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Abstract— Wearable motion sensors provide data that 

directly reflect the motion of individual body parts and that 

can enable the development of advanced tracking and 

analysis procedures. Today widely available light and small 

size sensors make a wide range of practical measurements 

feasible. As these sensors are somewhat inaccurate, they are 

primarily suitable for monitoring motion dynamics. A 

number of studies conducted so far show that these sensors 

can be efficiently used for motion pattern identification and 

classification enabling general motion analysis and 

evaluation. To make full advantage of the feasibility and 

widespread use of these sensors, it is necessary to provide 

for, in terms of lifetime and computational complexity, 

efficient calibration and data analysis procedures. 

I. INTRODUCTION 

Natural human motion is a complex process that 
involves the entire psychophysical system. Motion 
analysis can contribute to a better and more 
comprehensive understanding of specific activities and of 
behavior in general. We can ascertain that motion 
evaluation is an important part of recreation, rehabilitation, 
injury prevention, and the objective determination of the 
level of functional ability of individuals.  

In the context of motion analysis, we strive for detection 
and recognition of different motion patterns. Essentially, 
motion pattern recognition is based on the capture and 
analysis of motion data of different motion-involved body 
segments. 

In modern methods for motion tracking, the relevant 
data are the starting point for a comprehensive motion 
analysis. Wearable wireless motion sensors [1-16] provide 
data that directly reflect the motion of individual body 
parts and that can enable the development of advanced 
tracking and analysis procedures. Today available 
kinematic sensors that are based on 
Microelectromechanical systems (MEMS) are small, light, 
widely affordable, and come with their own battery 
supply. These sensors cause minimal physical obstacles 
for motion performance and can provide simple, 
repeatable, and collectible motion data indoors. Moreover, 
because of their low energy consumption, MEMS sensors 
are a promising tool for tracking motion outdoors. 

 

II. SENSOR DATA INTERPRETATION 

A. The general 3D sensor model 

A 3D sensor is a device that measures a physical 
quantity in the three-dimensional space. As shown in 
Figure 1, values measured with a 3D sensor represent the 
projections of the measured quantity on three, mutually  

 

 

perpendicular, sensitivity axes of the device. These axes 
form the sensors coordinate system.  

 

 
Figure 1.  The illustration of the projections of the measured quantity 

vector q on the sensor sensitivity axes given with directions of vx, vy and 

vz. If the orientation of the sensor sensitivity axes is error free, these 

axes coincide with the coordinate system axes x, y and z. 

 
Providing measurements along the sensitivity axes, 3D 

accelerometers, gyroscopes and magnetometers enable 
complete motion capture, including the change in position 
as in orientation. 

A number of available sensors enable data capture with 
high sample frequencies. This is a great benefit when 
capturing data of rapid movements. 

B. 3D accelerometer 

A 3D accelerometer enables measurements of 
acceleration caused by gravity and self-accelerated motion 
along the three orthogonal sensitivity axes. As such, 
accelerometers have a number of applications in several 
fields.  

The result of sensitivity to gravity is that when at rest, 
the accelerometer shows 1 g of acceleration directed 
upwards along the axis of sensitivity oriented along the 
direction normal to the horizontal surface. This makes it 
easy to determine the orientation with respect to the 
direction of the vector of gravitational acceleration in the 
accelerometer coordinate system. It is a necessary 
condition that the accelerometer is stationary or moving 
with negligible acceleration in relation to the gravitational 
acceleration.  

Although the MEMS sensor technology is improving 
rapidly, MEMS accelerometers do not enable the 
estimation of the exact sensor position. When trying to 
estimate the orientation of an inaccurate sensor during its 
accelerated movement, the specific problems of correct 
gravitational acceleration estimation appear. Improperly 
deducted gravitational acceleration is reflected in an 
incorrectly determined motion direction of the accelerated 
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sensor. Since the position data is obtained with double 
integration of acceleration, even small errors in the 
estimated direction of acceleration can cause a significant 
deviation of the calculated sensor position form its true 
position. Therefore, based on the measured acceleration, it 
is extremely difficult, if not impossible, to determine the 
exact position of a moving body.  

