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Abstract— This paper consists of the formal specification and 

implementation of the system for simultaneous localization 

and mapping based on video content analysis using one video 

camera, without usage of any additional sensors. Lack of 

sensors lowers the system price, but software complexity 

becomes very high. Shi-Thomasi corner detection method is 

used in system implementation, as well as Lucas-Kanade 

optical flow method, RANSAC algorithm for optical flow 

vector filtering and Kalman filter for correction of the 

camera position. 

I. INTRODUCTION 

This paper holds the formal specification of the system 
for simultaneous localization and mapping based of video 
content analysis. Simultaneous localization and mapping 
(a.k.a. SLAM) is problem usually found in robotics. The 
basic idea lies in a fact that a moving robot should be able 
to map the space around him and to track its location within 
that space. The system presented in this paper uses only one 
video camera for that purpose, without additional sensors. 
System is implemented using computer vision techniques, 
numerical algorithms and others. The formal specification 
of the system will be presented in the next section of this 
paper. Third section contains system verification from the 
performance and accuracy viewpoints, while the fourth 
section contains some further research plans. 

II. SYSTEM SPECIFICATION 

Software system presented in this paper is divided into 
seven subsystems where each of them performs a group of 
similar tasks. By doing so, it’s easier to follow the 
simultaneous localization and mapping process. Figure 1 
contains the conceptual diagram of the system. 

 
Figure 1. Conceptual diagram of the system 

All subsystems will be presented in the next segments, 
by presenting theoretical concepts which are used in 
subsystems. An input to the whole system is a video 
recording, or the live camera feed. Every frame of the video 
recording goes through subsystems of the software system. 
Subsystems will process and modify them, before 

extracting the data which will be used in localization and 
mapping process. 

2.1. Camera calibration subsystem 

Camera lens characteristics and imperfections will be 
presented in this segment. Some of those imperfections can 
affect video processing in SLAM problem, and that’s why 
the physics of the camera lens will be explained in the 
Figure 2 [1]. 

 
Figure 2. Camera lens model 

The fact that video camera lens exists and that is not 
perfectly thin, results in image defects which are known as 
lens aberrations. The reason why spherical distortion of the 
image occurs (spherical aberration) is that the focus point 
of the light rays depends on the distance of the source and 
the optical axis. The consequence is that straight lines on 
the scene will be curved on the image. Spherical distortion 
removal is the problem that can be solved by camera 
calibration process. Types of image distortion are displayed 
in the Figure 3. 

 
Figure 3. Image distortion: a) original image, b) barrel distortion, c) 

pincushion distortion 

Camera calibration subsystem calculates camera lens 

parameters, which are then stored inside the system. 

Calibration process is based on recording of the pattern 

which has known proportions and characteristics from 

many angles and mapping projected points onto the points 

in 3D space. Every image with detected pattern defines a 

new equation which uses extrinsic and intrinsic parameters 

and distortion coefficients [2]. 

2.2. Digital image correction subsystem 

The input of this subsystem is the input of the entire 

software system and each frame of the video content that 

is used for mapping and localization is going through this 
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subsystem. Every frame that is processed in this subsystem 

is forwarded to other subsystems.  

 
Figure 4. Digital image correction subsystem 

Besides the digital image the correction is applied to, the 

output of the camera calibration subsystem is also brought 

as an input to this subsystem (Figure 4). Subsystem for the 

correction of digital images fetches those parameters, and 

corrects image distortion that is created as a result of the 

imperfections of the camera lens. The corrected digital 

image is used in the rest of the software system. 

2.3. Objects of interest detection subsystem 

 To enable the analysis of motion in the video, it is 

necessary to define some key points which will be used to 

calculate motion parameters. This process can be divided 

into several phases. A block diagram of this subsystem is 

shown in Figure 5. 

