ICIST 2014 - Vol. 1 Regular papers

An Approach to Consolidation of Database
Check Constraints

Nikola Obrenow*, Ivan Lukovit™
* Schneider Electric DMS NS Llc., Novi Sad, Serbia
™ Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
nikola.obrenovic@schneider-electric-dms.com, ivan@uns.ac.rs

Abstract—Independent modeling of parts of an information ~ an 1S. A subschema is formally consolidated with its
system, and consequently database subschemas, may resultschema if each its concept, such as domain, attribute,
in conflicts between the integrated database schema and the relational scheme or constraint, is consolidated with the
modeled subschemas. In our previous work, we have appropriate concept of the schema. Also in [2], the author
presented criteria and algorithms for resolving such presents algorithms for checking consolidation of
conflicts and a consolidation of a database subschema with subschemas with the schema with respect to domains,
the database schema with respect to various database relational schemes, primary keys, uniqueness constraints,
concepts, e.g. domains, relation schemes, primary key referential integrity and inverse referential integrity

constraints, etc. In this paper we present an approach and constraints. The proposed algorithms are also
new algorithms for identification of conflicts and subschema jmplemented inlS*Case

consolidation against check constraints. This paper extends our previous work with an algorithm

for consolidation of subschemas with respect to check
. INTRODUCTION constraints. So as to provide consolidation test, we need to
. . find a solution to the implication problem for two check
Modeling of relational database schemas can bggnsiraints, i.e. how to detect if one check constraint is a
performed in two ways: 1) directly, by having the entireioical consequence of the other one. However, the nature
database schema modeled at once, and 2) part-by-partzag check constraints is different from other types of
modeling independently parts of database schema, i§atapase constraints, since they represent complex logical
subschemas. When the schema is modeled part-by-paglnressions. Consequently, a test of logical consequence
the created subschemas need to be integrated intooficheck constraints requires different methods than those
unified database schema. used for other types of database constraints, such as
Our previous work advocates that an Informationfunctional dependencies and keys. Therefore, another goal
System (IS), including a relational database schema as @$ this work is to formulate the appropriate method for a
underlying foundation, should not be designed directlytest of logical consequence of check constraints.
Designing the whole IS at once can easily overcome peside the Introduction and Conclusion, this paper
designer's capabilities and result with a model of pooggnsists of four sections. The related work is presented in
quality ([1, 2]). Therefore, we have developed asection 2. In Section 3, we present the algorithm for
methodology for a gradual development of a databasghschema consolidation with respect to check constraints
schema ([1, 3]), followed by a tool supporting thegny The method for testing implication of two check
methodology, namedintegrated Information Systems qqngiraints is presented in Section 4. In Section 5, some

CASE or liS*Case for short. In lIS*Case designers getails of the algorithm implementation are discussed.
specify models of isolated parts of an IS, i.e. information

subsystems, in an independent way, by using a platform- I
independent model (PIM) of form types ([1, 4]). A form ’)
type concept is an abstraction of screen forms or In [6], the authors have presented an overview of
documents that users utilize to communicate with the Ignethodologies and techniques for integration of
By specifying form types of an information subsystemindependently modeled relational database subschemas
designers also specify a database subschema with #8d detection of conflicts between the subschemas. By
constraints, as it is presented in [1, 4]. that, at least one of the presented methodologies
By applying a number of algorithms|iS*Case addresses conflicts at the level of attribute naming,

transforms a set of form types into a relational databa %TVZ'\?;’ r?g:]%lnc?]‘“?r?:'m%rtlrrrc])%rglok?ey; cggs?dnélrtsy clcj)fl?ligc?.s
schema. The formal description of the transformations i ' 9

out of the scope of this paper and can be found in [4, 5, 1 etween check constraints. Furthermore, to the best of

Thereby, a database subschema is obtained from the se b’f knowledge, such a methodology has not been defined
form types specified at the level of an information”<")
subsystem. Similarly, the database schema of the whole ISAISO in [6], the authors concluded that the most of
is derived from the union of form types of all information surveyed methodologies propose general guidelines for
subsystems. subschema integration, but they lack an algorithmic

