
Suitability of Data Flow Computing for
Number Sorting

Anton Kos
Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Tržaška 25, 1000 Ljubljana, Slovenia
anton.kos@fe.uni-lj.si

Abstract—In this paper we study the suitability of data flow
computing for number sorting. We briefly present and
discuss the properties of sequential, parallel, and network
sorting algorithms. The major part of this study is dedicated
to the comparison of the most important network sorting
algorithms and to the most used sequential and parallel
sorting algorithms. We present the effects of sorting
algorithm parallelization and further discuss its impact on
sorting algorithms implementation on control flow and data
flow computers. The obtained test results clearly show that
under certain limitations, when measuring the time needed
to sort an array of numbers, data flow computers can
greatly outperform control flow computers. By finding
solutions to current problems of data flow sorting
implementation, important improvements to many
applications that need sorting would be possible.

I. INTRODUCTION
Sorting is one of the most important computer

operations. Therefore, a constant quest for better sorting
algorithms and their practical implementations is
necessary. Sorting is also an indispensable part of many
applications, often concealed from user. One of many
such examples is searching for information on the
Internet. Most common, search algorithms work with
sorted data and search results are presented as an ordered
list of items matching the search criteria [3].

To date most computer systems use well studied
comparison based sequential sorting algorithms [2] that
have practically reached their theoretical boundaries.
Speedups are possible with parallel processing and the use
of parallel sorting algorithms.

We can achieve parallelization through the use of multi-
core or many-core systems that can speed up the sorting in
the order proportional to the number of cores. Recently a
new paradigm called data flow computing re-emerged. It
offers immense parallelism by utilizing thousands of tiny
simple computational elements, improving the
performance by orders of magnitude.

The motivation of this paper is to investigate the
possibilities of using the data flow computing paradigm
for sorting algorithms and their implementation on a data
flow computer. We have the possibility to work with the
Maxeler MAX2 data flow computer system on which we
have carried out all our tests.

II. SORTING ALGORITHMS
Sorting algorithms can be classified on different

criteria, such as computational complexity, memory
usage, stability, general sorting method, and whether or
not they are comparison sorting [5].We will concentrate

only on the group of comparison based sorting algorithms.
All of the most popular sorting algorithms, as well as
network sorting algorithms, are members of this group.

Comparison based sorting algorithms examine the data
by repeatedly comparing two elements from the unsorted
list with a comparison operator, which defines their order
in the final sorted list. In this paper we divide comparison
based sorting algorithms into three groups based on the
time order of the execution of compare operations:
sequential sorting algorithms execute the comparison
operations in succession, one after another, parallel
sorting algorithms execute a number of comparison
operations at the same time, network sorting algorithms
are essentially parallel algorithms; they have the property
that the sequence of comparison operations is the same for
all possible input data.

A particular comparison based sorting algorithm can
have one or more versions belonging to one or more of the
above listed groups. For instance, merge sort can be
executed sequentially, it has its parallel version, and it can
be implemented as a network sorting algorithm.

A. Sequential Sorting
It has been proven [1] that comparison based sequential

sorting algorithms require at least the time proportional to
 on average, where is the number of items
to be sorted. Properties of some of the most used
comparison based sorting algorithms are listed in Table I.

TABLE I
PROPERTIES OF THE MOST POPULAR COMPARISON BASED SORTING ALG.

Algorithm

Sorting time – O(x) notation
Average Best Worst

Insertion
Selection
Bubble
Quicksort
Merge
Heap

It can be seen that the average, the best, and the worst

sorting times vary considerably among algorithms.
Especially the best sorting time is heavily dependent on
the configuration of input data. For instance, insertion sort
has the average and the worst sorting time of , but
with the nearly sorted input data it needs only
operations, where is the number of needed inversions.
On the other hand, quick sort has the average and the best
sorting time of , but in some special cases it
has problems with the nearly sorted input data, where it
has the worst sorting time of [3].

Page 293 of 478

ICIST 2014 - Vol. 2 Poster papers

While on average, the best choice are Quicksort, Merge
sort, Heap sort, and Binary tree sort, one would like to
avoid Quicksort as its worst sorting time in some rare
cases can reach . On the other hand, if the
configuration of data is expected to be favourable (nearly
sorted, for instance), the best choice could be one of the
algorithms with sorting time that is linearly proportional to
 (Insertion, Bubble, Binary tree, and Shell sort). We see
that the choice of the best sorting algorithm is not at all an
easy task and depends on the expected input data size and
configuration.

