
QUALISYS WEB TRACKER – A WEB-BASED VISUALIZATION TOOL
FOR REAL-TIME DATA OF AN OPTICAL TRACKING SYSTEM

Andraž Krašček and Jaka Sodnik

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Abstract – In this paper, we describe a web-based tool
for the visualization and analysis of real-time output data
of a professional optical tracking system – Qualisys.
Optical tracking systems are used for capturing the
positions and movements of various objects in space with
the aid of several high-speed cameras and reflective
markers. The positions of individual markers are
represented as time-dependent 3D spatial points. Tracking
software running on a single dedicated computer enables
the visualization of data as an interactive 3D scene. The
main goal of our work is to enable a real-time
visualization of this 3D scene on multiple computers
simultaneously with the aid of modern web technologies
and tools. The framework is based on an interactive
Node.js web server, which streams data from the Qualisys
tracking software, reformats it and sends it to a web
browser through a fast WebSocket protocol. The web
browser enables the visualization of the 3D scene based
on WebGL technology. The tool described in this paper
enables a synchronized visualization of the tracking data
on multiple computers simultaneously and thus represents
an excellent teaching and presentation tool of optical
motion capture techniques.

1. INTRODUCTION

The term “motion capture” refers to a technique for
capturing and recording movements of various objects in
space [1][2]. It is widely used in the field of
biomechanics, game industry, movie and television
production, etc. The majority of widely used motion
capture techniques is based on optical methods that record
the object’s movements. A number of cameras are used to
observe the passive or active reflective markers, which
have to be attached to the points of interest or to the
points that are then tracked in space. The system
calculates the exact location of each marker in space by
triangulation based on the projection of the marker onto
each camera’s 2D image plane. Figure 1 demonstrates the
basic principle of tracking 3D data based on multiple 2D
images.
Several cameras are typically used in order to provide
constant visibility of each marker by a minimum of three
independent cameras. The high number of cameras
provides redundancy, a lower possibility for marker loss
and occlusion, and also a higher accuracy over the entire
tracking volume.

Figure 1. The basic principle of triangulation –
reconstruction of 3D data from 2D images [3].

The passive markers are made from simple, light and
highly-reflective plastic materials and require an active
source of infrared light within each camera. The infrared
light is then reflected from the markers back to the
cameras and provides good contrast between the markers
and the surroundings. Active markers, on the other hand,
can be simple LEDs, which do not require an additional
source of light within each camera.
In our research, we deal with a professional motion
capture system Qualisys [4], which consists of eight high-
speed cameras, a set of passive markers and a dedicated
tracking software called Qualisys Track Manager (QTM)
[5]. The latter is responsible for calculating the exact 3D
location of each marker from 2D images acquired by
individual cameras. It is a desktop application that runs on
a normal PC and communicates with the cameras through
standardized Ethernet protocol. It is operated through a
well-designed and intuitive GUI and enables a real-time
visualization of all tracked points in a virtual coordinate
system. It also enables the control over all cameras, such
as calibration, timing, capture rate, exposure and flash
time, etc.
Each marker (3D point) is presented with three
independent coordinates (X, Y and Z) in a Cartesian
coordinate system. It is illustrated as a colored dot at the
corresponding spatial position. A set of markers can be
grouped into a “model”. The model is based on a certain
number of markers, attached to different parts of the
object tracked. The rigid parts of the object (the parts with
a constant inter-distance) within the model can be
presented with “bones”. The bones can be built with the
aid of GUI by selecting individual markers in the model

Page 155 of 478

ICIST 2014 - Vol. 1 Regular papers

Figure 2. The visualization of an AIM model in QTM software consisting of a set of markers attached to different parts
of a human body.

and connecting them with straight lines. Figure 2 shows
an example of a set of markers attached to a human body.
The final model with a selected number of markers and
bones can be saved as an “AIM model” (Automatic
Identification of Markers), which is then applied in future
measurements. This process helps the QTM software to
increase the tracking accuracy with the aid of exact
distances and relations between the markers.
The measurements of marker locations and model
movements can be saved and processed locally or
streamed to an additional computer through a predefined
RT (Real-Time) protocol [6]. The “RT protocol” feature
enables the QTM software to function as a TCP or UDP
server from which various clients can acquire tracking
data in real time.
The visualization and analysis of tracked objects and
models can currently be performed only on the computer
running the QTM software. In this paper, we propose a
complete solution for the visualization and analysis of the
tracked data on multiple computers simultaneously, in
real time and even from a remote location. It is based on
modern web technologies and protocols, which enable full
duplex client-server communication and real time
rendering of 3D models and objects in a browser. In the
following sections we provide an overview of the key
web technologies used for this experiment and describe

all major components of the system and communication
protocols between them.

