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Abstract—Independent modeling of parts of an information 
system, and consequently database subschemas, may result 
in conflicts between the integrated database schema and the 
modeled subschemas. In our previous work, we have 
presented criteria and algorithms for resolving such 
conflicts and a consolidation of a database subschema with 
the database schema with respect to various database 
concepts, e.g. domains, relation schemes, primary key 
constraints, etc. In this paper we present an approach and 
new algorithms for identification of conflicts and subschema 
consolidation against check constraints.  

I. INTRODUCTION  

Modeling of relational database schemas can be 
performed in two ways: 1) directly, by having the entire 
database schema modeled at once, and 2) part-by-part, by 
modeling independently parts of database schema, i.e. 
subschemas. When the schema is modeled part-by-part, 
the created subschemas need to be integrated into a 
unified database schema.  

Our previous work advocates that an Information 
System (IS), including a relational database schema as its 
underlying foundation, should not be designed directly. 
Designing the whole IS at once can easily overcome 
designer’s capabilities and result with a model of poor 
quality ([1, 2]). Therefore, we have developed a 
methodology for a gradual development of a database 
schema ([1, 3]), followed by a tool supporting the 
methodology, named Integrated Information Systems 
CASE or IIS*Case for short. In IIS*Case, designers 
specify models of isolated parts of an IS, i.e. information 
subsystems, in an independent way, by using a platform-
independent model (PIM) of form types ([1, 4]). A form 
type concept is an abstraction of screen forms or 
documents that users utilize to communicate with the IS. 
By specifying form types of an information subsystem, 
designers also specify a database subschema with its 
constraints, as it is presented in [1, 4]. 

By applying a number of algorithms, IIS*Case 
transforms a set of form types into a relational database 
schema. The formal description of the transformations is 
out of the scope of this paper and can be found in [4, 5, 1]. 
Thereby, a database subschema is obtained from the set of 
form types specified at the level of an information 
subsystem. Similarly, the database schema of the whole IS 
is derived from the union of form types of all information 
subsystems. 

In [2], it is shown that each database subschema must 
be formally consolidated with the integrated schema, in 
order to obtain a valid specification and implementation of 

an IS. A subschema is formally consolidated with its 
schema if each its concept, such as domain, attribute, 
relational scheme or constraint, is consolidated with the 
appropriate concept of the schema. Also in [2], the author 
presents algorithms for checking consolidation of 
subschemas with the schema with respect to domains, 
relational schemes, primary keys, uniqueness constraints, 
referential integrity and inverse referential integrity 
constraints. The proposed algorithms are also 
implemented in IIS*Case.  

This paper extends our previous work with an algorithm 
for consolidation of subschemas with respect to check 
constraints. So as to provide consolidation test, we need to 
find a solution to the implication problem for two check 
constraints, i.e. how to detect if one check constraint is a 
logical consequence of the other one. However, the nature 
of check constraints is different from other types of 
database constraints, since they represent complex logical 
expressions. Consequently, a test of logical consequence 
of check constraints requires different methods than those 
used for other types of database constraints, such as 
functional dependencies and keys. Therefore, another goal 
of this work is to formulate the appropriate method for a 
test of logical consequence of check constraints. 

Beside the Introduction and Conclusion, this paper 
consists of four sections. The related work is presented in 
Section 2. In Section 3, we present the algorithm for 
subschema consolidation with respect to check constraints 
only. The method for testing implication of two check 
constraints is presented in Section 4. In Section 5, some 
details of the algorithm implementation are discussed. 

II. RELATED WORK 

In [6], the authors have presented an overview of 
methodologies and techniques for integration of 
independently modeled relational database subschemas 
and detection of conflicts between the subschemas. By 
that, at least one of the presented methodologies 
addresses conflicts at the level of attribute naming, 
domains, cardinalities, primary keys or entity usage. 
However, none of the methodologies considers conflicts 
between check constraints. Furthermore, to the best of 
our knowledge, such a methodology has not been defined 
yet.  

Also in [6], the authors concluded that the most of 
surveyed methodologies propose general guidelines for 
subschema integration, but they lack an algorithmic 
specification of integration steps. On the other hand, we 
propose the subschema integration which is formally 
defined and implemented in IIS*Case. 
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III.  CONSOLIDATION OF CHECK CONSTRAINTS 

In IIS*Case, check constraints can be modeled at the 
level of domain, attribute or component type, which is a 
logical part of a form type ([7]). When check constraints 
are transformed from the model of form types into the 
relational model, they become check constraints at the 
level of domain, attribute or a set of relational schemes, 
respectively ([8]).  