B. Parallel Sorting
Parallelization of sorting algorithms can be

implemented by using multi-core and many-core
processors [6]. Generally the term multi-core is used for
processors with up to twenty cores and the term many-
core for processors with a few tens or even hundreds of
cores. In most practical cases this approach is not optimal,
as for a true parallel sorting, such a system would need the
number of cores in the order of number of items to be
sorted (). In many applications grows into thousands,
millions and more.

Comparison based sorting algorithms are
computationally undemanding as the computational
operations are simple comparisons between two items. To
sort a set of items, we would need a set of /2 very
basic computational cores primarily designed to perform
the mathematical operation of comparison. In addition to
that, such computational cores would need some control
logic in order to execute a specific sort algorithm.

Data flow computing is a good match for parallel
sorting algorithms because of its possibility of executing
many thousands of operations in parallel, each of them
inside a simple computational core. The only limitation is
the absence of control over the sorting process in
dependence of intermediate results, meaning that the
sequence of operations of the sorting process must be
defined in advance. This fact prevents the direct use of
sorting algorithms from Table I as they are designed for
control flow computers; hence they determine the order of
item comparisons based on the results of previous
comparisons. The possible solution is the adaptation of
those sorting algorithms in a way that ensures their
conformance to data flow principles. For instance, if we
can assure that the parallel sorting algorithm can be
modeled as a directed graph, then the sorting process
conforms to the data flow paradigm.

C. Network Sorting
Network sorting algorithms are parallel sorting

algorithms with a fixed structure. Many network sorting
algorithms have evolved from the parallel versions of
comparison based sorting algorithms and they use the
same sorting methods like insertion, selection, merging,
etc. Sorting networks structure must form a directed
graph, which ensures the output is always sorted,
regardless of the configuration of the input data. Because
of this constraint, network sorting algorithms that are
derived from parallel sorting algorithms will in general
perform some redundant operations. This makes them
inferior to their originating parallel sorting algorithms in
the number of operations (comparisons) that they must
perform.

Sorting networks are the implementations of network
sorting algorithms and they consist only of comparators
and wires. Sorting networks can be described by two
properties: the depth and the size. The size is defined as
the total number of comparators it contains. The depth is
defined as the maximum number of comparators along
any valid path from any input to any output [2].

By inspecting the properties of network sorting
algorithms in Table II, we can conclude that Bubble
network sorting is inferior to the others in both properties.
While the size of the Bitonic network is larger than the
size of Odd-even merge network, its constant number of
comparators at each stage can be an advantage in certain
applications. If the later is not important, then the best
choice would be the use of an Odd-even sorting network.

TABLE II
PROPERTIES OF SOME NETWORK SORTING ALGORITHMS.

Sorting
network

Depth Size

Bubble

Bitonic

Odd-even
merge

Assuming that all the comparisons on each level of the

sorting network are done in parallel, its depth defines the
number of steps needed to sort numbers on the inputs
and thus defines the time needed to sort the input. The size
of the sorting network tell us how many comparison is
needed, hence how many comparators we need to
construct a sorting network. For instance, in hardware
implementations the size defines the required chip area.

III. NETWORK SORTING VS. SEQUENTIAL AND
PARALLEL SORTING

Theoretically the number of sequential operations or
comparisons for Quicksort sorting algorithm is in the
order of and for the network version of the
Bitonic or Odd-even merge sorting in the order of
 [1]-[4]; i.e. theoretically, Quicksort is
better than Bitonic merge algorithm by a factor of .
This statement is true when we disregard the influence of
sorting algorithm constants.

A. Sorting Algorithm Constants
Considering the algorithm constants, the number of

operations for Quicksort algorithm is in the order of
 and for the Bitonic merge algorithm
in the order of ; what gives us the
ratio of or , where algorithm
constants ratio is defined as . We expect,
that for the discussed sorting algorithm pair, .

Network sorting algorithms conform to the data flow
paradigm, they have practically no computational
overhead (they have no need for process control);
therefore the Bitonic merge network sorting has a small
constant . On the other hand Quicksort decisions
depend heavily on the results of previous operations and
hence Quicksort has a large algorithm constant .

