
An Approach to Consolidation of Database
Check Constraints

Nikola Obrenović*, Ivan Luković**
* Schneider Electric DMS NS Llc., Novi Sad, Serbia

** Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
nikola.obrenovic@schneider-electric-dms.com, ivan@uns.ac.rs

Abstract—Independent modeling of parts of an information
system, and consequently database subschemas, may result
in conflicts between the integrated database schema and the
modeled subschemas. In our previous work, we have
presented criteria and algorithms for resolving such
conflicts and a consolidation of a database subschema with
the database schema with respect to various database
concepts, e.g. domains, relation schemes, primary key
constraints, etc. In this paper we present an approach and
new algorithms for identification of conflicts and subschema
consolidation against check constraints.

I. INTRODUCTION

Modeling of relational database schemas can be
performed in two ways: 1) directly, by having the entire
database schema modeled at once, and 2) part-by-part, by
modeling independently parts of database schema, i.e.
subschemas. When the schema is modeled part-by-part,
the created subschemas need to be integrated into a
unified database schema.

Our previous work advocates that an Information
System (IS), including a relational database schema as its
underlying foundation, should not be designed directly.
Designing the whole IS at once can easily overcome
designer’s capabilities and result with a model of poor
quality ([1, 2]). Therefore, we have developed a
methodology for a gradual development of a database
schema ([1, 3]), followed by a tool supporting the
methodology, named Integrated Information Systems
CASE or IIS*Case for short. In IIS*Case, designers
specify models of isolated parts of an IS, i.e. information
subsystems, in an independent way, by using a platform-
independent model (PIM) of form types ([1, 4]). A form
type concept is an abstraction of screen forms or
documents that users utilize to communicate with the IS.
By specifying form types of an information subsystem,
designers also specify a database subschema with its
constraints, as it is presented in [1, 4].

By applying a number of algorithms, IIS*Case
transforms a set of form types into a relational database
schema. The formal description of the transformations is
out of the scope of this paper and can be found in [4, 5, 1].
Thereby, a database subschema is obtained from the set of
form types specified at the level of an information
subsystem. Similarly, the database schema of the whole IS
is derived from the union of form types of all information
subsystems.

In [2], it is shown that each database subschema must
be formally consolidated with the integrated schema, in
order to obtain a valid specification and implementation of

an IS. A subschema is formally consolidated with its
schema if each its concept, such as domain, attribute,
relational scheme or constraint, is consolidated with the
appropriate concept of the schema. Also in [2], the author
presents algorithms for checking consolidation of
subschemas with the schema with respect to domains,
relational schemes, primary keys, uniqueness constraints,
referential integrity and inverse referential integrity
constraints. The proposed algorithms are also
implemented in IIS*Case.

This paper extends our previous work with an algorithm
for consolidation of subschemas with respect to check
constraints. So as to provide consolidation test, we need to
find a solution to the implication problem for two check
constraints, i.e. how to detect if one check constraint is a
logical consequence of the other one. However, the nature
of check constraints is different from other types of
database constraints, since they represent complex logical
expressions. Consequently, a test of logical consequence
of check constraints requires different methods than those
used for other types of database constraints, such as
functional dependencies and keys. Therefore, another goal
of this work is to formulate the appropriate method for a
test of logical consequence of check constraints.

Beside the Introduction and Conclusion, this paper
consists of four sections. The related work is presented in
Section 2. In Section 3, we present the algorithm for
subschema consolidation with respect to check constraints
only. The method for testing implication of two check
constraints is presented in Section 4. In Section 5, some
details of the algorithm implementation are discussed.

II. RELATED WORK

In [6], the authors have presented an overview of
methodologies and techniques for integration of
independently modeled relational database subschemas
and detection of conflicts between the subschemas. By
that, at least one of the presented methodologies
addresses conflicts at the level of attribute naming,
domains, cardinalities, primary keys or entity usage.
However, none of the methodologies considers conflicts
between check constraints. Furthermore, to the best of
our knowledge, such a methodology has not been defined
yet.

Also in [6], the authors concluded that the most of
surveyed methodologies propose general guidelines for
subschema integration, but they lack an algorithmic
specification of integration steps. On the other hand, we
propose the subschema integration which is formally
defined and implemented in IIS*Case.

