
Fuzzy Influence Diagrams in Power Systems 
Diagnostics 

 
 

Zoran Marković*, Aleksandar Janjić**, Miomir Stanković***, Lazar Velimirović**** 
*,**** Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia 

**University of Niš, Faculty of Electronic Engineering, Niš, Serbia 
***University of Niš, Faculty of Occupational Safety, Niš, Serbia 

zoranm@mi.sanu.ac.rs, aleksandar.janjic@elfak.ni.ac.rs, miomir.stankovic@znrfak.ni.ac.rs, 
lazar.velimirovic@mi.sanu.ac.rs 

 
Abstract — In this paper, influence diagram with fuzzy 
probability values, as a graphical tool for the diagnostic 
reasoning in power system has been proposed. Instead of 
Bayesian networks that are using conditional probability 
tables, often difficult or impossible to obtain, a verbal 
expression of probabilistic uncertainty, represented by fuzzy 
sets is used in this paper. The proposed methodology 
enables both type of inference support: bottom-up and top-
down inference, including decision nodes in the analysis. 
This inference engine is illustrated on the case of the 
detection of the cause of excessive tripping of transformer 
breaker in the substation. 

I. INTRODUCTION 
 

Problems of diagnostics in power systems, including 
the detection of failures, or equipment condition 
assessment are faced with many uncertainties related to 
their past, present and future operational conditions. 
Bayesian networks and Influence diagrams are graphical 
tools that aid reasoning and decision-making under 
uncertainty, modeling the system with the network of 
states with known probability distributions [7,11,13]. 
These tools are used for the medical diagnosis, map 
learning, heuristic search, and, very recently, in power 
systems, including both the predictive and diagnostic 
support. 

In power systems, the predictive support is used mostly 
for the prediction of circuit breaker or transformer 
failures [4, 17] based on condition monitoring data. 
Second approach – fault diagnostic is applied for relay 
protection selectivity and transformer fault diagnostic [3, 
18]. 

Using probabilistic methods for the linking of 
symptoms to failures is possible only in the presence of 
necessary failure probabilities, obtained from operating 
data, or through the solicitation of subjective probabilities 
from experts. However, this is not always possible, and 
depends on quality and quantity of available data. 

The objective of this work is to propose an integrated 
method for both types: bottom-up and top-down inference 
support in uncertain environment, including decision 
nodes in the analysis. The rest of the paper is organized 
as follows. Section II discusses basic concept of ID 
modeling. Section III gives details of the fuzzy influence 
diagram model, while Section IV elaborates the case 

study: the determining of the cause of excessive tripping 
of transformer circuit breaker.  

II. INFLUENCE DIAGRAMS 
 
Influence diagrams were proposed by Howard and 

Matheson [7], as a tool to simplify modeling and analysis 
of decision trees. They are graphical aid to decision 
making under uncertainty, which depicts what is known 
or unknown at the time of making a choice, and the 
degree of dependence or independence (influence) of 
each variable on other variables and choices. It represents 
the cause-and-effect (causal) relationships of a 
phenomenon or situation in a non-ambiguous manner, 
and helps in a shared understanding of the key issues.  

Building of an influence diagram is performed with the 
usage of several graphical elements. A circle depicts an 
external influence (an exogenous variable), rectangle 
depicts a decision. Chance node (oval) represents a 
random variable whose value is dictated by some 
probability distribution, and value node is presented as a 
diamond (objective variable) - a quantitative criterion that 
is the subject of optimization. 

The diagram can be used as a basis for creating 
computer-based models that describe a system or as 
descriptions of mental models managers use to assess the 
impact of their actions. Influence diagram represents a 
pair N={(V, E), P} where V and E are the nodes and the 
edges of a directed acyclic graph, respectively, and P is a 
probability distribution over V. Discrete random variables 
V={X1, X2, ..., Xn} are assigned to the nodes while the 
edges E represent the causal probabilistic relationship 
among the nodes. Each node in the network is annotated 
with a Conditional Probability Table (CPT) that 
represents the conditional probability of the variable 
given the values of its parents in the graph. However, the 
use of probability tables with many elements is very 
difficult, because of the combinatorial explosion arising 
from the requirement that the solution must be extracted 
by the cross product of all probability tables. 