The concepts of domain and attribute are modeled in 
the scope of entire IS, i.e. a domain or attribute inherits the 
same definition in each information subsystem as it is 
defined in the scope of the IS. Consequently, a check 
constraint at the level of a domain or attribute in a 
database subschema is identical to the check constraint at 
the level of the same domain or attribute in the database 
schema. 

On the other hand, a component type check constraint is 
modeled in the scope of an information subsystem. A 
database subschema is a result of transformation of form 
types that represent one information subsystem. Likewise, 
a relational database schema is obtained by transforming 
the union of all information subsystem specifications into 
the relational data model. Therefore, after transformations, 
a component type check constraint exists both in the 
database schema and in the appropriate database 
subschema. 

Two or more information subsystems can contain 
model of the same data, each of them from its own point 
of view. Consequently, two information subsystems can 
impose different constraints over the same set of data. In 
other words, two check constraints from different 
information subsystems may refer to the overlapping sets 
of relation schemes of database schema, which is 
illustrated in Example 1. 

Example 1. Let us consider two form types 
UNIVERSITY ORGANIZATION (Figure 1) and 
FACULTY ORGANIZATION (Figure 2) which belong to 
different information subsystems of a university IS. The 
form type UNIVERSITY ORGANIZATION is used for 
manipulation of information about faculties and their 
respective departments at the level of the whole 
university. On the other hand, the form type FACULTY 
ORGANIZATION is used at the faculty level for 
manipulating data about faculty departments. 

 

Figure 1.  UNIVERSITY ORGANIZATION form type. 

 

Figure 2.  FACULTY ORGANIZATION form type 

Form type UNIVERSITY ORGANIZATION consists 
of three component types: UNIVERSITY, FACULTY and 
DEPARTMENT, used for viewing and manipulating data 
about the university, faculties and the belonging 
departments, respectively. In order to control budget 
levels of the faculties and departments, the following 
check constraint is modeled in the DEPARTMENT 
component type: 

DepBudget > DepResearchBudget AND 
DepResearchBudget > DepConfBudget. 

Form type FACULTY ORGANIZATION consists of 
the same two component types FACULTY and 
DEPARTMENT. However, component type FACULTY 
is used only for viewing existing faculties, while 
DEPARTMENT is also used for insert, update and delete 
operations. This information subsystem might be designed 
by another designer, whose point of interest differs from 
the first one. Therefore, he or she could model a different 
check constraint over DEPARTMENT component type: 

DepBudget > DepConfBudget. 
Form types UNIVERSITY ORGANIZATION and 

FACULTY ORGANIZATION are transformed into the 
following set of relation schemes given in the form 
N(R,K), where N is the name of the relation scheme, R is 
the set of attributes and K is the set of keys: 
• University({UniId, UniName, UniShortName}, 

{UniId}); 
• Faculty({FacId, FacName, FacShortName, Dean, 

FacBudget, UniId},{FacId}); and 
• Department ({FacId, DepId, DepName, DepBudget, 

DepResearchBudget, DepConfBudget, UniId},  
{FacId+DepId}).  

Thereby, relation scheme Department inherits check 
constraints from both component types. � 

With respect to all constraints, a subschema is 
consolidated with its schema iff for each schema 
constraint of interest, there is an equally strong or stronger 
constraint in the subschema ([2]). Thereby, a schema 
constraint is of interest if it affects data modeled through 
the observed subschema.  

Hence, for each check constraint in the schema, the 
consolidation algorithm first determines the information 
subsystems, i.e. their database subschemas, which the 
observed check constraint is of interest for. In the 
following text, we denote these subschemas as the 
corresponding subschemas. Further, in each of the 
corresponding subschemas, the algorithm checks if there  

FacId, FacName 

r FACULTY 

DepId, DepName, DepBudget, DepResearchBudget, 
DepConfBudget 

r,i,u,d DEPARTMENT 

FacId, FacName, FacShortName, Dean, FacBudget 

r,i,u,d FACULTY 

DepId, DepName, DepBudget, DepResearchBudget, 
DepConfBudget 

r,i,u,d DEPARTMENT 

UniId, UniName, UniShortName 

r UNIVERSITY 
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PROCESS CheckCheckConstraints(I(S, ICC, SISUB), 
O(Ind, Report),   
IO ( ))  