Page 210 of 478

ICIST 2014 - Vol. 1 Regular papers

III. CONSOLIDATION OF CHECK CONSTRAINTS

In IIS*Case, check constraints can be modeled at the
level of domain, attribute or component type, which is a
logical part of a form type ([7]). When check constraints
are transformed from the model of form types into the
relational model, they become check constraints at the
level of domain, attribute or a set of relational schemes,
respectively ([8]).

The concepts of domain and attribute are modeled in
the scope of entire IS, i.e. a domain or attribute inherits the
same definition in each information subsystem as it is
defined in the scope of the IS. Consequently, a check
constraint at the level of a domain or attribute in a
database subschema is identical to the check constraint at
the level of the same domain or attribute in the database
schema.

On the other hand, a component type check constraint is
modeled in the scope of an information subsystem. A
database subschema is a result of transformation of form
types that represent one information subsystem. Likewise,
a relational database schema is obtained by transforming
the union of all information subsystem specifications into
the relational data model. Therefore, after transformations,
a component type check constraint exists both in the
database schema and in the appropriate database
subschema.

Two or more information subsystems can contain
model of the same data, each of them from its own point
of view. Consequently, two information subsystems can
impose different constraints over the same set of data. In
other words, two check constraints from different
information subsystems may refer to the overlapping sets
of relation schemes of database schema, which is
illustrated in Example 1.

Example 1. Let us consider two form types
UNIVERSITY ORGANIZATION (Figure 1) and
FACULTY ORGANIZATION (Figure 2) which belong to
different information subsystems of a university IS. The
form type UNIVERSITY ORGANIZATION is used for
manipulation of information about faculties and their
respective departments at the level of the whole
university. On the other hand, the form type FACULTY
ORGANIZATION is used at the faculty level for
manipulating data about faculty departments.

Figure 1. UNIVERSITY ORGANIZATION form type.

Figure 2. FACULTY ORGANIZATION form type

Form type UNIVERSITY ORGANIZATION consists
of three component types: UNIVERSITY, FACULTY and
DEPARTMENT, used for viewing and manipulating data
about the university, faculties and the belonging
departments, respectively. In order to control budget
levels of the faculties and departments, the following
check constraint is modeled in the DEPARTMENT
component type:

DepBudget > DepResearchBudget AND
DepResearchBudget > DepConfBudget.

Form type FACULTY ORGANIZATION consists of
the same two component types FACULTY and
DEPARTMENT. However, component type FACULTY
is used only for viewing existing faculties, while
DEPARTMENT is also used for insert, update and delete
operations. This information subsystem might be designed
by another designer, whose point of interest differs from
the first one. Therefore, he or she could model a different
check constraint over DEPARTMENT component type:

DepBudget > DepConfBudget.
Form types UNIVERSITY ORGANIZATION and

FACULTY ORGANIZATION are transformed into the
following set of relation schemes given in the form
N(R,K), where N is the name of the relation scheme, R is
the set of attributes and K is the set of keys:
• University({UniId, UniName, UniShortName},

{UniId});
• Faculty({FacId, FacName, FacShortName, Dean,

FacBudget, UniId},{FacId}); and
• Department ({FacId, DepId, DepName, DepBudget,

DepResearchBudget, DepConfBudget, UniId},
{FacId+DepId}).

Thereby, relation scheme Department inherits check
constraints from both component types. �

With respect to all constraints, a subschema is
consolidated with its schema iff for each schema
constraint of interest, there is an equally strong or stronger
constraint in the subschema ([2]). Thereby, a schema
constraint is of interest if it affects data modeled through
the observed subschema.