Widely available low-cost and somewhat inaccurate 
MEMS accelerometers are hence primarily suitable for 
monitoring motion dynamics. Rather than determining the 
absolute values of the motion, when capturing motion 
dynamics we dedicate are attention to the relative changes, 
trying to create an effective framework for motion pattern 
identification. 

C. 3D gyroscope 

3D gyroscopes measure angular velocity in an inertial 
space and as accelerometers have a number of applications 
in many fields.  

By providing angular velocity measurements, 3D 
gyroscopes are also used to determine orientation. In 
general, the orientation is treated as the position of the 
coordinate system of a rigid body observed relative to a 
reference coordinate system with the same origin. 
Orientation can be described using rotations needed to 
bring the coordinate system of a rigid body, initially 
aligned with the reference coordinate system, into its new 
position. In gyroscope measurements, the gyroscope is 
considered as the rigid body and inertial space coordinate 
system as the reference system. The measured angular 
velocity determines the rotation of the sensor to its new 
position. 

Because the measured angular velocities represent 
simultaneous rotations, it is not appropriate to consider 
them sequentially. Rotations in general are not 
commutative, and each possible rotational sequence has a 
different resulting angular orientation. Three simultaneous 
angular velocities, measured with the gyroscope can hence 
not be considered to be sequential. There are six possible 
different sequences of rotations around three axes. Each of 
these six sequences determines a different angular 
orientation, none of which corresponds to the three 
simultaneous rotations result.  

Angular velocities can be represented as vectors that are 
oriented along the direction of the axis of rotation, and 
their size corresponds to the size of the angular velocity. 
However, these vectors cannot be unreservedly treated in 
the same manner as normal vectors. In general, the sum of 
two angular velocity vectors in 3D space does not 
correspond to their rotational sum. For this reason, the 
angular velocity vectors cannot be regarded as Euclidean 
vectors. Hence, when analyzing data obtained with a 3D 
gyroscope it is necessary to provide for the correct 
interpretation of the obtained angular velocity data.  

To obtain the correct angular orientation, it is 
appropriate to consider that every angular orientation can 
be represented by a single rotation. Vector SORA 
(Simultaneous Orthogonal Rotations Angle) [17, 18] is a 
rotation vector which has components that are equal to the 
angles of the three simultaneous rotations around the 
coordinate system axes. The orientation and magnitude of 
this vector are equal to the equivalent single rotation axis 
and angle, respectively. As long as the orientation of the 
actual rotation axis is constant, given the SORA, the 
angular orientation of a rigid body can be calculated in a 

single step, thus making it possible to avoid computing the 
iterative infinitesimal rotation approximation.  

SORA is simple and well-suited for use in the real-time 
calculation of angular orientation based on angular 
velocity measurements derived using a gyroscope. 
Moreover, because of its simplicity, SORA can also be 
used in general angular orientation notation. Using the 
vector SORA provides for the correct interpretation of the 
values measured with the gyroscope. The measured values 
are equal to the projections of the measured angular 
velocity on the sensitivity axis of the gyroscope. This 
interpretation allows the applying of the general 3D sensor 
model to the 3D gyroscope. 

D. 3D magnetometer 

A 3D magnetometer provides for magnetic field 
measurements. As such, the 3D magnetometer can be a 
useful tool for determining orientation relative to the 
Earth’s magnetic field. However, due to disturbances in 
the magnetic field and the influence of motion on 
measurement error, 3D magnetometers are mostly used for 
intermediate motion phases when the sensor is at rest and 
not for capturing motion itself.   

III. SENSOR CALIBRATION 

When analyzing motion dynamics, just as in the case of 
absolute motion values estimation, accurate data are the 
basis for an effective and a comprehensive analysis. The 
accuracy of the captured data is essential for relevant and 
comparable results. The first step in motion data capture 
and analysis is hence sensor calibration. 

