
SDN-based concept for Network Monitoring

Vassil Gourov*
* Sofia, Bulgaria

vassilgourov@yahoo.com

Abstract- The deployment of increasing number of real-time
services over communication networks raises essential issues
for assurance of the quality of services, which requires a
clear picture of the network performance. The availability
of accurate statistics helps to estimate the traffic flows, to
find service degradation due to congestion, as well as to
optimize routing. Presently, for network measurement and
monitoring are applied various methods which require
separate infrastructure, and thus, higher expenses. Most
methods are not capable to meet all monitoring
requirements, some are not accurate or granular enough,
others are adding network load or lack scalability. The
paper provides a concept for using Software Defined
Networking as a unified monitoring solution, by suggesting
how to measure link utilization, packet loss and delay.
Initially, some monitoring methods are presented, and the
opportunity of using OpenFlow enabled topology in
Software Defined Networking for monitoring. The paper
proposes a monitoring concept for measuring link usage,
packet loss and delay.

I. INTRODUCTION
In last decades, Internet has evolved into a huge

structure interconnecting thousands of networks, and its
users have grown exponentially. The network has also
experienced deep changes in the services provided and the
usage patterns. Present trends towards Internet of Things
(IoT) and Factories of the Future (FoF), as well as the
development of several new applications and services
(such as video streaming, social networking, online
gaming, e-banking, e-business, etc.) have raised not only
issues of interoperability, but also have added new control
requirements and have significantly increased the network
complexity.

Present-day networks are growing large and need to
support a lot of new applications and protocols.
Subsequently, their management complexity is increasing,
which reflects on higher expenses due to maintenance and
operations [2], as well as, due to human errors in network-
downtime [3]. Certain new services (i.e. voice and video
delivery) are not capable to operate in a best effort
environment, where resources are socially shared,
resulting in delays and losses. On the other hand, there is
no guarantee that any new architecture would not result in
a similar problem a decade from now. Every time when a
new infrastructure capable of solving past problems is
introduced, new problems emerge. A solution that is able
to meet future requirements when they arise is needed,
and it is considered that Software Defined Networking
(SDN) may play an important role [1].

New Internet-based services need an environment
capable to dynamically adjust to changing demands, and
able to provide the best point-to-point connection. As the
performance of applications depends on the efficient

utilization of network resources, it is expected that the
exponential growth of users and Internet traffic could
create problems in provision of high quality of services
(QoS) and meeting users’ demands. Thus, accurate traffic
measurement (TM) becomes a key aspect for network
management, in order to reach QoS, ensure network
security and traffic engineering (TE). Due to the large
number of flow pairs, high volume of traffic and the lack
of measurement infrastructure it has become extremely
difficult to obtain direct and precise measurements in
Internet Protocol (IP) networks [4]. Current measurement
methods use too many additional resources or require
changes to the infrastructure configuration, thus, bringing
additional overhead. There is obvious a need to find a
network management solution able to provide accurate,
detailed and real-time picture of the network, being also
cheap and easy to implement.

The main problem addressed in this paper is how to
monitor network utilization efficiently in real time. The
aim is to use SDN as a lever to meet future networking
demands by designing a monitoring solution capable to
measure network utilization, delay and packet loss and to
evaluate it by using OpenFlow (OF) Protocol.
Subsequently, the main research questions are [1]: How
can monitoring be achieved with Software Defined
Networking? What kind of improvements could SDN
bring compared to present solutions?

This paper focuses initially on SDN specificity and the
available network monitoring solutions. Next a conceptual
architecture and a prototype are presented and the
implementation of a network monitoring solution in a real
test environment using the OF protocol. Finally, some
monitoring concept evaluation results are presented.

II. NETWORK MONITORING METHODS
Measuring the traffic parameters provides a real view of

the network properties, an in-depth understanding of the
network performance and the undergoing processes.
Network monitoring is crucial for QoS and assures that
the network functions properly. The ability to obtain real
traffic data makes possible to analyze network problems,
generate traffic matrices, optimize the network using TE
techniques or even upgrade it based on future predictions.
Finally, a proper network overview allows the routing
algorithms to take more appropriate decisions, increasing
the resource utilization and decreasing the congested
nodes/links [1].