SET Report ¬  ∅ 
SET Ind ¬  True 
DO CheckEachCheckConstraint (∀iS ∈ ICC) 
    DO CheckEachSubschema (∀(Si, I i) ∈ SISUB) 
        IF Attr(iS) ∩ Attr(Si) ≠ ∅ THEN  
            IF Attr(iS) ⊆ Attr(Si)  THEN  
              SET Found ¬  False 
     DO CheckSubschemaConstraints (∀iSS ∈ I i) 
         IF  iSS ⇒ iS THEN  
             SET Found ¬  True 

                          BREAK 
        END IF  
    END DO 
    IF Found = False THEN    
        SET Ind ¬  False 
        SET Report ¬  Report ∪ (Si, iS) 
    END IF 
          ELSE 
     SET Ind ¬  False 
     SET Report ¬  Report ∪ (Si, iS) 
 END IF 
      END DO 
  END DO 

END PROCESS 

Figure 3.  Algorithm for subschema consolidation with respect to 
check constraints 

is a check constraint equally strong or stronger than the 
schema check constraint. If this condition is satisfied for 
each schema check constraint, database subschemas are 
consolidated with the schema with respect to check 
constraints. The pseudo code of the algorithm is given in 
Figure 3. 

In the pseudo-code, the following notions are used:  

• S – a set of relation schemes of the database schema; 

• ICC – a set of check constraints of the database 
schema; 

• SISUB – a set of pairs (Si, I i), where Si denotes set of 
relation schemes of subschema i, while I i denotes set 
of check constraints of the subschema i; 

• Attr – a function that returns set of attributes 
referenced by its argument, e.g. a subschema or a 
check constraint; 

• Report – set of pairs (Si, iS) where iS is the schema 
check constraint which makes subschema Si 
unconsolidated with the database schema; and 

• Ind – a Boolean indicator stating whether all 
subschemas are consolidated with the database 
schema with respect to check constraints. 

Proving the implication between check constraints is 
the essential part of the consolidation algorithm, and it is 
presented in the following section. 

IV.  IMPLICATION PROBLEM OF CHECK CONSTRAINTS 

As it is presented in the consolidation algorithm, in 
order to check consolidation between a database 
subschema and a database schema, we need to be able to 
determine whether a subschema check constraint implies 
the corresponding schema check constraint, i.e. we 
evaluate validity of the formula: 
(1)                                    iSS ⇒ iS, 
where iSS is a subschema check constraint and iS is the 
corresponding schema check constraint. In the further text, 
we denote formula (1) also as the check constraint 
implication formula. 

The body of a check constraint is a logical expression. 
Its interpretation, i.e. evaluation, is a three-state Boolean 
function which evaluates to true, false or unknown. Its 
result determines whether a tuple satisfies (true), violates 
(false) or neither satisfies nor violates the constraint 
(unknown). For the sake of simplicity, the term check 
constraint is further also used to denote the logical 
expression of the constraint. 

In the further text, it is assumed that all check constraints 
are given in the conjunctive normal form (CNF): 

(2)            ( )im

i
l∨ =

∧
1

, 

where each l i represents an atomic logical expression, 
denoted as literal. The transformation of a logical formula 
into its CNF is described thoroughly in [9]. 

The literals of check constraints usually are not just 
Boolean variables or predicates. Instead, they are often 
expressions of various types: from integer and real, linear or 
non-linear arithmetic or over date, string or set types. The 
formal definition of a check constraint logical expression, 
which determines all possible literals, may be found in [7]. 

Example 2. The following expressions may represent 
check constraint literals: 

• A > 0; 
• 0.3*A + B > 15; 
• DOB > ToDate(‘1900-01-01’); 
• SURNAME LIKE “JOHN%”; or  
• X IN [1,2,3,5,7,11], 

where A, B, DOB, SURNAME and X are database schema 
attributes defined over some domains, i.e. data types. � 

Since logical expressions of check constraints normally 
comprise sub-expressions of various types, they are more 
complex in regard to the implication problem test than 
database constraints of many other types. Let us observe the 
following examples. Key is a typical database constraint, 
formalized just with a single Boolean predicate, Key(N, X), 
where N is the name of the relation scheme and X is a set of 
attributes, while functional dependency is a single Boolean 
predicate of the form X→Y, where X and Y are attribute 
sets ([2]). Consequently, testing the implication of functional 
dependencies is a deterministic problem, for which we have 
the appropriate polynomial algorithm that do not consider 
domains of attributes in any way. On the contrary, testing 
the implication of check constraints is, in its general case, 
more complex problem, since any algorithm for this purpose 
needs to consider the properties, relations and operations 
over domains associated to all attributes included in the 
constraint.  
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Proving validity of logical formula (1), where each 
literal is a proposition, i.e. a Boolean variable, or a 
Boolean predicate, is a kind of a Boolean satisfiability 
problem (SAT problem, [10]). This class of problems 
belongs to the automated theorem proving problems and 
there is a vast number for algorithms and tools named 
SAT solvers intended for its solving ([11]). 