In [2], it is shown that each database subschema mugpecification of integration steps. On the other hand, we
be formally consolidated with the integrated schema, iﬁ)r(]z_po?je tr(;e_ Sﬂbschetm(?lgfggratlon which is formally
order to obtain a valid specification and implementation oﬁe ined and impiemente ase

RELATED WORK

Page 210 of 478

ICIST 2014 - Vol. 1 Regular papers

I1l. CONSOLIDATION OFCHECK CONSTRAINTS

In 11IS*Case check constraints can be modeled at the PACULTY | [
level of domain, attribute or component type, which is a
logical part of a form type ([7]). When check constraints
are transformed from the model of form types into the
relational model, they become check constraints at the

Facld FacName

level of domain, attribute or a set of relational schemes DEPARTMENT r,i,u,d
respectively ([8]). \ 4

The concepts of domain and attribute are modeled inl | Depld DepName, DepBudget, DepResearchBudg,
the scope of entire IS, i.e. a domain or attribute inherits thd DepConfBudget
same definition in each information subsystem as it is

defined in the scope of the IS. Consequently, a check
constraint at the level of a domain or attribute in a Figure 2. FACULTY ORGANIZATION form type
database subschema is identical to the check constraint at .

the level of the same domain or attribute in the database FOrm type UNIVERSITY ORGANIZATION consists
schema. of three component types: UNIVERSITY, FACULTY and

DEPARTMENT, used for viewing and manipulating data
bout the university, faculties and the belonging
epartments, respectively. In order to control budget
[fVels of the faculties and departments, the following

On the other hand, a component type check constraint
modeled in the scope of an information subsystem.
database subschema is a result of transformation of for
types that represent one information subsystem. Likewis S ;
a relational database schema is obtained by transformi eck cor;s{tralr?t is modeled in the DEPARTMENT
the union of all information subsystem specifications into mponent type-
the relational data model. Therefore, after transformations, DepBudget DepResearchBudgéiND
a component type check constraint exists both in the DepResearchBudgetDepConfBudget

database schema and in the appropriate databasé™orm type FACULTY ORGANIZATION consists of
subschema. the same two component types FACULTY and

EPARTMENT. However, component type FACULTY
used only for viewing existing faculties, while
EPARTMENT is also used for insert, update and delete
erations. This information subsystem might be designed
another designer, whose point of interest differs from

Two or more information subsystems can contai
model of the same data, each of them from its own poi
of view. Consequently, two information subsystems ca
impose different constraints over the same set of data.
other words, two check constraints from different h

information subsystems may refer to the overlapping se e first one. 'I_'herefore, he or she could model a different
of relation schemes of database schema, which I35 eck constraint over DEPARTMENT component type:

illustrated in Example 1. DepBudget- DepConfBudget

Example 1. Let us consider two form types _Form types UNIVERSITY ORGANIZATION and
UNIVERSITY ORGANIZATION (Figure 1) and FACULTY ORGANIZATION are trans_formgd into the
FACULTY ORGANIZATION (Figure 2) which belong to following set of relation schemes given in the form
different information subsystems of a university 1S. The\(R.K), where N is the name of the relation scheme, R is
form type UNIVERSITY ORGANIZATION is used for the set of attributes and K is the set of keys:
manipulation of information about faculties and their- University({Unild, UniName, UniShortName},
respective departments at the level of the whole {Unild});

university. On the other hand, the form type FACULTY . Faculty({Facld, FacName, FacShortName, Dean,
ORGANIZATION is used at the faculty level for FacBudget, Unild},{Facld}): and

manipulating data about faculty departments. Department ({Facld, Depld, DepName, DepBudget,

DepResearchBudget, DepConfBudget, Unild},
UNIVERSITY Iir {Facld+Depld}).
Thereby, relation scheme Department inherits check
Unild. UniName. UniShortName constraints from both component types.
With respect to all constraints, a subschema is
consolidated with its schema iff for each schema

FACULTY IT constraint of interest, there is an equally strong or stronger
A 4 b constraint in the subschema ([2]). Thereby, a schema

constraint is of interest if it affects data modeled through
the observed subschema.