Solving of an ID can be effectuated using fuzzy 
reasoning [1, 8, 9, 12], where each node in the diagram 
can be represented by appropriate fuzzy sets, describing 
the uncertain nature of a given value. The combination of 
predecessor nodes fuzzy sets gives the value of resulting 
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node. A commonly used technique for combining fuzzy 
sets is Mamdany’s fuzzy inference method. However, the 
main limitations of fuzzy reasoning approaches are the 
lack of ability to conduct inference inversely. Feed-
forward-like approximate reasoning approaches are 
strictly one-way, that is, when a model is given a set of 
inputs can predict the output, but not vice versa.  

Furthermore, utilization of a probability measure to 
assess uncertainty requires too much precise information 
in the form of prior and conditional probability tables, 
and such information is often difficult or impossible to 
obtain. In certain circumstances, a verbal expression or 
interval value of probabilistic uncertainty may be more 
appropriate than numerical values. The fuzzy influence 
diagram with the fuzzified probabilities of states is 
presented in the next section. 

 

III. FUZZY INFLUENCE DIAGRAMS 
 

The fuzzification of influence diagrams used in this 
approach is performed both by the fuzzification of 
random variables, like in [15, 16], and by introduction of 
fuzzy probabilities [5, 6, 10]. Based on previous works on 
linguistic probability [5, 6], it is possible to define similar 
probability measure for fuzzy probabilities. 
 
Definition 1. Given an event algebra ε defined over a set 
of outcomes Ω, a function FP: ε→E  is termed a fuzzy 
probability measure if and only if for all A ∊ ε  
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where FP is fuzzy probability measure on (Ω, ε), the 
tuple (Ω, ε, FP) is termed fuzzy probability space. 

Embedded real numbers are denoted by χ subscript. 
Based on previous definition, fuzzy probabilities, 
grouped in several fuzzy sets, are introduced and denoted 
with linguistic terms (extremely low, very low, low, 
medium low, medium, medium high, high, very high and 
extremely high) and presented on Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 

From previous definition, two fuzzy Bayes rules 
analogue to classical crisp number relations (4) and (5) 
are formulated. Operator “≅” stands for  “=” operator. 
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Based on the law of total probability another rule for 

the fuzzy marginalization can be added, represented by 
the expression (6). 
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Using the above equations, fuzzy Bayes inference can 

be conducted, with operations of fuzzy numbers defined 
as operations in terms of arithmetic operations on their α 
– cuts (arithmetic operations on closed intervals).  

The main advantage of the proposed method is very 
flexible operation with uncertain data, which are now 
presented in verbal form, through fuzzy inference rules. 
Prior and conditional probabilities for individual nodes 
are presented in tables, and they are following fuzzy 
inference rules derived from expert knowledge base. The 
elements of matrix M=[Mij], where m is the number of 
discrete states of parent node Xi , and n is the number of 
discrete states of the child node Yj represent possible state 
of the nature,  denoted with the name of node (A, B, C... ) 
and the number of node state (I, II, III). Mij represents the 
conditional probability 𝐹𝑃(𝑌 = 𝑦𝑗 ,𝑋 = 𝑥𝑖). 

This methodology will be illustrated on the case of the 
power transformer diagnostics. 

 

IV. CASE STUDIES 
 

The methodology for both predictive and diagnostic 
support is illustrated on the case of power transformer in 
one transformer substation, planned for the replacement, 
because of its age and unsatisfying diagnostic test results. 
Transformer deterioration is modeled with three 
deterioration stages, with parameters represented in table 
I.  

TABLE I 
 DECISION NODE A 

Decision Description 

I Replace 
II Do Nothing 
  

 
 

  0.1   0.2    0.3    0.4    0.5    0.6     0.7   0.8     0.9 

 EL  VL    L    ML    M     MH    H      VH    EH   

p 

 
μ(p) 

Figure 1 Fuzzy probabilities 
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The illustration of influence diagram for the transformer 
risk assessment is given on figure 2.  

 
 

 
 

A – decision node 
B – transformer condition 
C – wheather conditions 
D – transformer loading 
E – failure probability 
F – penalty policy 
G – value of risk node 

 
 
Node A is decision node, and decision is bound to only 

two decisions: whether to replace (AI) or keep the 
existing power transformer in use (AII).  