However, an application of SAT solving techniques for 
proving (1) would imply that each check constraint literal 
is treated without taking its actual meaning into account. 
Also, the relations between different literals, which can be 
derived from the meaning, would be disregarded, as it is 
illustrated by the following example. 

Example 3. In Example 1, two check constraints are 
introduced:  

i1: DepBudget > DepResearchBudget AND 
DepResearchBudget > DepConfBudget 

and  
i2: DepBudget > DepConfBudget. 

These check constraints contain the following literals: 
• l1: DepBudget > DepResearchBudget; 
• l2:  DepResearchBudget > DepConfBudget; and 

• l3: DepBudget > DepConfBudget. 
Let us further assume that i1 is a subschema check 

constraint and i2 is its corresponding schema check 
constraint. 

By taking into account the transitivity property of the 
operator greater than over integer or real variables, one 
can infer the following relation between the 
abovementioned literals: 

l1 ∧ l2 ⇒ l3. 
On the other hand, a SAT solver would treat the 

operator greater than only as an uninterpreted two-
argument Boolean predicate and could not infer any 
relation between the literals. Consequently, a SAT solver 
could not infer that i1 implies i2, i.e. that the subschema is 
consolidated with the schema with respect to check 
constraints i1 and i2. � 

Therefore, in order to prove validity of (1), we also 
need to interpret the semantics of check constraint literals, 
which a pure SAT solver is not capable of. This 
disadvantage of SAT solvers initialized development of 
another research field named Satisfiability Modulo Theory 
(SMT, [11, 12]). SMT algorithms represent extensions of 
SAT algorithms with the knowledge and capability to 
reason over additional theories of interest, such as: linear 
arithmetic over integer or real numbers, non-linear 
arithmetic’s over real numbers, theory of uninterpreted 
functions, theory of arrays, bit-vector theory, etc. By the 
SMT terminology, such theory is referred to as the 
background theory, while the reasoning methods deployed 
inside a theory are named the decisions procedures. In 
analogy to SAT solvers, software tools implementing 
SMT algorithms are named SMT solvers.  

All SMT solvers provide checking the satisfiability of a 
logical formula and have an explicit command for this 
purpose. On the other hand, most available SMT solvers 
do not provide an explicit command for proving the 
validity of a logical formula. However, validity proof of a 
logical formula is a dual problem to proving its 
satisfiability ([13]). That is, we can prove that a logical 
formula is valid by proving that the formula’s negation 

cannot be satisfied. By using this approach, we prove 
validity of (1) and consequently prove logical implication 
of check constraints.  

V. INTEGRATION OF IIS*CASE AND SMT SOLVERS 

In order to test subschema consolidation, a SMT solver 
is integrated into IIS*Case in the following manner.  

The specification of the negation of (1) is first 
transformed into the form and language required by the 
SMT solver and written into an input file for the SMT 
solver. With the input file, IIS*Case executes the SMT 
solver as an external process, which tries to prove the 
satisfiability of the input formula.  

Further, the SMT solver creates an output file with the 
result of the satisfiability check, which is parsed by 
IIS*Case. If the satisfiability check fails, the check 
constraint implication formula is valid.  

The creation of the input file for SMT solver consists of 
the following steps:  
1. Transformation of the negation of  (1) into CNF; 
2. Preprocessing the negation of  (1) in order to remove 

expressions not supported by the SMT solver; and  
3. Transformation of the negation of (1) into the 

language understandable by the SMT solver. 
All of these steps are further described in the subsequent 

subsections. 

A. Transformation of The Check Constraint Implication 
Formula’s Negation  into CNF 

To the best of our knowledge, all SMT solvers require 
processed formulas to be represented as a set of clauses, 
where each clause represents a conjunct of the formula’s 
CNF.  