Hence, for each check constraint in the schema, the
consolidation algorithm first determines the information
subsystems, i.e. their database subschemas, which the
observed check constraint is of interest for. In the
Depld DepName, DepBudget, DepResearchBudg following text, we denote these subschemas as the

DepConfBudget corresponding subschemas. Further, in each of the
corresponding subschemas, the algorithm checks if there

Facld FacName, FacShortName, Dean, FacBudget

DEPARTMENT r,iu,d
A 4

(D

Figure 1. UNIVERSITY ORGANIZATION form type.

Page 211 of 478

ICIST 2014 - Vol. 1 Regular papers

PROCESS CheckCheckConstraint$§, lcc, Skug,
O(Ind, Repor},
10())

SET Report—- A
SETInd— True
DO CheckEachCheckConstrairitigl 1co)
DO CheckEachSubschema(§ 1) T Sk
IFAttr(is) C Attr(S) * £ATHEN
IFAttr(i9 I Attr(S) THEN
SETFound— False
DO CheckSubschemaConstrairitsdsl 1)
IF iss= is THEN
SET Found— True
BREAK
END IF
END DO
IF Found= FalseTHEN
SET Ind — False
SET Report— ReportE (S, i9
END IF
ELSE
SETInd — False
SET Report— ReportE (S, iy
END IF
END DO
END DO
END PROCESS

Figure 3. Algorithm for subschema consolidation with respect to
check constraints

IV. IMPLICATION PROBLEM OFCHECK CONSTRAINTS

As it is presented in the consolidation algorithm, in
order to check consolidation between a database
subschema and a database schema, we need to be able to
determine whether a subschema check constraint implies
the corresponding schema check constraint, i.e. we
evaluate validity of the formula:

(1) iss= s,

whereisgis a subschema check constraint agé the
corresponding schema check constraint. In the further text,
we denote formula (1) also as the check constraint
implication formula.

The body of a check constraint is a logical expression.
Its interpretation, i.e. evaluation, is a three-state Boolean
function which evaluates ttrue, false or unknown Its
result determines whether a tuple satisfiege), violates
(fals§ or neither satisfies nor violates the constraint
(unknown. For the sake of simplicity, the term check
constraint is further also used to denote the logical
expression of the constraint.

In the further text, it is assumed that all check constraints
are given in the conjunctive normal form (CNF):

<(rm
@ ol)
where eachl; represents an atomic logical expression,

denoted as literal. The transformation of a logical formula
into its CNF is described thoroughly in [9].

The literals of check constraints usually are not just
Boolean variables or predicates. Instead, they are often
expressions of various types: from integer and real, linear or
non-linear arithmetic or over date, string or set types. The
formal definition of a check constraint logical expression,
which determines all possible literals, may be found in [7].

Example 2 The following expressions may represent
check constraint literals:

is a check constraint equally strong or stronger than the
schema check constraint. If this condition is satisfied for
each schema check constraint, database subschemas are-
consolidated with the schema with respect to check
constraints. The pseudo code of the algorithm is given in

A>0;

0.3*A + B > 15;

DOB > ToDate('1900-01-01");
SURNAMALIKE “JOHN%"; or

Figure 3.
In the pseudo-code, the following notions are used:

- XINJ1,2,3,5,7,11],
whereA, B, DOB, SURNAMEandX are database schema

S—aset of relation schemes of.the database scheMgyintes defined over some domains, i.e. data types.
lcc — a set of check constraints of the database since logical expressions of check constraints normally

schema;

comprise sub-expressions of various types, they are more

Skus — a set of pairsg, 1)), whereS denotes set of complex in regard to the implication problem test than
relation schemes of subschemavhile I; denotes set database constraints of many other types. Let us observe the

of check constraints of the subschama

following examples. Key is a typical database constraint,
formalized just with a single Boolean predicate, Key(N, X),

Attr — a function that returns set of attributeswhere N is the name of the relation scheme and X is a set of
referenced by its argument, e.g. a subschema or aatributes, while functional dependency is a single Boolean

check constraint;

predicate of the form ® Y, where X and Y are attribute

Report — set of pairsS(i9 whereis is the schema Sets ([2]). Consequently, testing the implication of functional

check constraint which makes subschera
unconsolidated with the database schema; and

dependencies is a deterministic problem, for which we have
the appropriate polynomial algorithm that do not consider
domains of attributes in any way. On the contrary, testing

Ind — a Boolean indicator stating whether allthe implication of check constraints is, in its general case,
subschemas are consolidated with the databasrore complex problem, since any algorithm for this purpose

schema with respect to check constraints.

needs to consider the properties, relations and operations

the essential part of the consolidation algorithm, and it i§onstraint.

presented in the following section.