 

A. Predictive support 
 

Increased number of transformer outages is expected, 
but that number, together with consequences that these 
outages will produce can vary depending on uncertain 
parameters in the future, including weather conditions, 
loading of the transformer, and level of penalties imposed 
by the regulator. Therefore, one has to investigate the 
possibility of keeping it in service one more year, and to 
check whether this decision greatly increases the risk of 
surpassing required values for system reliability, imposed 
by the regulator.  

Node B is describing the condition of transformer itself. 
It can be described by three deterioration states: bad, 
medium and good. This node represents the chance node, 
because the condition of the transformer is of the 
stochastic nature, and cannot be fully determined by 
transformer diagnostic. On the other hand, this node has 
the parent node A, because the state of transformer’s 
health is directly influenced by the decision of 
replacement. The conditional probabilities are presented 
in Table II. 

Node C is independent node, describing future weather 
conditions of purely stochastic nature (Table III).  

 
TABLE II 

CHANCE NODE B TRANSFORMER CONDITION 
State Description Failure rate 

λ 
(int./year) 

Probability  

   AI AII 
 

I Good 0,02 H EL 
II Medium 0,05 VL L 
III Bad 2 EL MH 
     

 
 

TABLE III 
CHANCE NODE C AMBIENT CONDITIONS 

State Description Probability 

   
I Moderate temperature, not 

below -30 
H 

II Severe conditions, 
temperature below -30 

L 

   

 
Node D is the chance node describing the loading of the 

transformer. This node has two parent nodes: in the case 
of cold winter, the loading will increase. The decision of 
keeping the existing transformer will also affect the 
loading, because in the case of replacement, dispatcher 
would more likely decide to put more loads to the new 
transformer from surrounding feeders (Table IV). 

 
TABLE IV 

CHANCE NODE D TRANSFORMER LOADING 
State Descriptio

n 
Conditional Probabilities 

  AI AI AII AII 

  CI CII CI CII 

I Below 
maximum 

H  H EL 

II Around 
maximum 

VL L VL L 

III Above 
maximum 

EL H EL MH 

      

 
Node E is chance node describing reliability parameters 

depending on related transformer station (Table V). The 
calculation of expected failure probability, and 
consequently the SAIFI parameter is based on Poisson 
law, with λ denoting the failure rate from table II, and k 
representing the number of failures. 

 
!

kef k
k

 


  (7) 

 
 
The usual metrics of system reliability is System 

Average Interruption Index (SAIFI). Hypothetically, the 
new law, which will drastically increase the penalties in 
the case of surpassing value of 2 interruptions per 
customer and year, is expected, but some uncertainty 

 
Figure 2. Transformer condition assessment 
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about the date of adoption still exists. Verbally modeled 
probabilities are presented in table VI. 

 
TABLE V 

CHANCE NODE E 
Stat

e 
Descript

ion 
Conditional 
Probabilities 

     

 SAIFI BI 
DI 

BI 
DII 

BI 
DI
II 

BII 
DI 

BII 
DII 

BII 
DII

I 

BII
I 

DI 

BII
I 

DI
I 

BIII 
DII

I 

           

I <1 E
H 

V
H 

H M
H 

 EL V
L 

V
L 

 

II 1-2   L L M
L 

L M
L 

L M
L 

III >2 E
L 

V
L 

 EL M
H 

M
H 

M
L 

M M
H 

           

 
 

TABLE VI 
CHANCE NODE F PENALTIES 

State Description Probabilities 

I New energy law adopted, severe 
penalties – [0.8 0.9 1] 

H  

II New law not yet adopted, mild 
penalties [0.2 0.3 0.4] 

L  

    

 
The value node G is the risk node, defined as the 

product of probability and consequence (financial 
penalty). 

 
In this simplified model of power transformer, its 

condition can be assessed by two independent variables: 
Age of the transformer and the Furan content (FC). Both 
Age and FC can be represented by triangular fuzzy sets, 
with following presumed membership functions: Age 
(Young[0 0 15], Medium [5 25 40], Old [25 40 40]); 
Furan content(Low [0 0 2000], Medium [0 2000 4000], 
High [2000 4000 4000]) with variables expressed in years 
and ppm, respectively. The condition of the transformer 
will be represented by three states: Good, Medium and 
Bad. 