Hence, for each check constraint in the schema, the
consolidation algorithm first determines the information
subsystems, i.e. their database subschemas, which the
observed check constraint is of interest for. In the
following text, we denote these subschemas as the
corresponding subschemas. Further, in each of the
corresponding subschemas, the algorithm checks if there

FacId, FacName

r FACULTY

DepId, DepName, DepBudget, DepResearchBudget,
DepConfBudget

r,i,u,d DEPARTMENT

FacId, FacName, FacShortName, Dean, FacBudget

r,i,u,d FACULTY

DepId, DepName, DepBudget, DepResearchBudget,
DepConfBudget

r,i,u,d DEPARTMENT

UniId, UniName, UniShortName

r UNIVERSITY

Page 211 of 478

ICIST 2014 - Vol. 1 Regular papers

PROCESS CheckCheckConstraints(I(S, ICC, SISUB),
O(Ind, Report),
IO ())

SET Report ¬ ∅
SET Ind ¬ True
DO CheckEachCheckConstraint (∀iS ∈ ICC)
 DO CheckEachSubschema (∀(Si, I i) ∈ SISUB)
 IF Attr(iS) ∩ Attr(Si) ≠ ∅ THEN
 IF Attr(iS) ⊆ Attr(Si) THEN
 SET Found ¬ False
 DO CheckSubschemaConstraints (∀iSS ∈ I i)
 IF iSS ⇒ iS THEN
 SET Found ¬ True

 BREAK
 END IF
 END DO
 IF Found = False THEN
 SET Ind ¬ False
 SET Report ¬ Report ∪ (Si, iS)
 END IF
 ELSE
 SET Ind ¬ False
 SET Report ¬ Report ∪ (Si, iS)
 END IF
 END DO
 END DO

END PROCESS

Figure 3. Algorithm for subschema consolidation with respect to
check constraints

is a check constraint equally strong or stronger than the
schema check constraint. If this condition is satisfied for
each schema check constraint, database subschemas are
consolidated with the schema with respect to check
constraints. The pseudo code of the algorithm is given in
Figure 3.

In the pseudo-code, the following notions are used:

• S – a set of relation schemes of the database schema;

• ICC – a set of check constraints of the database
schema;

• SISUB – a set of pairs (Si, I i), where Si denotes set of
relation schemes of subschema i, while I i denotes set
of check constraints of the subschema i;

• Attr – a function that returns set of attributes
referenced by its argument, e.g. a subschema or a
check constraint;

• Report – set of pairs (Si, iS) where iS is the schema
check constraint which makes subschema Si
unconsolidated with the database schema; and

• Ind – a Boolean indicator stating whether all
subschemas are consolidated with the database
schema with respect to check constraints.

Proving the implication between check constraints is
the essential part of the consolidation algorithm, and it is
presented in the following section.

IV. IMPLICATION PROBLEM OF CHECK CONSTRAINTS

As it is presented in the consolidation algorithm, in
order to check consolidation between a database
subschema and a database schema, we need to be able to
determine whether a subschema check constraint implies
the corresponding schema check constraint, i.e. we
evaluate validity of the formula:
(1) iSS ⇒ iS,
where iSS is a subschema check constraint and iS is the
corresponding schema check constraint. In the further text,
we denote formula (1) also as the check constraint
implication formula.

The body of a check constraint is a logical expression.
Its interpretation, i.e. evaluation, is a three-state Boolean
function which evaluates to true, false or unknown. Its
result determines whether a tuple satisfies (true), violates
(false) or neither satisfies nor violates the constraint
(unknown). For the sake of simplicity, the term check
constraint is further also used to denote the logical
expression of the constraint.

In the further text, it is assumed that all check constraints
are given in the conjunctive normal form (CNF):

(2) ()im

i
l∨ =

∧
1

,

where each l i represents an atomic logical expression,
denoted as literal. The transformation of a logical formula
into its CNF is described thoroughly in [9].

The literals of check constraints usually are not just
Boolean variables or predicates. Instead, they are often
expressions of various types: from integer and real, linear or
non-linear arithmetic or over date, string or set types. The
formal definition of a check constraint logical expression,
which determines all possible literals, may be found in [7].