Page 212 of 478

ICIST 2014 - Vol. 1 Regular papers

Proving validity of logical formula (1), where each cannot be satisfied. By using this approach, we prove
literal is a proposition, i.e. a Boolean variable, or avalidity of (1) and consequently prove logical implication
Boolean predicate, is a kind of a Boolean satisfiabilityof check constraints.
problem (SAT problem, [10]). This class of problems
belongs to the automated theorem proving problems and V. INTEGRATION OFIIS*CASEAND SMT SOLVERS

tShAeCrI'e isl a V"?‘Stt n(ljm:jbfer _ftor allg_orithnﬁ and tools named |, o qer to test subschema consolidation, a SMT solver
SOvers intended Tor is soving (@ _])' . is integrated intdlS*Casein the following manner.
However, an application of SAT solving techniques for The specification of the negation of (1) is first

proving (1) would imply that each check constraint "teraltransformed into the form and language required by the

is treated without taking its actual meaning into accounig\ 1T solver and written into an inout file for the SMT
Also, the relations between different literals, which can bgolver With the input fiIeJIS*Casepexecutes the SMT

derived from the meaning, would be disregarded, as it Solver as an external process, which tries to prove the
illustrated by the following example. satisfiability of the input formula.

Example 3 In Example 1, wo check constraints are Further, the SMT solver creates an output file with the

introduF:ed: result of the satisfiability check, which is parsed by
i1 DepBudget > DepResearchBudget AND lIS*Case If the satisfiability check fails, the check
DepResearchBudget > DepConfBudget constraint implication formula is valid.
and The creation of the input file for SMT solver consists of
i,; DepBudget > DepConfBudget the following steps:
These check constraints contain the following literals: 1. Transformation of the negation of (1) into CNF;

I;: DepBudget > DepResearchBudget 2. Preprocessing the negation of (1) in order to remove
l,; DepResearchBudget > DepConfBudgeid expressions not supported by the SMT solver; and

3. Transformation of the negation of (1) into the
language understandable by the SMT solver.
All of these steps are further described in the subsequent
subsections.

Is: DepBudget > DepConfBudget

Let us further assume that is a subschema check
constraint andi, is its corresponding schema check
constraint.

By taking into account the transitivity property of the A, Transformation of The Check Constraint Implication
operatorgreater thanover integer or real variables, one Formula’s Negation into CNF

can infer the following relation between the

abovementioned literals: To the best of our knowledge, all SMT solvers require

. processed formulas to be represented as a set of clauses,
LU= 15 where each clause represents a conjunct of the formula’s
On the other hand, a SAT solver would treat theCNF.
operator greater than only as an uninterpreted two- Therefore, since we need to prove unsatisfiability of the
argument Boolean predicate and could not infer an}ﬁegation of (1), which is:
relation between the literals. Consequently, a SAT solver ' '

could not infer that, impliesiy, i.e. that the subschema is (3) D (iss= i9),
consolidated with the schema with respect to checlye need first to transform it into its CNF:
constraints; andi,. [iss Ui

: . 4)