Page 294 of 478

ICIST 2014 - Vol. 2 Poster papers

For small values, where , Quicksort
algorithm should be slower than Bitonic algorithm and for
large values, where , Quicksort algorithm
should become faster. To prove our assumptions we have
run a series of tests where we measured the sorting times
of the Quicksort algorithm and the network version of the
Bitonic merge sorting algorithm. All results for both
algorithms, presented in Figure 1, were obtained by
sequential computation (no parallelism is employed) on
the PC using algorithms written in C code. We can
observe, that sorting time curves cross at approximately
 . Below that number the sequential version of
Bitonic network sorting is faster than Quicksort and the
opposite above that number.

Figure 1. Comparison of sorting times for Quicksort and Bitonic

Mergesort network algorithm in dependence on the number of items
being sorted ().

Figure 2. Comparison of the average sorting times between the

popular sequential sorting algorithms (solid lines) and network sorting
algorithms (dashed lines).

After we have proved, that algorithm constants for
network sorting algorithms can be considerably smaller
that the constants of sequential sorting algorithms, we
have conducted similar tests and comparisons for the most
popular sequential sorting algorithms and the most
popular network sorting algorithms. The results are shown
in Figure 2. Let us emphasize again that all the results for
all algorithms are obtained by the sequential computation
on a PC using C code. We can see that for the smallest
values of network sorting algorithms outperform any
sequential sorting algorithms. When grows, the higher
order of computational complexity of network algorithms

prevails over algorithm constants and sequential
algorithms become faster.

B. Parallelization
Despite the encouraging results from Figure 2, the

following question remains: “Can we expect, that for any
larger values of , network sorting would outperform
sequential comparison based sorting?” Even if we exploit
parallelism, wouldn’t it decrease the computational time
by the same factor for all algorithms (parallel execution of
sequential algorithms and parallel execution of network
algorithms), and the performance ratio would stay the
same? The answer lies in the change of computational
paradigm and moving to the domain of data flow
computing. Let us illustrate that through an example.

TABLE III
PARALLELIZATION OF SORTING ALGORITHMS

Measure

Values for the best algorithm of type
(expressions given in O(x) notation)

Parallel (N) Parallel (P) Network
Comparisons

Sorting time

For a true parallel execution of a sorting algorithm we
need computational cores. With that ensured,
sorting times for such a parallel algorithm are in the order
of for classical algorithms and
for network algorithms. Let us assume that the best
parallel control flow system has a maximum of
computational cores. Eventually, with the growing , we
will get to the point where and sorting times of
classical parallel algorithms will be in the order
 ; again growing faster than linearly and
not truly parallel. Since that is not desirable, the sorting
should move to the data flow computers that can ensure
enough cores for a true parallel execution.

Figure 3. Expected sorting times for the algorithms from Table III.

Sorting time is given in cycles (time to do one comparison) needed to
sort an array of N items.

Number of comparisons and sorting times for different
implementations of sorting algorithms and different
degree of parallelization are listed in Table III. For the
sequential algorithms the sorting time is proportional to

100

1000

10000

100000

1000000

16 64 256 1024 4096 16384

QuickSort

Bitonic

0,000

0,005

0,010

0,015

0,020

8 16 32 64 128

N

Bitonic

Bubble

OddEvenMerge

QuickSort

BubbleSort

HeapSort

MergeSort

1

10

100

1000

10000

0 200 400 600 800 1000

So
rt

in
g

ti
m

e

N

Sequential
Network
Parallel (N)
Parallel (P=4)
Parallel (P=8)
Parallel (P=16)
Parallel (P=32)

Page 295 of 478

ICIST 2014 - Vol. 2 Poster papers

the number of comparisons. With parallel algorithms we
execute (true parallel) or (near parallel) comparisons
at the same time and sorting times are for the
corresponding factor smaller. Network algorithms execute
all the comparisons of each step in parallel.

In Figure 3 we plot the expected sorting times for the
algorithms from Table III without the consideration of the
algorithm constant . The curves show, that when
grows, the true parallel sorting algorithm is superior to all
of them, followed by the network sorting algorithm and
the near parallel sorting algorithm. The sequential sorting
algorithm is the slowest.