Example 2. The following expressions may represent
check constraint literals:

• A > 0;
• 0.3*A + B > 15;
• DOB > ToDate(‘1900-01-01’);
• SURNAME LIKE “JOHN%”; or
• X IN [1,2,3,5,7,11],

where A, B, DOB, SURNAME and X are database schema
attributes defined over some domains, i.e. data types. �

Since logical expressions of check constraints normally
comprise sub-expressions of various types, they are more
complex in regard to the implication problem test than
database constraints of many other types. Let us observe the
following examples. Key is a typical database constraint,
formalized just with a single Boolean predicate, Key(N, X),
where N is the name of the relation scheme and X is a set of
attributes, while functional dependency is a single Boolean
predicate of the form X→Y, where X and Y are attribute
sets ([2]). Consequently, testing the implication of functional
dependencies is a deterministic problem, for which we have
the appropriate polynomial algorithm that do not consider
domains of attributes in any way. On the contrary, testing
the implication of check constraints is, in its general case,
more complex problem, since any algorithm for this purpose
needs to consider the properties, relations and operations
over domains associated to all attributes included in the
constraint.

Page 212 of 478

ICIST 2014 - Vol. 1 Regular papers

Proving validity of logical formula (1), where each
literal is a proposition, i.e. a Boolean variable, or a
Boolean predicate, is a kind of a Boolean satisfiability
problem (SAT problem, [10]). This class of problems
belongs to the automated theorem proving problems and
there is a vast number for algorithms and tools named
SAT solvers intended for its solving ([11]).

However, an application of SAT solving techniques for
proving (1) would imply that each check constraint literal
is treated without taking its actual meaning into account.
Also, the relations between different literals, which can be
derived from the meaning, would be disregarded, as it is
illustrated by the following example.

Example 3. In Example 1, two check constraints are
introduced:

i1: DepBudget > DepResearchBudget AND
DepResearchBudget > DepConfBudget

and
i2: DepBudget > DepConfBudget.

These check constraints contain the following literals:
• l1: DepBudget > DepResearchBudget;
• l2: DepResearchBudget > DepConfBudget; and

• l3: DepBudget > DepConfBudget.
Let us further assume that i1 is a subschema check

constraint and i2 is its corresponding schema check
constraint.

By taking into account the transitivity property of the
operator greater than over integer or real variables, one
can infer the following relation between the
abovementioned literals:

l1 ∧ l2 ⇒ l3.
On the other hand, a SAT solver would treat the

operator greater than only as an uninterpreted two-
argument Boolean predicate and could not infer any
relation between the literals. Consequently, a SAT solver
could not infer that i1 implies i2, i.e. that the subschema is
consolidated with the schema with respect to check
constraints i1 and i2. �

Therefore, in order to prove validity of (1), we also
need to interpret the semantics of check constraint literals,
which a pure SAT solver is not capable of. This
disadvantage of SAT solvers initialized development of
another research field named Satisfiability Modulo Theory
(SMT, [11, 12]). SMT algorithms represent extensions of
SAT algorithms with the knowledge and capability to
reason over additional theories of interest, such as: linear
arithmetic over integer or real numbers, non-linear
arithmetic’s over real numbers, theory of uninterpreted
functions, theory of arrays, bit-vector theory, etc. By the
SMT terminology, such theory is referred to as the
background theory, while the reasoning methods deployed
inside a theory are named the decisions procedures. In
analogy to SAT solvers, software tools implementing
SMT algorithms are named SMT solvers.

All SMT solvers provide checking the satisfiability of a
logical formula and have an explicit command for this
purpose. On the other hand, most available SMT solvers
do not provide an explicit command for proving the
validity of a logical formula. However, validity proof of a
logical formula is a dual problem to proving its
satisfiability ([13]). That is, we can prove that a logical
formula is valid by proving that the formula’s negation

cannot be satisfied. By using this approach, we prove
validity of (1) and consequently prove logical implication
of check constraints.

V. INTEGRATION OF IIS*CASE AND SMT SOLVERS

In order to test subschema consolidation, a SMT solver
is integrated into IIS*Case in the following manner.

The specification of the negation of (1) is first
transformed into the form and language required by the
SMT solver and written into an input file for the SMT
solver. With the input file, IIS*Case executes the SMT
solver as an external process, which tries to prove the
satisfiability of the input formula.

Further, the SMT solver creates an output file with the
result of the satisfiability check, which is parsed by
IIS*Case. If the satisfiability check fails, the check
constraint implication formula is valid.