Therefore, in order to prove validity of (1), we also . i . .
need to interpret the semantics of check constraint literals, FUrther, formulasiss and gis are replaced with their
which a pure SAT solver is not capable of. ThisCNF forms_, respect|vely_, in order to obtain the CNF of the
disadvantage of SAT solvers initialized development ofvhole (3), i.e. the set of input clauses for a SMT solver.
another research field named Satisfiability Modulo Theor . . C
(SMT, [11, 12]). SMT algorithms represent extensions o)\é- Preprocessing of Check Constraint Implication
SAT algorithms with the knowledge and capability to ~ Formula’s Negation
reason over additional theories of interest, such as: linear The state-of-the-art SMT solvers support a large
arithmetic over integer or real numbers, non-lineanumber of background theories ([13]). However, to the
arithmetic’s over real numbers, theory of uninterpretedbest of our knowledge, none of the currently available
functions, theory of arrays, bit-vector theory, etc. By theSMT solvers supports operations over date, string or set
SMT terminology, such theory is referred to as thevariables which are allowed in the definition of a check
background theory, while the reasoning methods deployasbnstraint.
inside a theory are named the decisions procedures. INTperefore, in order to use SMT solver for proving
analogy to SAT solvers, software tools implementingmpjication of check constraints, the negation of check
SMT algorithms are named SMT solvers. constraint implication formula needs to be transformed

All SMT solvers provide checking the satisfiability of a into a logical formula that can be interpreted by the SMT
logical formula and have an explicit command for thissolver, i.e. a formula that does not contain date, string nor
purpose. On the other hand, most available SMT solvekset operations. By that, the resulting formula's
do not provide an explicit command for proving thesatisfiability must imply the satisfiability of the original
validity of a logical formula. However, validity proof of a formula. Additionally, the transformations need to
logical formula is a dual problem to proving its preserve as much knowledge as possible about original
satisfiability ([13]). That is, we can prove that a logicalliterals and relations between them. This approach of
formula is valid by proving that the formula’s negationpreprocessing a logical formula before proving its

Page 213 of 478

ICIST 2014 - Vol. 1 Regular papers

satisfiability is known as theager strategy for solving According to the first abovementioned step, since each
SMT problems ([13]). In this work, we propose themember ofs; is substring of the member sfat the same
following transformations of literals that contain date,postion, it is concluded that impliesl;. Hence, each,
string or set operations. ki {1,2}, is replaced with a propositiom, and (6) is

1) Trasformations of Literals Containing Date €Xtended to the following formula:
Variables (7) P2 UDp: U (p2 = pa).

Literals that contain date variables and operations over Since (7) is an unsatisfiable formula, it is concluded that
dates retain the same operator. On the other hand, da& is valid..
variables are declared as integer variables and date
constants are converted into number of milliseconds fro
January 1 1970. By this, expressions over date variable
are transformed into expressions from linear arlthmetlc
over integer numbers.

Example 4 The literal
DOB > ToDate('1969-01-01")
is transformed into

3) Trasformations of

perators.

Literals containing IN operators are also transformed

nto Boolean propositions through the following three

steps executed in the given order:

1. Each pair of literald; and|; are transformed into
propositionp; andp;, respectively, and the formula (4)
is extended with the conjunct

DOB > -31536000000 pi=p,ie.ZpUp,

2) Trasformations of Literals Containing String iff right operand ofl; is a subset of the right operand
Variables of I;.

Literals containing strings are transformed into Boolearp, |f literals | andl; are identical and
propositions through the following subsequently executed 2.1.neither of them processed in step 1, they are
steps: transformed into the same propositjgnor
1. Each pair of different literals andl; is transformed 2.2.0ne of them is transformed into a propositgn

:cnto F:ropzlos.montspi dagd ptjh trhespecyvel){, and the in step 1, the other literal is transformed into the
ormula (4) is extended wi e conjunc same proposition.

. P = B, i.e.,.dp Up;, 3. Each literall; containing a string variable and not
iff both I; andl; contain operator LIKE anfj can be processed through steps 2 and 3, becomes a
inferred froml; according to the following condition. propositionp;.