Therefore, since we need to prove unsatisfiability of the 
negation of (1), which is: 

(3)                              ¬ (iSS ⇒ iS), 

we need first to transform it into its CNF: 

(4)                                 iSS ∧¬iS. 

Further, formulas iSS and ¬iS are replaced with their 
CNF forms, respectively, in order to obtain the CNF of the 
whole (3), i.e. the set of input clauses for a SMT solver.  

B. Preprocessing of Check Constraint Implication 
Formula’s Negation 

The state-of-the-art SMT solvers support a large 
number of background theories ([13]). However, to the 
best of our knowledge, none of the currently available 
SMT solvers supports operations over date, string or set 
variables which are allowed in the definition of a check 
constraint.   

Therefore, in order to use SMT solver for proving 
implication of check constraints, the negation of check 
constraint implication formula needs to be transformed 
into a logical formula that can be interpreted by the SMT 
solver, i.e. a formula that does not contain date, string nor 
set operations. By that, the resulting formula’s 
satisfiability must imply the satisfiability of the original 
formula. Additionally, the transformations need to 
preserve as much knowledge as possible about original 
literals and relations between them. This approach of 
preprocessing a logical formula before proving its 
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satisfiability is known as the eager strategy for solving 
SMT problems ([13]). In this work, we propose the 
following transformations of literals that contain date, 
string or set operations.  

1) Trasformations of Literals Containing Date 
Variables  

Literals that contain date variables and operations over 
dates retain the same operator. On the other hand, date 
variables are declared as integer variables and date 
constants are converted into number of milliseconds from 
January 1st 1970. By this, expressions over date variables 
are transformed into expressions from linear arithmetic 
over integer numbers. 

Example 4. The literal  
DOB > ToDate(‘1969-01-01’) 

is transformed into  
DOB > -31536000000. � 

2) Trasformations of Literals Containing String 
Variables  

Literals containing strings are transformed into Boolean 
propositions through the following subsequently executed 
steps: 
1. Each pair of different literals l i and lj is transformed 

into propositions pi and pj, respectively, and the 
formula (4) is extended with the conjunct  

pi ⇒ pj, i.e., ¬pi ∨ pj, 
iff both l i and l j contain operator LIKE and lj can be 
inferred from l i according to the following condition. 
Literal l j can be inferred from l i iff the following 
relation applies between right operand ROi of l i and 
right operand ROj of l j. Let si be the array of strings 
created by splitting ROi by character ‘%’ and let sik be 
the k-th member of that array. Analogously, let us 
define sj and sjk for ROj. If arrays si and sj are of the 
same length and each sik is a substring of sjk, literal l j 
can be inferred from l i. 

2. For each pair of literals containing strings, l i and lj, if 
they are identical and  
2.1. neither of them processed in step 1, they are 

transformed into the same proposition pi; or 
2.2. one of them is transformed into a proposition pk 

in step 1, the other literal is transformed into the 
same proposition. 

3. Each literal l i containing a string variable and not 
processed through steps 2 and 3, becomes a 
proposition pi. 

Example 5. Let us define the following two check 
constraints, each of them containing only one literal: 

i1 = l1: NAME LIKE ‘J% DOE’ and 
i2 = l2: NAME LIKE ‘JO% DOE’. 

Let us further assume that i2 is a subschema check 
constraint while i1 is the corresponding schema check 
constraint, and that we need to prove validity of 
(5)                                      i2 ⇒ i1,  
i.e. to prove satisfiability of  
(6)                                      l2∧¬l1. 

If we split right-hand operands of each literal ik, 
k∈{1,2}, over character ‘%’, we obtain the following 
arrays: 

s1 = {‘J’, ‘ DOE’} and s2 = {‘JO’, ‘ DOE’}. 

According to the first abovementioned step, since each 
member of s1 is substring of the member of s2 at the same 
position, it is concluded that l2 implies l1. Hence, each lk, 
k∈{1,2}, is replaced with a proposition pk and (6) is 
extended to the following formula: 
(7)                            p2 ∧ ¬p1 ∧ (p2 ⇒ p1). 

Since (7) is an unsatisfiable formula, it is concluded that 
(5) is valid. � 

3)  Trasformations of Literals Containing IN 
Operators.  

Literals containing IN operators are also transformed 
into Boolean propositions through the following three 
steps, executed in the given order: 
1. Each pair of literals l i and lj are transformed into 

proposition pi and pj, respectively, and the formula (4) 
is extended with the conjunct  

pi ⇒ pj, i.e., ¬pi ∨ pj, 
iff right operand of l i is a subset of the right operand 
of lj. 