The creation of the input file for SMT solver consists of
the following steps:
1. Transformation of the negation of (1) into CNF;
2. Preprocessing the negation of (1) in order to remove

expressions not supported by the SMT solver; and
3. Transformation of the negation of (1) into the

language understandable by the SMT solver.
All of these steps are further described in the subsequent

subsections.

A. Transformation of The Check Constraint Implication
Formula’s Negation into CNF

To the best of our knowledge, all SMT solvers require
processed formulas to be represented as a set of clauses,
where each clause represents a conjunct of the formula’s
CNF.

Therefore, since we need to prove unsatisfiability of the
negation of (1), which is:

(3) ¬ (iSS ⇒ iS),

we need first to transform it into its CNF:

(4) iSS ∧¬iS.

Further, formulas iSS and ¬iS are replaced with their
CNF forms, respectively, in order to obtain the CNF of the
whole (3), i.e. the set of input clauses for a SMT solver.

B. Preprocessing of Check Constraint Implication
Formula’s Negation

The state-of-the-art SMT solvers support a large
number of background theories ([13]). However, to the
best of our knowledge, none of the currently available
SMT solvers supports operations over date, string or set
variables which are allowed in the definition of a check
constraint.

Therefore, in order to use SMT solver for proving
implication of check constraints, the negation of check
constraint implication formula needs to be transformed
into a logical formula that can be interpreted by the SMT
solver, i.e. a formula that does not contain date, string nor
set operations. By that, the resulting formula’s
satisfiability must imply the satisfiability of the original
formula. Additionally, the transformations need to
preserve as much knowledge as possible about original
literals and relations between them. This approach of
preprocessing a logical formula before proving its

Page 213 of 478

ICIST 2014 - Vol. 1 Regular papers

satisfiability is known as the eager strategy for solving
SMT problems ([13]). In this work, we propose the
following transformations of literals that contain date,
string or set operations.

1) Trasformations of Literals Containing Date
Variables

Literals that contain date variables and operations over
dates retain the same operator. On the other hand, date
variables are declared as integer variables and date
constants are converted into number of milliseconds from
January 1st 1970. By this, expressions over date variables
are transformed into expressions from linear arithmetic
over integer numbers.

Example 4. The literal
DOB > ToDate(‘1969-01-01’)

is transformed into
DOB > -31536000000. �

2) Trasformations of Literals Containing String
Variables

Literals containing strings are transformed into Boolean
propositions through the following subsequently executed
steps:
1. Each pair of different literals l i and lj is transformed

into propositions pi and pj, respectively, and the
formula (4) is extended with the conjunct

pi ⇒ pj, i.e., ¬pi ∨ pj,
iff both l i and l j contain operator LIKE and lj can be
inferred from l i according to the following condition.
Literal l j can be inferred from l i iff the following
relation applies between right operand ROi of l i and
right operand ROj of l j. Let si be the array of strings
created by splitting ROi by character ‘%’ and let sik be
the k-th member of that array. Analogously, let us
define sj and sjk for ROj. If arrays si and sj are of the
same length and each sik is a substring of sjk, literal l j
can be inferred from l i.

2. For each pair of literals containing strings, l i and lj, if
they are identical and
2.1. neither of them processed in step 1, they are

transformed into the same proposition pi; or
2.2. one of them is transformed into a proposition pk

in step 1, the other literal is transformed into the
same proposition.

3. Each literal l i containing a string variable and not
processed through steps 2 and 3, becomes a
proposition pi.

Example 5. Let us define the following two check
constraints, each of them containing only one literal:

i1 = l1: NAME LIKE ‘J% DOE’ and
i2 = l2: NAME LIKE ‘JO% DOE’.

Let us further assume that i2 is a subschema check
constraint while i1 is the corresponding schema check
constraint, and that we need to prove validity of
(5) i2 ⇒ i1,
i.e. to prove satisfiability of
(6) l2∧¬l1.

If we split right-hand operands of each literal ik,
k∈{1,2}, over character ‘%’, we obtain the following
arrays:

s1 = {‘J’, ‘ DOE’} and s2 = {‘JO’, ‘ DOE’}.