Literal I; can be inferred from; iff the following Example 6 Let us observe the following two check

relation applies between right operaR@) of |; and ¢ongtraint literals, belonging to the same check constraint
right operandRQ of |;. Lets be the array of strings implication formula:

created by splittindRQ by character ‘%’ and leg, b . i
the k-th member of that array. Analogously, let us li: XIN_[1'3’5’7'9] and,: XIN [1,5,9]. _
Since [1,5,9] is a subset of [1,3,5,7,9], the first

defines andsy for RQ. If arrayss ands are of the) : € -
same length and eaeh is a substring of, literal |, transformation step is applied to the two literals, where
eachly, kI {1,2}, is replaced with a propositign,, and the

can be inferred frorh. 5 15 TEPIALE!) ;
2. For each pair of literals containing stringsandl;, if check constraint implication formula is extended with the
' I conjunct

they are identical and
2.1.neither of them processed in step 1, they are
transformed into the same propositnor

2.2.0ne of them is transformed into a propositgn

in step 1, the other literal is transformed into the , ,
same proposition. Each SMT solver provides an input language for
specifying a SMT problem and interaction with the solver.

3. Each literall; containing a string variable and not |
so, a large number of the modern SMT solvers support
processed through steps 2 and 3, becomes fﬁe standardized SMT-LIB language ([14]).

propositionp. .
As none of the existing SMT solvers can solve all

Example 5 Let us define the following two check i P .
constrairl?ts each of them containing only o%e literal: problems, it is useful to check satisfiability of a logical
') formula with more than one solver. Therefore, we

i1=11: NAMELIKE “J% DOE’ and transform check constraints specifications into SMT-LIB
i» =1, NAMELIKE ‘JO% DOE'. language.
Let us further assume that is a subschema check An input SMT-LIB file consists of three sections:

constraint whilei, is the corresponding schema checky declarations of attributes and functions used in the set
constraint, and that we need to prove validity of of clauses,

(5) 2#> iy, 2. the set of clauses derived from the negation of the
i.e. to prove satisfiability of check constraint implication formula and
(6) 1,Ua. 3. the command that starts satisfiability check.

If we split right-hand operands of each literal Example 7. Let us observe the two check constraints
K {1,2), over character ‘%', we obtain the following from Example 1 and test if:

Literals Containing IN

P2 = po.lJ

C. Transformation of Check Constraint Implication
Formula’s Negation into a SMT Language

arrays:
s ={J, 'DOE’} and s, = {JO’, * DOE’}.

DepBudget > DepResearchBudget AND
DepResearchBudget > DepConfBudget

Page 214 of 478

ICIST 2014 - Vol. 1 Regular papers

them can solve all of them. Therefore, by using the
standardized SMT-LIB language, it is possible to utilize
multiple SMT solvers to check satisfiability of a logical
formula.

As a part of our future work, we will provide

The first file section contains declarations of attributeéransformations of check constraint specifications into non-

- : N tandard SMT languages, e.g. CVC ([16]), in order to extend
referenced in the check constraints, given in the SMT-LI : . .)
syntax. $he list of SMT solvers which can be integrated with

, . . [1IS*Case Also, we intend to extend one of the existing SMT
The second file section contains clauses that correspogjyers with the rules for handling operations with date,

implies
DepBudget > DepConfBudget

For this purpose, a SMT-LIB file is created, with the
specification of the check constraint implication formula’s
negation, as it is presented in Figure 4.

to the negation of the implication formula of the twogying and set variable, as it is described in Section V.B.

check constraints:
DepBudget > DepResearchBudget
DepResearchBudget > DepConfBudget; and
A DepBudget > DepConfBudget).
In SMT-LIB language, binary operators are given in the
prefix notation. 2]
The last section contains the command “check-sat” that
starts SMT algorithm over clauses given in the previous
file section/] 3]

A detailed description of the SMT-LIB syntax may be
found in [15].

(1

4

VI. CONCLUSION

In order to maintain consistency and provide corrects)
manipulation of data through information subsystems, the
database subschemas have to be consolidated with the
integrated schema. From the aspect of check constraints,
consolidation means that each schema constraint that spars
subschema data must have a corresponding subschema
constraint which is equally strong or stronger. In this way,
subschema check constraint must imply the corresponding
check constraint of the integrated database schema. We
implemented an algorithm for testing check constraints
consolidation and embedded it ittS*Casetool. .

We further concluded that the check constrainf
implication problem represents a SMT problem and
consequently, should be solved by utilizing SMT solvers.