2. If literals li and l j are identical and  
2.1. neither of them processed in step 1, they are 

transformed into the same proposition pi; or 
2.2. one of them is transformed into a proposition pk 

in step 1, the other literal is transformed into the 
same proposition. 

3. Each literal l i containing a string variable and not 
processed through steps 2 and 3, becomes a 
proposition pi. 

Example 6. Let us observe the following two check 
constraint literals, belonging to the same check constraint 
implication formula: 

l1: X IN [1,3,5,7,9] and l2: X IN [1,5,9]. 
Since [1,5,9] is a subset of [1,3,5,7,9], the first 
transformation step is applied to the two literals, where 
each lk, k∈{1,2}, is replaced with a proposition pk,  and the 
check constraint implication formula is extended with the 
conjunct 

p2 ⇒ p1.� 

C. Transformation of Check Constraint Implication 
Formula’s Negation into a SMT Language 

Each SMT solver provides an input language for 
specifying a SMT problem and interaction with the solver. 
Also, a large number of the modern SMT solvers support 
the standardized SMT-LIB language ([14]).  

As none of the existing SMT solvers can solve all 
problems, it is useful to check satisfiability of a logical 
formula with more than one solver. Therefore, we 
transform check constraints specifications into SMT-LIB 
language. 

An input SMT-LIB file consists of three sections: 
1. declarations of attributes and functions used in the set 

of clauses,  
2. the set of clauses derived from the negation of the 

check constraint implication formula and  
3. the command that starts satisfiability check. 

Example 7. Let us observe the two check constraints 
from Example 1 and test if: 

DepBudget > DepResearchBudget AND 
DepResearchBudget > DepConfBudget 
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implies  
DepBudget > DepConfBudget. 

For this purpose, a SMT-LIB file is created, with the 
specification of the check constraint implication formula’s 
negation, as it is presented in Figure 4.  

The first file section contains declarations of attributes 
referenced in the check constraints, given in the SMT-LIB 
syntax. 

The second file section contains clauses that correspond 
to the negation of the implication formula of the two 
check constraints: 
• DepBudget > DepResearchBudget; 
• DepResearchBudget > DepConfBudget; and 
• ¬(DepBudget > DepConfBudget). 

In SMT-LIB language, binary operators are given in the 
prefix notation. 

The last section contains the command “check-sat” that 
starts SMT algorithm over clauses given in the previous 
file section. � 

A detailed description of the SMT-LIB syntax may be 
found in [15].   

VI.  CONCLUSION 

In order to maintain consistency and provide correct 
manipulation of data through information subsystems, the 
database subschemas have to be consolidated with the 
integrated schema. From the aspect of check constraints, 
consolidation means that each schema constraint that spans 
subschema data must have a corresponding subschema 
constraint which is equally strong or stronger. In this way, a 
subschema check constraint must imply the corresponding 
check constraint of the integrated database schema. We 
implemented an algorithm for testing check constraints 
consolidation and embedded it into IIS*Case tool. 

We further concluded that the check constraint 
implication problem represents a SMT problem and 
consequently, should be solved by utilizing SMT solvers. 

We also defined and implemented transformations of 
check constraint PIM specifications into the form and 
language understandable by SMT solvers. Each SMT solver 
can solve a subset of all possible SMT problems, but none of  
 

;declarations section 
(declare-fun DepBudget () Real) 
(declare-fun DepResearchBudget () Real) 
(declare-fun DepConfBudget () Real) 
 
;clauses section 
(assert (> DepBudget DepResearchBudget)) 
(assert (>DepResearchBudget DepConfBudget)) 
(assert (not(> DepBudget DepConfBudget))) 
 
;command for starting the satisfiability test 
(check-sat) 

Figure 4.  Algorithm for subschema consolidation with respect to 
check constraints 

them can solve all of them. Therefore, by using the 
standardized SMT-LIB language, it is possible to utilize 
multiple SMT solvers to check satisfiability of a logical 
formula.  

As a part of our future work, we will provide 
transformations of check constraint specifications into non-
standard SMT languages, e.g. CVC ([16]), in order to extend 
the list of SMT solvers which can be integrated with 
IIS*Case. Also, we intend to extend one of the existing SMT 
solvers with the rules for handling operations with date, 
string and set variable, as it is described in Section V.B. 
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