C. Control Flow vs Data Flow Computers
Based on the results in Figure 3, we can state that in a

control flow computer, true parallel sorting algorithm is
clearly the first choice. But if we move to a data flow
computer, things change considerably. In a data flow
computer data flows between operations organized as a
directed graph. In the case of network sorting algorithms,
the sorting network structure is a directed acyclic graph
with comparators organized to sort the input array of
values.

When we sort one array, the sorting time is directly
proportional to the depth of the sorting network and in
each cycle only one layer of comparators is active, the
other stay idle. One cycle is defined as time needed to do
one comparison step. One layer of comparators represents
all comparators of one step of the sorting algorithm. Such
a sorting scenario is more suitable for control flow
computers. Data flow computers are designed for data
flows or data streams, in the case of sorting, that would be
a stream of arrays of values to sort.

For instance, if we have ararys of values to be
sorted, we can send them to the sorting network one after
another. Arrays enter the sorting network in one cycle
intervals. Similarly, after the first array is sorted on the
output, the subsequent arrays exit the sorting network in a
one cycle intervals. Each step of the algorithm operates on
a different array. When reaches the depth of the sorting
network, all comparators of the network are active. In
such scenario the sorting time for the first array is in the
order of , all the rest follow in one cycle
intervals and their sorting time is essentially in the order
of .

Comparing the sorting of ararys of values on a
data flow computer (sorting network) and on a control
flow computer (true parallel sorting) gives us interesting
results. The sorting time for the control flow computer
with the true parallel operation is in the order of
 and for the data flow computer with sorting
network in the order of . When
 both sorting times are comparable, but when
 , network sorting on a data flow computer
becomes much faster.

The conclusion of this consideration is that for small
and small , the best choice is parallel sorting algorithm
on a control flow computer, for large and small data
flow computer will always perform better, for large and
small control flow computer will always perform
better, when both and are large, we can not be
conclusive because much depends on the ratio .

D. Experimental Results
To demonstrate the validity of the above conclusions,

we have devised a number of tests on a control flow
computer (PC) and on a data flow computer (Maxeler
MAX2 card). Figure 4 shows the speedup in sorting times.
The speedup is the ratio between sorting times on a PC
and sorting times on a MAX2 card. We can see that with
the growing number of arrays (), the speedup becomes
higher, what confirms our assumptions and we can state,
that under certain conditions, data flow computing is
suitable for number sorting and outperforms control flow
computing.

Figure 4. The sorting speedup for arrays of size in

dependence from the stream size .

CONCLUSION
Not all algorithms are suitable for data flow computing.

In this paper we show that number sorting is suitable for
implementation on data flow computers and can, under
certain conditions, greatly outperform the control flow
computers. There is a lot of work still to be done. One of
the main obstacles to date is the small array sizes that can
be implemented on data flow computers. We expect that
with the advances in data flow computers. By finding
solutions to the above and other problems and obstacles,
serious improvements to many applications that need
sorting, would be possible.

REFERENCES
[1] Donald E. Knuth, “The art of computer programming. Vol. 3,

Sorting and searching”, Addison-Wesley, 2002
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Clifford Stein, “Introduction to Algorithms, Second Edition”,
Cambridge (Massachusetts), London, The MIT Press, cop. 2009

[3] Robert Sedgewick, “Algorithms in Java, Third Edition, Parts 1-4”,
Addison-Wesley, 2010

[4] K.E. Batcher, “Sorting networks and their applications”,
Proceedings of the AFIPS Spring Joint Computer Conference 32,
307–314, 1968

[5] “Sorting Algorithm”,
http://en.wikipedia.org/wiki/Sorting_algorithm,
accessed 20.1.2014

[6] “Parallel computing”,
http://en.wikipedia.org/wiki/Parallel_computing,
accessed 20.1.2014

[7] “Sorting Network”, http://en.wikipedia.org/wiki/Sorting_network,
accessed 20.1.2014

[8] Nadathur Satish, Mark Harris, Michael Garland, “Designing
Efficient Sorting Algorithms for Manycore GPUs”, IEEE,
International Symposium on Parallel & Distributed Processing,
2009

[9] http://www.maxeler.com/technology/dataflow-computing,
accessed 27.4.2013

0

5

10

15

20

1 10 100 1000 10000 100000 1000000
M

Page 296 of 478

ICIST 2014 - Vol. 2 Poster papers

http://en.wikipedia.org/wiki/Sorting_network

	Vol. 2
	Computing
	1. Suitability of Data Flow Computing for Number Sorting