We also defined and implemented transformations df!
check constraint PIM specifications into the form an
language understandable by SMT solvers. Each SMT solver

can solve a subset of all possible SMT problems, but none of
[11]

;declarations section

(declare-fun DepBudget () Real)
(declare-fun DepResearchBudget () Real)
(declare-fun DepConfBudget () Real)

[12]

[13]

;clauses section

(assert (> DepBudget DepResearchBudget))
(assert (>DepResearchBudget DepConfBudget))
(assert (not(> DepBudget DepConfBudget)))

[14]

[15]
;command for starting the satisfiability test
(check-sat)

[16]
Figure 4. Algorithm for subschema consolidation with respect to
check constraints

REFERENCES

I. Lukovi¢, P. Mogin, J. Padevi¢c and S. Risti, “An Approach to
Developing Complex Database Schemas Using Form Types”,
Software: Practice and Experienceol. 37, no. 15, pp. 1621-1656,
2007.

S. Ristt, “Problem Research of Database Subschemas
Consolidation” (PhD thesis, in Serbian), University of Novi Sad,
Faculty of Economics, Subotica, Serbia, 2003.

I. Lukovi¢, S. Risté, P. Mogin and J. Paigvi¢, “Database Schema
Integration Process — A Methodology and Aspects of Its Applying”,
Novi Sad Journal of Mathematjosl. 36, no. 1, pp. 115-150, 2006.

I. Lukovi¢, “Automated Generation of Relational Database

Subschemas Using the Form Types” (MSc thesis, in Serbian),
University of Belgrade, Faculty of Electrical Engineering, Belgrade,

Serbia, 1993.

J. Pautevi¢, “Development of a CASE Tool for Automated Design
and Integration of Database Schemas” (MSc thesis, in Serbian),
University of Montenegro, Faculty of Science, Podgorica,
Montenegro, 2005.

C. Batini, M. Lenzerini, S. B. Navathe, “A Comparative Analysis of
Methodologies for Database Schema Integration”, ACM Computing
Surveys (CSUR), vol. 18, no. 4, pp. 323-364, 1986.

I. Lukovi¢, A. Popové, J. Mostt and S. Risti, “A Tool for
Modeling Form Type Check Constraints and Complex
Functionalities of Business ApplicationsgGomputer Science and
Information System§ComSI$ vol. 7, no. 2, pp. 359-385, April
2010.

N. Obrenow, S. Alekst, A. Popow and | Lukow,
“Transformations of Check Constraint PIM Specifications”,
Computing and Informatigsvol. 31, no. 5, pp. 1045-1079,
December 2012.

E. Mendelson,Introduction to Mathematical LogicA™ Edition,
Chapman & Hall, London, United Kingdom, 1997.

S. A. Cook, “The complexity of theorem-proving procedures”,
STOC '71 Proceedings of the third annual ACM symposium on
Theory of computingpp.151-158, New York, USA, 1971.

F. Mari, “Formalization and Implementation of Modern SAT
Solvers”, Journal of Automated Reasonjnepl. 43, no. 1, pp 81-
119, June 20009.

L. de Moura and N. Bjgrner, “Satisfiability Modulo Theories: An
Appetizer”, inFormal Methods: Foundations and Applicationg.
23-36, Springer-Verlag, Berlin, Heidelberg, Germany, 2009.

C. Barrett, R. Sebastiani, S. A. Seshia and C. TinShtisfiability
Modulo Theorigs(book chapter), in A. Biere, M. Heule, H. Maare
and T. Walsch, “Handbook of Satisfiability”, 10S Press, USA,
February 2009.

D. R. Cok, “The SMT-LIB v2 Language and Tools: A Tutorial”,
available online:
http://mww.grammatech.com/resource/smt/SMTLIBTutorial.pdf,
December 2013.

C, Barrett, A. Stump and C. Tinelli: “The SMT-LIB Standard
Version 2.0”, available online:
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-
r12.09.09.pdf, December 2013.

“CVC4 User Manual”, available online:
http://cve4.cs.nyu.edu/wiki/User_Manual, December 2013

Page 215 of 478

	Vol.1
	Software development
	1. An Approach to Consolidation of Database Check Constraints