2. QTM REAL-TIME SERVER PROTOCOL

RT protocol component enables the retrieval of processed
real-time data from QTM over a TCP/IP or UDP/IP
connection [6]. The protocol structure is well defined and
provides all the basic features such as: auto discover,
settings changing, streaming, error messaging, etc. A
client that connects to the server can require data in 2D,
3D or 6DOF (six degrees of freedom), with or without the
marker labels, etc. In our case, we use the server to stream
3D points of a set of predefined markers in real-time.

3. WEB SOCKET

The web was originally designed around a
request/response model of a HTTP protocol, which then
evolved to asynchronous XHR request (part of AJAX)
making the web more dynamic. However, the updates
from the server are still only received upon client request
triggered by user interaction or periodic polling. This
carries big data overhead and higher latencies. WebSocket
API is a part of HTML5 specification and introduces a
socket-like persistent full-duplex connection between the

Page 156 of 478

ICIST 2014 - Vol. 1 Regular papers

server and the client. The data can be sent from the server
to the client and vice versa without prior request. After
the initial handshake, the data is sent in frames with a
frame header in the size from 48 bits to a maximum of
112 bits, depending on the payload data size. The
maximum frame size depends on the implementation of
the protocol. [7]

3. WEBGL

WebGL is a royalty-free, cross-platform API that brings
OpenGL ES 2.0 to the web. It is implemented as a 3D
drawing context within HTML, exposed as a low-level
Document Object Model interface. It uses the OpenGL
shading language, GLSL ES, and can be cleanly
combined with other web content layered on top or
underneath the 3D content. It is ideally suited for dynamic
3D web applications in the JavaScript programming
language, and has been fully integrated in all leading web
browsers. [8]

Rendering one frame in WebGL can be computationally
expensive and can block the JavaScript event loop;
therefore rendering should not be implemented by using
the SetInterval or infinite loop but rather with the
requestAnimationFrame method. This method will
execute rendering script at the first available time slot
without blocking the user interface or other scripts.

4. NODE.JS

Node.JS was first introduced in 2009 by Ryan Dahl at a
JavaScript conference in Berlin. It is a JavaScript based
web server. Thanks to Google's fast JavaScript interpreter
and a virtual machine called V8, used by Google in its
Chrome web browser, Node.JS can outperform traditional
server stacks. With classic scripting programming
languages, such as for example PHP or ASP, the
programmer writes scripts that are executed by a server
installed separately. In the case of Node.JS, the
programmer writes a code that represents a part of the
server itself.

Node.JS executes the code in same process on a single
thread called event loop. One event is performed in each
loop, so all the I/O events must be written in an
asynchronously non-blocking way. A good example of
such a code is a database query. Node.JS sends a query to
a database that takes a considerable amount of time to
process. In the blocking way, the server would wait for
the database response and only then continue with the
execution. On the other hand, the non-blocking script
would not wait for the database response, but would
handle other events instead. The response is pushed in the
event queue immediately when it is returned by the
database. In this way, Node.JS is capable of handling a
high number of simultaneous connections.

The core of Node.JS is just a set of low-level APIs,
known from JavaScript and V8 JavaScript

implementation. Additional functionalities can be added
as modules via NPM (Node Package Manager).

5. SYSTEM ARCHITECTURE OF QUALISYS WEB
TRACKER

Our system consists of three main entities: QTM
software, Node.JS server and multiple clients with
ordinary browsers. The coordinates of all the tracked
markers are transferred from QTM to Node.JS server over
the RT protocol. The server handles the data translation
from raw stream to JavaScript Object Notation (JSON)
and broadcasts it to all connected clients. Each individual
client is responsible for the reconstruction and
visualization of the 3D scene from the received data. The
following two subparagraphs briefly describe the basic
functionalities of the server and the client.

Figure 3. The basic architecture of the Qualisys Web
Tracker software.

Server side
The application's server side consists of three main
modules: HTTP module, WebSocket module and RT
protocol module. The HTTP module is a basic Node.JS
module which handles HTTP requests. In our application,
it is mainly used for handling the delivery of static files
(like CSS, JS, etc.) and control parameters in the
administrator view. The other two modules are used to
transfer the data from QTM to the clients through the
server. The RT protocol module handles the
communication between the QTM and the server
application, while the WebSocket module communicates
with multiple clients simultaneously.