To calculate the probability of transformer being in one 
of deterioration states, the results of diagnostic tests of 
the furan content FC, which is directly influenced by the 
loading history of the transformer is used (Figure 3). 
Conditional probabilities of deterioration state, depending 
on the decision (or the age of the transformer) are 
presented in table III and are expressed by appropriate 
fuzzy sets.  

 
Figure 3. Transformer condition assessment 

 

Chance node L is the parent node to chance node FC, 
and node Cond is the child node for both Age and FC 
nodes. If both Age and L are represented by discrete 
nodes, rules for probability calculations of child node and 
parent nodes are  presented in equations (8) –(10).  
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Probability that, given the evidence that condition is in 

the state i, hypothesis of loading being in the state j is: 
 

 
  ( \ )

 \
( , , )

j i j
j i

i

P L P Cond L
P L Cond

P Cond Age FC
                   (10)

  
For the transformer that is, for example, 25 years old, 

with the furan content of 2200 ppm, we are getting 
following membership functions: Age = (0 young, 0,4 
medium 0,4 old) and FC = (0 low, 0,95 medium 0,05 
high). For the sake of practical representation of data in 
BN, a simple mapping of random variable to appropriate 
fuzzy probability Xi→FP(Xi) has to be performed, by the 
selection of appropriate fuzzy probability set . For the 
proposed example, mapping is presented in the following 
table.  

 
TABLE VII 

 MAPPING OF FUZZY VARIABLES TO FUZZY PROBABILITY MEASURES 
Variable: 
Age 

Fuzzy 
probability 

Variable:  
Furan 
content 

Fuzzy 
probability 

    
Young 
Medium 

EL 
M 

Low 
Medium 

EH 
M 

Old M High EL 
    

 
 
The value node, G, represents the risk associated to 

particular event E. FP(E) is fuzzy probability calculated 
for the node E, and final value of risk is the expected 
value of risk for all combinations of event E over N 
possible outcomes of event F. PENi denotes penalties in 
the case of the  i-th outcome of event F. Penalties are also 
represented as fuzzy numbers, and they are given in per 
unit values, relative to the maximal possible penalty: 

 

1

( ) ( )
N

i i
i

Risk FP E FP F PEN


    (11) 

 
Using expressions for the fuzzy joint probability and 

Bayes rule, we are calculating the value of node G 
(Figure 4). Different methods of fuzzy number ordering 
can be used, and final results are showing that by 

 

Age FC 

Cond

. 

L 
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replacing the transformer we are reducing the risk more 
than two times [9]. 

 

 
 
Figure 4. Fuzzy values of  risk node G for two alternative decisions for 

a) replacing and b) keeping the existing transfomer  
 

B.  Diagnostic support 
 

In the case of diagnostic support, we will presume that 
results from previous year show the level of SAIFI 
surpassing 2 interruptions per customer. The cause of 
interruptions are unknown (internal fault in the 
transformer followed by Buholtz relay tripping, contact 
thermometer, or overcurrent relay tripping caused by the 
overloading). The transformer in supplying transformer 
station has not been replaced (AII), but its condition is 
unknown. Weather conditions were severe (CII). To 
calculate the probability that condition of transformer is 
good (BI) in spite of achieved level of reliability, the 
expression (6) is used. 

 
( \ )

( ) ( \ )
( )

FP B BI E EIII
FP B BI FP E EIII B BI

FP E EIII

  

   




(8) 

 
Obtained fuzzy numbers of probability of transformer 

being in bad, medium or good conditions are shown on 
figure 5.  

 

 

 
Figure 5. Fuzzy values of  probability of transformer being in a) bad, b) 
medium and c) good condition. 
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V. CONCLUSION 
 

The utilization of a probability measure for uncertainty 
modeling requires too much precise information in the 
form of prior and conditional probability tables, and such 
information is often difficult or impossible to obtain. In 
this paper, a verbal expression or interval value of 
probabilistic uncertainty is proved to be more appropriate 
than numerical values. The fuzzy influence diagram with 
the fuzzified probabilities of states is presented in the 
paper. 

Calculation of these probabilities is performed with 
interval based fuzzy arithmetic. Results presented in case 
studies proved that this new form of description - fuzzy 
influence diagram, that is both a formal description of the 
problem that can be treated by computers and a simple, 
easily understood representation of the problem can be 
successfully implemented for various class of risk 
analysis problems in power systems. 
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