 
Figure 5. Objects of interest detection subsystem 

Most of algorithms for the detection of good objects for 

tracking use the assumption that the input image is a 

function of the light intensity of the pixel depending on its 

coordinates. That is why a digital image is usually 

transformed into the image where every pixel represents 

the amount of brightness to the appropriate coordinates of 

the input image. For this purpose, grayscale filter is used. 

This approach eliminates complex analysis in the color 

space, and uses only 256 shades of gray. 

Jianbo Shi and Carlo Thomas in their research [3] propose 

an algorithm for the detection of good tracking features. 

They show how to monitor the quality of the tracked 

objects in the process of motion detection by using 

dissimilarity measure, which quantifies the change in 

appearance between the first and the current frame of video 

content. The measure represents the diversity of the rest of 

the object which was detected in the first frame and its 

appearance in the current frame. When dissimilarity 

measure becomes too high, tracked object is not suitable 

for tracking anymore and needs to be abandoned and it is 

desirable to find another object. Shi-Thomasi detector 

represents the evolution of the algorithms presented by the 

Moravec [4] and Harris-Stephens in [5].  

The method is based on the calculation of the 

autocorrelation matrix which describes the distribution of 

the gradient in a local neighborhood of a point. In fact, the 

difference in the intensity of displacement (u, v) is found 

in all directions: 

 

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)  [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣)  −   𝐼(𝑥, 𝑦)]2

𝑥,𝑦

          (1) 

 

The function w(x, y) represents the so-called, window 

function. It is usually rectangular or Gaussian window in 

which the pixels beneath have weights attached. 

I(x+u,y+v) represents the shifted intensity, and I(x,y) is the 

unmoved intensity. The idea of the whole process is to 

maximize the function E (u, v) for edge detection. 

Of all the potential candidates, system chooses the N best. 

The selection process begins with all available candidates 

sorted by how good they are. Then the system selects the 

best of them, and eliminates all the other candidates who 

are close to him. The process continues until a top N 

candidates are selected. 

2.4. Subsystem for optical flow calculation 

 This chapter contains a specification of the subsystem 

for optical flow calculation for objects in the scene. The 

main task of this subsystem is to determine displacement 

vector of the camera. In order to analyze the displacement 

of the camera or the scene, it is necessary to have at least 

two reference positions that will be used in order to 

calculate those displacement vectors. The whole system is 

based on the analysis of video content, so the consecutive 

frames of the video recording will be analyzed. A 

conceptual diagram of this subsystem is shown in the 

Figure 6. 

 
Figure 6. Optical flow calculation subsystem 

Optical flow represents a pattern of displacement of 

objects, surfaces and edges on the scene. It is caused by a 

change of the relative position between the observer (eye 

or a camera) and the scene. It basically represents a 

distribution of the velocity vectors of tracked points. An 

example of the optical flow is shown in Figure 7. 

 
Figure 7. An example of the optical flow between two frames 

In order to calculate the optical flow estimate in two 

dimensions, an assumption that  𝐼(𝑥, 𝑦, 𝑡) is a central pixel 

in the square n×n and that it is displaced by 𝛿𝑥, 𝛿𝑦 in time 

𝛿𝑡 to the position (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) is introduced. 

Since the I(x,y,t) and 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) are the 

images with the same points, we get: 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡)             (2) 
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The previous equation is known as the equation of the 

optical flow in the plane. Values of the change 𝛿𝑥, 𝛿𝑦 i 𝛿𝑡 

are not high. After this step, an approximation using 

Tailor’s series is performed on the previous equation. The 

derivation process is explained in [6]. The result of the 

derivation process is an equation with two variables that 

cannot be solved. Then, the Lucas-Kanade method 

approximation is used as a solution to this problem. The 

basic idea of this method lies in the assumption that the 

optical flow field is spatially sustainable, and that all pixels 

that fall into a window of dimensions n × n have the same 

value of the velocity v, and that’s why the optical flow in 

that window is constant. [7] The result is a set of equations 

that has more equations than the number of variables 

(Figure 8b). [8] 