According to the first abovementioned step, since each
member of s1 is substring of the member of s2 at the same
position, it is concluded that l2 implies l1. Hence, each lk,
k∈{1,2}, is replaced with a proposition pk and (6) is
extended to the following formula:
(7) p2 ∧ ¬p1 ∧ (p2 ⇒ p1).

Since (7) is an unsatisfiable formula, it is concluded that
(5) is valid. �

3) Trasformations of Literals Containing IN
Operators.

Literals containing IN operators are also transformed
into Boolean propositions through the following three
steps, executed in the given order:
1. Each pair of literals l i and lj are transformed into

proposition pi and pj, respectively, and the formula (4)
is extended with the conjunct

pi ⇒ pj, i.e., ¬pi ∨ pj,
iff right operand of l i is a subset of the right operand
of lj.

2. If literals li and l j are identical and
2.1. neither of them processed in step 1, they are

transformed into the same proposition pi; or
2.2. one of them is transformed into a proposition pk

in step 1, the other literal is transformed into the
same proposition.

3. Each literal l i containing a string variable and not
processed through steps 2 and 3, becomes a
proposition pi.

Example 6. Let us observe the following two check
constraint literals, belonging to the same check constraint
implication formula:

l1: X IN [1,3,5,7,9] and l2: X IN [1,5,9].
Since [1,5,9] is a subset of [1,3,5,7,9], the first
transformation step is applied to the two literals, where
each lk, k∈{1,2}, is replaced with a proposition pk, and the
check constraint implication formula is extended with the
conjunct

p2 ⇒ p1.�

C. Transformation of Check Constraint Implication
Formula’s Negation into a SMT Language

Each SMT solver provides an input language for
specifying a SMT problem and interaction with the solver.
Also, a large number of the modern SMT solvers support
the standardized SMT-LIB language ([14]).

As none of the existing SMT solvers can solve all
problems, it is useful to check satisfiability of a logical
formula with more than one solver. Therefore, we
transform check constraints specifications into SMT-LIB
language.

An input SMT-LIB file consists of three sections:
1. declarations of attributes and functions used in the set

of clauses,
2. the set of clauses derived from the negation of the

check constraint implication formula and
3. the command that starts satisfiability check.

Example 7. Let us observe the two check constraints
from Example 1 and test if:

DepBudget > DepResearchBudget AND
DepResearchBudget > DepConfBudget

Page 214 of 478

ICIST 2014 - Vol. 1 Regular papers

implies
DepBudget > DepConfBudget.

For this purpose, a SMT-LIB file is created, with the
specification of the check constraint implication formula’s
negation, as it is presented in Figure 4.

The first file section contains declarations of attributes
referenced in the check constraints, given in the SMT-LIB
syntax.

The second file section contains clauses that correspond
to the negation of the implication formula of the two
check constraints:
• DepBudget > DepResearchBudget;
• DepResearchBudget > DepConfBudget; and
• ¬(DepBudget > DepConfBudget).

In SMT-LIB language, binary operators are given in the
prefix notation.

The last section contains the command “check-sat” that
starts SMT algorithm over clauses given in the previous
file section. �

A detailed description of the SMT-LIB syntax may be
found in [15].

VI. CONCLUSION

In order to maintain consistency and provide correct
manipulation of data through information subsystems, the
database subschemas have to be consolidated with the
integrated schema. From the aspect of check constraints,
consolidation means that each schema constraint that spans
subschema data must have a corresponding subschema
constraint which is equally strong or stronger. In this way, a
subschema check constraint must imply the corresponding
check constraint of the integrated database schema. We
implemented an algorithm for testing check constraints
consolidation and embedded it into IIS*Case tool.

We further concluded that the check constraint
implication problem represents a SMT problem and
consequently, should be solved by utilizing SMT solvers.

We also defined and implemented transformations of
check constraint PIM specifications into the form and
language understandable by SMT solvers. Each SMT solver
can solve a subset of all possible SMT problems, but none of

;declarations section
(declare-fun DepBudget () Real)
(declare-fun DepResearchBudget () Real)
(declare-fun DepConfBudget () Real)

;clauses section
(assert (> DepBudget DepResearchBudget))
(assert (>DepResearchBudget DepConfBudget))
(assert (not(> DepBudget DepConfBudget)))

;command for starting the satisfiability test
(check-sat)

Figure 4. Algorithm for subschema consolidation with respect to
check constraints

them can solve all of them. Therefore, by using the
standardized SMT-LIB language, it is possible to utilize
multiple SMT solvers to check satisfiability of a logical
formula.