According to the generally adapted model, the accuracy 
of the values measured with a 3D sensor is influenced by 
the accuracy of the sensor axis sensitivity, zero level offset 
and orientation. The sensitivity of the sensor is called the 
ratio of the measured change in value and the real change, 
assuming that the sensor characteristic is full-scale linear. 
Zero level offset is the sensor measurement output when 
the real measured value is equal to zero. For a 3D sensor, 
considering sensitivities and zero level offsets gives 6 
calibration parameters.  

Further on, because of the imprecise manufacturing, the 
orientation of the sensor sensitivity axis may deviate from 
the sensor coordinate axes. The orientation of the 3D 
sensor sensitivity axes in the sensor coordinate system is 
fully defined with 6 parameters.  

The aim of different calibration procedures is to 
compensate for the measurement errors that arise because 
of the enlisted inaccuracies. According to the presented 
model, a total of 12 parameters are needed to be estimated. 
If the enlisted inaccuracies are time-invariant, the 
calibration parameters are constant and the calibration 
procedure is said to provide for static compensation. On 
the other hand, if the enlisted inaccuracies are time 
dependant, dynamic procedures have to be implemented 
and the calibration parameters are functions of time. 

Because of their small dimensions, low weight and 
affordability, MEMS sensors allow a wide range of 
practical measurements that can be conducted by 
individuals who do not have any prior special training. 
Time, computation and cost consuming calibration 
diminish the feasibility of the widespread use of these 
sensors to some extent. Accounting for the above-
mentioned considerations, it is necessary to provide for, in 
terms of lifetime and computational complexity, an 
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efficient calibration procedure that does not require any 
additional expensive equipment and is suitable for 
everyday practical use.  

For calibrating a 3D sensor a number of measurements 
are perform. The calibration parameters are estimated 
based on the known values and the measured values. 

Most procedures for calibrating the 3D accelerometer 
exploit the fact that the value of the measured acceleration 
at rest is constant and equal to gravity acceleration. 
Measured data are obtained during different orientations of 
the sensor on a level surface.  

For calibrating a 3D gyroscope, the sensor is usually 
rotated with known angular velocities around know axes. 
As the rotation axis remains constant, considering vector 
SORA, the measured angular velocity can be obtained by 
averaging the non-constant measured values during each 
calibration rotation. Considering this, it is possible to 
perform sensor calibration without the usage of special 
equipment that provide for constant rotation of the device. 

To determine the zero level offset of the 3D gyroscope 
it is sufficient to carry out a single measurement while the 
gyroscope is at rest.  

In the present general 3D sensor model, the influence of 
sensor noise is neglected. In practice present sensor noise 
causes errors in the estimated calibration parameters. It 
should be noted that for both sensors, the accelerometer 
and the gyroscope, the measured values can be obtained by 
averaging a large number of samples. When averaging, the 
power of noise declines with the number of samples. With 
a sufficient number of samples it is thus possible to 
achieve that the noise affecting the calibration is 
substantially less than the noise affecting each individual 
measurement. During accelerometer calibration, the sensor 
can be at rest an arbitrary long time. For a given value of 
the gyroscope calibration angular velocity, a greater 
number of samples results in a higher rotation angle.  

IV. MOTION DATA SEGMENTATION 

Measurements consisting noise are typical for the 
affordable kinematic sensors is use today. It is therefore 
necessary to implement an adequate filtering technique to 
reduce the influence of noise in the obtained raw data. 
Sensors supporting high sampling frequencies are 
advantageous for this purpose.  

The obtained filtered and re-sampled data are the basis 
for motion segmentation, pattern recognition, 
classification and clustering. Procedures used for this 
purpose are the ones used for general matching and 
similarity determination in the field of time series analysis. 
A quality tutorial on this topic can be found in [19]. 