 
Figure 8. Intersection of a) two equations of the optical flow, b) multiple 

equations of the optical flow 

In this case, the least squares method is used to 

approximate the unique solution of the system of 

equations. After the process of derivation, which is shown 

in [7], an expression for optical flow vector calculation is 

given (3): 

[
𝑉𝑥

𝑉𝑦
] = [

∑ 𝐼𝑥(𝑝𝑛)2

𝑖
∑ 𝐼𝑥(𝑝𝑛)𝐼𝑦(𝑝𝑛)

𝑖

∑ 𝐼𝑥(𝑝𝑛)𝐼𝑦(𝑝𝑛)
𝑖

∑ 𝐼𝑦(𝑝𝑛)2

𝑖

]

−1

[

− ∑ 𝐼𝑥(𝑝𝑛)𝐼𝑡(𝑝𝑛)
𝑖

− ∑ 𝐼𝑦(𝑝𝑛)𝐼𝑡(𝑝𝑛)
𝑖

] 

 

The output of this subsystem is the set of all optical flow 

vectors for all tracked objects. 

2.5. Subsystem for movement parameters estimation 

 Subsystem for movement parameters estimation has 

the task to calculate the intensity and angle of displacement 

of the camera, by using the analysis of the optical flow 

field for objects in the scene. Figure 9 shows a conceptual 

diagram of the subsystem for estimation of motion 

parameters.  

 
Figure 9. Subsystem for movement parameters estimation 

Optical flow field can be quite noisy, especially if the 

scene is almost homogeneous, resulting in harder object 

detection and tracking. An example of the noisy optical 

flow field is given in Figure 10. 

 
Figure 10. Noisy optical flow field 

The basic idea behind the removal of the noise lies in the 

fact that most of the vectors have a similar direction. In this 

case, we can determine what is noise and what is not. For 

this purpose we used RANSAC algorithm, which, unlike 

the method of least squares regression does not have to 

include all data. It finds a subset that will have the best 

approximation, while other elements are classified as 

outliers, as shown in Figure 11. 

 
Figure 11. Difference between the least squares linear regression 

approach and RANSAC algorithm 

After the filtering process, the resulting motion vector is 

calculated by simple averaging of remaining vectors. Then 

the new camera position is calculated, taking into account 

its orientation and the difference between the previous and 

the current angle. 

2.6. Subsystem for estimation improvement 

If the estimated value of the new camera position is 

used in the rest of the system in its original form, with no 

improvement, it may happen that the map of the movement 

looks unnatural. The supporting structure to which the 

camera is attached, for example a vehicle, won’t usually 

be perfectly still. Small vibrations of the support structure 

will result in a trajectory that will not be perfectly straight, 

even if the camera moved by the straight line. If the camera 

is attached to the vehicle, vibration is logical phenomenon. 

When a man wears a camera, vibration will occur during 

the walk, or if the camera is held in hands the small shake 

of hands will result in a vibration. No matter how small 

these vibrations are, they will be detected at the transition 

between adjacent frames and they will bring noise to the 

system. The basic idea behind the methodology for 

improving the estimation lies in the fact that the camera 

moves according to the laws of physics, because the 

camera will generally be attached to the moving vehicle. It 

is not possible that a vehicle at high speed makes a huge 

7th International Conference on Information Society and Technology ICIST 2017



21

turning angle, for example 90 °. Those "sharp" angles will 

happen when the vibration affects the camera and can be 

eliminated if we take into account the laws of motion in 

physics. Based on the theory of Kalman filter [9], it can be 

concluded that precisely this filter could be applied to this 

kind of estimation improvement, even though there are 

many others. 

An input of this subsystem consists solely of the 

coordinates of positions of the camera in the real world. 