As a part of our future work, we will provide
transformations of check constraint specifications into non-
standard SMT languages, e.g. CVC ([16]), in order to extend
the list of SMT solvers which can be integrated with
IIS*Case. Also, we intend to extend one of the existing SMT
solvers with the rules for handling operations with date,
string and set variable, as it is described in Section V.B.

REFERENCES
[1] I. Luković, P. Mogin, J. Pavićević and S. Ristić, “An Approach to

Developing Complex Database Schemas Using Form Types”,
Software: Practice and Experience, vol. 37, no. 15, pp. 1621-1656,
2007.

[2] S. Ristić, “Problem Research of Database Subschemas
Consolidation” (PhD thesis, in Serbian), University of Novi Sad,
Faculty of Economics, Subotica, Serbia, 2003.

[3] I. Luković, S. Ristić, P. Mogin and J. Pavićević, “Database Schema
Integration Process – A Methodology and Aspects of Its Applying”,
Novi Sad Journal of Mathematics, vol. 36, no. 1, pp. 115-150, 2006.

[4] I. Luković, “Automated Generation of Relational Database
Subschemas Using the Form Types” (MSc thesis, in Serbian),
University of Belgrade, Faculty of Electrical Engineering, Belgrade,
Serbia, 1993.

[5] J. Pavićević, “Development of a CASE Tool for Automated Design
and Integration of Database Schemas” (MSc thesis, in Serbian),
University of Montenegro, Faculty of Science, Podgorica,
Montenegro, 2005.

[6] C. Batini, M. Lenzerini, S. B. Navathe, “A Comparative Analysis of
Methodologies for Database Schema Integration”, ACM Computing
Surveys (CSUR), vol. 18, no. 4, pp. 323-364, 1986.

[7] I. Luković, A. Popović, J. Mostić and S. Ristić, “A Tool for
Modeling Form Type Check Constraints and Complex
Functionalities of Business Applications”, Computer Science and
Information Systems (ComSIS), vol. 7, no. 2, pp. 359-385, April
2010.

[8] N. Obrenović, S. Aleksić, A. Popović and I. Luković,
“Transformations of Check Constraint PIM Specifications”,
Computing and Informatics, vol. 31, no. 5, pp. 1045-1079,
December 2012.

[9] E. Mendelson, Introduction to Mathematical Logic, 4th Edition,
Chapman & Hall, London, United Kingdom, 1997.

[10] S. A. Cook, “The complexity of theorem-proving procedures”,
STOC '71 Proceedings of the third annual ACM symposium on
Theory of computing, pp.151–158, New York, USA, 1971.

[11] F. Marić, “Formalization and Implementation of Modern SAT
Solvers”, Journal of Automated Reasoning, vol. 43, no. 1, pp 81-
119, June 2009.

[12] L. de Moura and N. Bjørner, “Satisfiability Modulo Theories: An
Appetizer”, in Formal Methods: Foundations and Applications, pp.
23-36, Springer-Verlag, Berlin, Heidelberg, Germany, 2009.

[13] C. Barrett, R. Sebastiani, S. A. Seshia and C. Tinelli, “Satisfiability
Modulo Theories” (book chapter), in A. Biere, M. Heule, H. Maare
and T. Walsch, “Handbook of Satisfiability“, IOS Press, USA,
February 2009.

[14] D. R. Cok, “The SMT-LIB v2 Language and Tools: A Tutorial”,
available online:
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf,
December 2013.

[15] C, Barrett, A. Stump and C. Tinelli: “The SMT-LIB Standard
Version 2.0”, available online:
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-
r12.09.09.pdf, December 2013.

[16] “CVC4 User Manual”, available online:
http://cvc4.cs.nyu.edu/wiki/User_Manual, December 2013

Page 215 of 478

ICIST 2014 - Vol. 1 Regular papers

	Vol.1
	Software development
	1. An Approach to Consolidation of Database Check Constraints