Motion segmentation refers to the process of identifying 
motion sequences in the collected time series data. It is 
achieved considering some similarity measure that is 
applied to the target and the query sequence. 

Due to its simplicity and efficiency, the Euclidian 
distance is the most popular and common time series 
similarity measure. However, it requires that both 
sequences are of the same length. The measure itself is 
sensitive to distortions. In some time series, different 
subsequences can have different significance; a part of the 
series can be shifted or scaled in time; a part of the time 
series can be a subject to amplitude scaling. For this 
reason, the Euclidian distance is not always the optimal 
distance measure. 

In general time series similarity determination, elastic 
distance measures like Dynamic Time Warping (DTW) 
and its derivates [19, 20], the Longest Common 
Subsequence (LCSS) [19, 21], and the Minimal Variance 
Matching (MVM) [21] can be implemented to solve the 
problem of time scaling.  

DTW searches for the best alignment between two time 
series, attempting to minimize the distance between them 
[19]. DTW allows for dips and peaks alignment with their 
corresponding points from the other time series. DTW 
requires that each point of the query sequence is matched 
to each element of the target sequence.  

LCSS finds subsequences of two time series that best 
correspond to each other. When used for time-series 
analysis, it finds a match between two observations 
whenever the difference between them is below a given 
threshold. LCSS allows skipping elements of both the 
query and the target sequence and as such solves the 
problem of outliers.  

The MVM algorithm [21] computes the distance value 
between two time series directly based on the distances of 
corresponding elements. While LCSS optimizes over the 
length of the longest common subsequence, MVM directly 
optimizes the sum of distances of corresponding elements 
and does not require any distance threshold. MVM can 
skip some elements of the target series and is so used 
when the matching of the entire query sequence is of 
interest.  

Elastic measures are in general more robust than the 
Euclidian distance but are computationally more intensive. 
Adaptations of DTW exist that upon implementation of 
certain constraints make the execution of the DTW and the 
Euclidian distance comparable. 

Elastic measures adapt well when parts of the 
comparing time series have different time scale. However, 
their efficiency and reasonableness of their deployment for 
motion pattern recognition is yet to be fully investigated.  

V. MOTION EVALUATION 

A number of studies conducted so far have been focused 
on identifying motion patterns and enabling motion 
evaluation based on the analysis of individual motion 
parameters obtained using wearable motion sensors [8, 10-
14]. Most studies aimed to identify different body postures 
are based on collecting data from sensors attached to the 
body and making distinction between standing, sitting and 
lying down. In such stationary examples, the gravitational 
acceleration projections on the sensors coordinate axes are 
relatively easy to identify. Recognition of walking periods 
and transitions between different body postures using a 
kinetic sensor attached to the chest [11] is intended for the 
ambulatory monitoring of physical activity in the elderly 
population. The kinematic sensor here combines a 
gyroscope and two accelerometers. The analysis is based 
on the wavelet transform.  

A sensor including only a single gyroscope is shown to 
be efficient for measuring transitions between the sitting 
position standing [8]. Such a sensor is designed to assess 
the risk of falling in the elderly population.  

A system for pedestrian navigation in [9] is based on the 
use of the gyroscope to identify the intervals of rest. 

In a study [14] a comparative analysis of different 
techniques of classification human leg movement using 
individual parameters of the signals obtained with a pair of 
gyroscopes has been presented. The authors compare the 

Page 152 of 478

ICIST 2014 - Vol. 1 Regular papers



results of different classification methods including 
Bayesian decision-making, decision trees, the least squares 
method, the k-nearest neighbors, Dynamic Time Warping, 
Support Vector Machines, and neural networks. The 
comparison is based on the parameters of the relationship 
distinction, data processing cost and the self-study 
requirement. 

A comparative analysis of different human activities 
classification using sensors mounted on a moving body is 
presented in [10]. Human activities are classified using 
five sensor units mounted on the chest, shoulders and legs. 
Each sensor unit consists of a gyroscope, accelerometer 
and magnetometer. Characterizing parameters are 
excluded from the raw data using Principal Component 
Analysis (PCA). 