Those coordinates are used for the prediction of the future 

position. Kalman filter uses the current value and a 

previous measurement, so the input of the subsystem will 

be the estimation of the current position of the camera and 

the previous position of the camera (Figure 12).  

 
Figure 12. Subsystem for estimation improvement 

As the model is formed in the discrete domain, the 

movement of the object is modeled by approximating the 

velocity and the acceleration by the difference equation I, 

wherein the time interval T equals time step, or T = 1. 

 

𝑣[𝑛] =
𝑥[𝑛] − 𝑥[𝑛 − 1]

𝑇
                           (4) 

𝑎[𝑛] =
𝑣[𝑛] − 𝑣[𝑛 − 1]

𝑇
=

𝑥[𝑛] − 2𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]

𝑇
  (5) 

If equations above are included in the approximation of 

Newton's laws of motion in a discrete domain, the 

following expression is given: 

𝑥[𝑛 + 1] = 𝑥[𝑛] + 𝑣[𝑛] ∙ 𝑇 + 𝑎[𝑛] ∙
𝑇2

2
             (6) 

Based on these equations, the model of the Kalman filter 

used in the system is formed. 

2.7. Subsystem for movement map creation 

 The task of this subsystem is the mapping of the 

camera odometry in the corresponding metric system. An 

input of this subsystem is just the new camera position, 

which will be added to the map, as shown on Figure 13. 

 
Figure 13. Subsystem for movement map creation 

 This system measures the distance in meters, so that this 

subsystem is able to switch metrics from pixels to meters 

before the drawing of the path is performed. To make 

something like this possible, several assumptions were 

introduced. The camera is fixed at a height h which is not 

changeable. This way, the width and height of the field of 

view that the camera covers can be measured, and this 

enables easy calculation of the length of any line in that 

plane. The width and height in pixels corresponds to a 

resolution in which the video content is recorded, and the 

width and height in meters is experimentally determined 

by measuring, after the camera is fixed to a suitable height 

h. 

III. SYSTEM VERIFICATION 

Verification of the accuracy of the system is done by 

empirical methods by analyzing plotted trajectory, while 

the performance verification is done experimentally. 

System performance was analyzed on machines with a 

single-core, and quad-code processors of the latest 

generation. For high-definition video, system reached 12 

and 9 processed frames per second, depending on the 

machine. For video format with a resolution of 640x480, 

processing of 28 and 26 frames per second is achieved, 

which is enough to operate in real time. The accuracy of 

the system is satisfactory if the trajectory of the camera is 

longer. When turning the supporting structure of the 

system in a small area, a loss of short rotation vectors after 

RANSAC filtering happen and the resultant angle is not 

good (camera rotation around one of its corners) - Figure 

14a. If steering relies only on the translational movement, 

without rotation of the camera, results are good - Figure 

14b. 

 
Figure 14. Resulting and expected trajectories in the case of the rotation 

around camera edge and translationar movement 

IV. CONCLUSION 

Based on the system verification, empirical methods 

show that it is operating well in a partially controlled 

conditions. If the camera rotation angle is too sharp on a 

small moving distance, there is a loss of some rotation 

vectors and the noise appears in the resultant trajectory. In 

order to avoid such a case, the camera may not be rotated 

around one of its corners. Steering should be performed by 

the translation of the supporting structure, for example 

vehicle, not by direct camera rotation. Further directions 

of development would involve the introduction of cheap 

sensors, which could follow the direction of the camera 

without relying solely on the analysis of the optical flow, 

and the camera wouldn’t have to be fixed at a certain 

height in order to measure the length of distance traveled. 

The system would be more accurate because it would have 

two types of measurements - the measurements from the 

sensors and optical flow measurements. At the same time, 

system should be working faster because computationally 

demanding analysis of the optical flow could be simplified, 

but the cost of the system would be higher. In the approach 

used in this paper, system has a higher software 

complexity but it’s cheaper and doesn’t require any 

additional equipment besides one video camera and a 

computer. 
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