collected using omdb Python library.

B. Experimental results

Recommendation algorithms with similar numeric

performance have been known to return observably

different results, and a decrease in error may or may not

make the system better at meeting the user’s needs. The

only way to accurately assess system accuracy is to do an

online evaluation [4].

To evaluate our system, we decided to perform

comparison of Collaborative Filtering recommendations

using different user similarity calculation algorithms.

Therefore, we implemented Jaccard Similarity

Coefficient algorithm [4] on distributed service using

Flask framework [17] and register it in our application.

We then performed recommendation calculation for the

same input data. We rate couple of movies and get

Collaborative Filtering recommendations with three

different similarity calculation algorithms:

3
 https://turi.com/

(1) Euclidean Distance Score,

(2) Pearson Correlation Score,

(3) Jaccard Similarity Score (on distributed service).

Input

- Forrest Gump (1994), 10

- A Beautiful Mind (2001), 10

- Sin City (2005), 10

Output

Pearson Euclidean Jaccard

- Rory O’Shea
Was Here (2004)

- The
Manchurian

Candidate (2004)

- The Terminal

(2004)

- Seal Team
Six: The Raid

on Osama Bin

Laden (2012)

- Crash (2004)

- Secret

Window (2004)

- The Imitation
Game (2014)

-Mission:
Impossible –

Ghost Protocol

(2011)

- Tower Heist

(2011)

Table 2. Online evaluation results

Results in Table 1. shows that for the same input data,

user gets different recommendations, confirming that

architecture provided in this paper gives user the ability

to personalize recommendation by implementing

distributed services using any programming language and

framework to personalize recommendation for more

efficient results.

V. CONCLUSION

 In this paper, we propose an architecture which allows
users to additionally personalize Collaborative Filtering
recommendation by letting them choose already
implemented algorithm for calculating user similarity, or
to implement their own algorithm for the same task with
preserved efficiency of the recommendation by enabling
distributed execution of newly implemented algorithm.
Proposed architecture allows users to implement
distributed service using any programming language and
any framework which conforms with the design principles
of Representational State Transfer (REST). Online
evaluation for movies as information domain confirms
that provided architecture gives users the ability to
additionally personalize Collaborative Filtering
recommendation results by selecting appropriate
algorithm for given information domain and data set.
Also, distributed execution of that algorithm preserves
system efficiency.

Our future work includes investigation on a data set
extension by using Linked data benefits to include data
from social media. We would also like to investigate
abilities of collecting and analyzing feedback of system
users to join Collaborative Filtering and Content Based
recommendation into Hybrid recommender system.

REFERENCES

[1] J. Herlocker, J. A. Konstan and J. Riedl, “Explaining
Collaborative Filtering Recommendations”, in Proceedings of
ACM Conference on Computer Supported Cooperative Work,
2000.

[2] S. Berkovsky, T. Kuflik and F. Ricci, “Distributed collaborative
filtering with domain specialization”, in Proceedings of the 2007
ACM conference on Recommender Systems, pp 33-40, 2007.

[3] F. Ricci, L. Rokach, B. Shapira and P. B. Kantor, “Recommender
System Handbook”, Springer, 2010.

7th International Conference on Information Society and Technology ICIST 2017

32

[4] M. Ekstrand, J. Riedl and J. Konstan, “Collaborative Filtering
Recommendation Systems”, in Journal Foundations and Trends in
Human-Computer Interaction, vol. 4, pp 81-173, 2011.

[5] P. Han, B. Xie, F. Yang and R. Shen, “A scalable P2P
recommender system based on distributed collaborative filtering”,
in Expert Systems with Applications, vol. 27, pp 203-210, 2004.

[6] H. Liu, Z. Hu, A. Mian, H. Tian and X. Zhu, “A new user
similarity model to improve the accuracy of collaborative
filtering”, in Journal Knowledge-Based Systems, vol. 56, pp 156-
166, 2014.

[7] R. Grove and E. Ozkan, “The MVC-Web Desing Pattern”, in
Proceedings of the 7th International Conference on Web
Information Systems and Technologies, 2011.

[8] C. Bizer, T. Heath and T. Berners-Lee, “Linked Data – The Story
So Far”, in International Journal on Semantic Web and
Information Systems, vol. 5, pp 1-22, 2009.

[9] C. Strauch, “NoSQL Databases”, Hochschule der Medien,
Stuttgart, 2011.

[10] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures”, University of California, Irvine,
2000.

[11] “MongoDB Documentation”, 2017, [Online]. Available:
https://docs.mongodb.com/, [Accessed: 13-Apr-2017].

[12] M. Lanthaler and C. Gutl, “On using JSON-LD to create
evolvable RESTful services”, in Proceedings of the Third
International Workshop on RESTful Design, pp 25-32, 2012.

[13] “omdb 0.2.0”, 2017, [Online]. Available:
https://pypi.python.org/pypi/omdb/0.2.0, [Accessed: 13-Apr-
2017].

[14] “Angular Docs”, 2017, [Online]. Available:
https://angular.io/docs/ts/latest/, [Accessed: 13-Apr-2017].

[15] “Django REST framework”, 2017, [Online]. Available:
http://www.django-rest-framework.org/, [Accessed: 13-Apr-
2017].

[16] “SQLite Documentation”, 2017, [Online]. Available:
https://www.sqlite.org/docs.html, [Accessed: 13-Apr-2017].

[17] “Flask (A Python Microframework)”, 2017, [Online]. Available:
http://flask.pocoo.org/, [Accessed: 13-Apr-2017].

7th International Conference on Information Society and Technology ICIST 2017