Different studies also deal with the possibilities of the 
usage of wearable sensor devices for identification motion 
patterns in sports. In [15] authors investigate motion 
during the golf swing. The purpose of this study is to 
determine the repeatability of the kinematics of the chest 
and pelvis during the backswing for different swing 
recurrences, between different players, days and locations 
(open and closed driving range). The results of the analysis 
indicate a high degree of repeatability in different 
conditions.  

In [16] a simple and practical detection of improper 
motion during the golf swing is presented. Here, individual 
swing motion is explored. Acceptable deviations, (i.e., 
those not having an effect on swing accuracy and 
consistency) from those leading to unsuccessful shots are 
differentiated using PCA. This enables the detection of an 
improper swing motion as illustrated in Figure 2. To 
accomplish this task, multiple swing motion data were 
captured using a single wearable motion sensor consisting 
of a 3D accelerometer and a 3D gyroscope. The analysis 
itself can be performed using an arbitrary component of 
the measured kinematic data, e.g. acceleration or angular 
velocity. Each swing observation is labeled according to 
its performance. Along with objective outcome 
evaluations, subjective marks provided by the golfer are 
also considered for the overall performance evaluation. 
Reflecting the overall feeling and easiness of swing 
motion, the subjective marks are very valuable when 
considering the player’s individual swing characteristics.  

The proposed method refers to a specific player, for his 
specific swing and with a specific club. According to this 
method, any portion of the golf swing (e.g., only the 
backswing) can be analyzed, which enables the detection 
of an improper motion in the early phases of the swing. 
With early improper motion detection, focus is given to 
the problem itself and not to the subsequent reactions.  

 

 

Figure 2.  A demonstrative example of the efficiency of wearable motion sensors together with suitable analysis techniques for motion analysis: 

improper motion detection during the golf swing. The left panel shows different observations of the golfer’s leading arm rotation around its intrinsic 

longitudinal axis during the first 0.625 s of the backswing. All reference observations refer to properly performed swings and are used to establish the 

acceptable deviations from the desired motion. The desired motion is obtained as the mean of the reference observations. Test observations 1-5 refer 

to an improperly performed swing, and 6 refers to a properly performed swing. Note that not all improper swing motions could be detected by directly 

comparing the test and reference observations. Test observations 1, 2, and 3 could eventually be detected. However, test observations 4 and 5, 

although referring to improperly performed swings, could not be distinguished from the reference observations. By showing the acceptable and test 

observation residual deviations in time domain, obtained using the PCA based procedure [16], the right side indicates errors in the performed swings. 

Acceptable deviations residuals represent deviations in properly performed swings attributed to noise and/or different artefacts. The deviation 

residuals for test observations 1-5, for which improper motion was detected, considerably exceed acceptable deviations residuals. Consistently 

positive values in the second half of the considered swing interval for test observations 1-4 indicate a typical improper motion in the associated 

swings. 
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VI. CONCLUSION 

Wearable kinematic sensors cause minimal physical 
obstacles for motion performance. Together with proper 
data analysis techniques, these sensors provide for simple 
and practical motion analysis and evaluation.  

It is possible to evaluate motion and detect improper 
motion in the early phases of its performance. This is 
essential for the offline improvement process.  

Exploring the possibilities of developing biofeedback 
applications relying on early-phase improper motion 
detection for real-time motion supervision and training 
can motivate further study. If upgraded with sufficient 
processing power, wearable motion sensors can be used to 
perform well-designed real-time analysis of the collected 
data. If further equipped with adequate small and light 
hardware (for example, audio speakers), useful feedback 
applications could be enabled. Instantaneously providing 
feedback information and bringing it to consciousness 
could help to improve shot accuracy and consistency in 
real time. Providing efficient swing analysis and 
performance evaluation in real time and offering 
immediate information on the likely outcome of the 
performing motion could potentially transform the 
approach to instruction and practice. 
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