Before broadcasting any data to potential clients, an
administrator has to connect to the QTM through a special
administrator view. The administrator view is a simple
web application running on a separate port and requiring
user authentication. The administrator specifies the
corresponding QTM IP address and port. After
connecting, the administrator requests a special XML file
which specifies all the important properties of the
markers, such as for example their labels (names) and
colors. The specification of the properties is important in
order for the markers to be correctly interpreted and
visualized by the clients. It is vital that this XML file is
transmitted before the start of the data stream, so that it
can be parsed and saved in memory, otherwise the data
with the marker coordinates sent to the client will be

Page 157 of 478

ICIST 2014 - Vol. 1 Regular papers

inadequate. The administrator can then control the stream
(start and stop) and also set the transmission rate (in
samples per second). The default value for the
transmission rate is set to 60. The initiation or stopping of
the stream by the administrator actually starts and stops
the data stream between the QTM and the server. The
main functionality of the server application is to translate
the coordinates data from raw buffer stream to JSON
format, a typical format for representing data in
JavaScript. One 3D frame becomes an array with the size
corresponding to the number of nodes. Each item is an
object with x, y, z coordinates expressed in millimeters
and the residual keys. Some additional parameters are
added to JSON format, such as frame number and type,
which may be used in further development. The data array
is then broadcasted to all connected clients via
WebSocket. Figure 4 represents an example of a frame in
JSON format, which is broadcasted through WebSocket
protocol.

Figure 4. The representation of marker data in JSON
format

Client side
The client side application consists of two parts, a
WebSocket and WebGL module. The WebSocket module
is very simple. After loading the application and all its
external dependencies (JavaScript libraries), the module
connects to the Node.JS server. The connection is open
for the lifetime of the application. When the data in JSON
format is received from the server, it is saved to a local
variable. Our goal was to keep the WebSocket module as
lean as possible so it does not block the WebGL module.
The WebGL module is responsible for constantly
rendering a 3D scene and exposing it in canvas HTML5
element. An infinitive rendering is necessary because of
the constant updates of the scene. The updates can come
from two events. The first update comes from the

WebSocket module, which updates the local variable with
new coordinates. This change is easy to detect; however,
it is much simpler to continually render the scene because
of the second type of event. The latter is the user
interaction. The user can jaw, pitch, or zoom in or out the
scene. This interaction can also be detected and the scene
can be rendered on demand, but we get a much more
smooth interaction if we use the requestAnimationFrame
method and render the scene whenever possible. We try to
achieve a refreshing frequency of 60 frames per second.
When the user interacts with the scene, his or her changes
are saved in a special view matrix. The view matrix is a
transformation matrix that transforms the vertices from
scene-space to view-space. The WebGL module is
responsible also for applying the vertex and fragment
shaders.

6. CONCLUSION

The tool described in this paper enables a remote and
interactive visualization of the tracking objects from the
Qualisys optical tracking system. The 3d tracking scene
can be presented on multiple computers simultaneously
and synchronized with the QTM software. It is based
solely on web technologies and runs in all modern
browsers supporting WebGL API. The current version of
the tool enables the visualization of all labeled markers in
the scene as well as a list of their current coordinates. The
colors of the individual markers can also be applied in
accordance with their original color in the QTM software.
Optical motion capture systems are often used as teaching
tools in lab exercises with a high number of students.
With the aid of our tool, a 3D tracking scene can be
streamed to multiple computers simultaneously, while
also enabling custom interaction, field of view and zoom
for each client. In this way, each student can observe the
experiment more actively and customize his or her own
perception. The tool could easily be integrated in an e-
learning framework enabling remote participation in such
experiments in real-time.
Currently, no information about the existing AIM models
is streamed through the RT protocol component and the
visualization of the bones between the markers has to be
done manually (hardcoded) on the client. Our main goal
for future development is to enable the capability of
rebuilding the AIM models or building new ones on the
client. The user should be able to select individual
markers and connect them with bones. These new models
should then be saved on the server or locally on the client
itself for future use.

Page 158 of 478

ICIST 2014 - Vol. 1 Regular papers

Figure 5. The visualization of an AIM model in a Firefox browser (the same model is shown on figures 2 and 5)

REFERENCES

[1] A. G. Kirk, J. F. O’Brien, D. A. Forsyth, “Skeletal

parameter estimation from optical motion capture
data,” IEEE CVRP 2005, vol. 2, pp. 782-788, 2005.

[2] M. Gleicher, N. Ferrier, “Evaluating video-based
motion capture,” Proceedings of Computer
Animation 2002, pp. 75-80, 2002.

[3] S. Hofverberg, “Theories for 3D reconstruction,”
Qualisys QTECH1004 v1.0, 2007.

[4] Qualisys – Motion Capture Systems,
http://www.qualisys.com/, 12/2013.

[5] QTM – Qulisys Track Manager, User Manual, 2011.
[6] L. Nilsson, “QTM Real-time Server Protocol

Documentation, V1.9,” 2011.
[7] The WebSocket API,

http://www.w3.org/TR/websockets/, 12/2013
[8] WebGL - OpenGL ES 2.0 for the Web,

http://www.khronos.org/webgl/, 12/2013

Page 159 of 478

ICIST 2014 - Vol. 1 Regular papers

	Vol.1
	Internet of Things
	5. QUALISYS WEB TRACKER – A WEB-BASED VISUALIZATION TOOL FOR REAL-TIME DATA OF AN OPTICAL TRACKING SYSTEM