Traditionally, different techniques are used for
measuring the amount and type of traffic in a particular
network. Generally, two distinct groups of measurement
methods are applied: passive and active. The former
counts the network traffic without injecting additional
traffic in the form of probe packets, while the latter is
achieved by generating additional packets. Both are useful

Page 137 of 478

ICIST 2014 - Vol. 1 Regular papers

for network monitoring purposes and for collecting
statistical data. Other methods focus on measurements on
application or network layers of the Open System
Interconnection (OSI) model. Network layer
measurements use infrastructure components (i.e. routers
and switches) to get statistics, whereas Application layer
measurements are operating on the upper layer and are
easier to deploy as they are application specific. The latter
are more granular and could be used also for better service
delivery, however, this method requires access to end
devices, which Internet Service Providers (ISP) normally
do not have [1]. It is important to note that OF provides
means to implement any of the methods or combine them
if needed, while traditionally every type of measurement
requires separate hardware or software installations.

Today, different techniques are applied to measure link
usage, end-to-end delay and packet loss. Some monitoring
techniques use direct measurement approaches. For
example, flow-based measurements such as NetFlow and
sFlow [5] rely on packet sampling in order to ensure
scalable real-time monitoring. This method, however, has
some limitations linked to high overhead and unreliable
data [6]. Deep Packet Inspection is heavily used within
network monitoring for security reasons and also for high
speed packet statistics. Unfortunately, few network
devices support it, so very often additional hardware
installations are required. Using DPI also creates a
network bottleneck point. Another method is based on
port counters: Simple Network Management Protocol
counters are used to gather information about packet and
byte counts across every individual switch interface [7].
Some of the limitations of this method are linked to the
switch query frequency (limited to once every 5 minute),
the overall resource utilization, the lack of insight into the
flow-level statistics and hosts behavior, and thus, the lack
of granularity of the monitoring information obtained [1].

Today, delay and packet loss data are mainly obtained
by application measurements and a common practice is to
use ping. It uses the round trip time (RTT) by sending a
number of packets from a source node to a destination
node and measures the time it takes for it to return back.
For example, Skitter [8] uses beacons that are situated
throughout the network to actively send probes to a set of
destinations. The link delay is calculated by finding the
difference between the RTT measures obtained from the
endpoints of the link. However, using such a strategy to
monitor the network delay and packet losses requires
installing additional infrastructure, because every beacon
is limited to monitor a set of links. Using this method
accounts additional inaccuracy and uncertainties [1].

Passive measurements are widely used for packet and
delay monitoring. An example of passive monitoring is
given in [9] and consists of capturing the header of each
IP packet and timestamp it before letting it back on the
wire. Packet tracers are gathered by multiple measurement
points at the same time. The technique is very accurate
(microseconds), but requires further processing in a
centralized system and recurrent collecting of the traces,
which generates additional network overhead.
Furthermore, every device needs accurate clock
synchronization between every node. Another similar
approach is used to measure packet losses [10]. It tags
uniquely each packet when it passes trough the source
node and accounts if it was received in the end node.

The OF protocol is capable of not only controlling the
forwarding plane, but also to monitor the traffic within the
network. OpenTM [11] estimates a TM, by keeping track
of the statistics for each flow and polling directly from the
switches situated within the network. The application
decides which switch to query on runtime and converges
to 3% error after 10 queries. In the paper presenting it,
several polling algorithms are compared for a querying
interval of 5 seconds [11].

In [12] an active measurement technique is suggested,
whereas the authors use the fact that every new flow
request has to pass through the controller. This allows
routing the traffic towards one of multiple traffic
monitoring systems, to record the traffic or to analyze it
with an Intrusion Detection System.

For passive measurements in FlowSense [13] are used
some features of OpenFlow in order the measurements to
be evaluated from three prospectives: accuracy (compared
to polling), granularity (estimate refresh) and staleness
(how quickly can the utilization be estimated). FlowSense
suggests gathering statistics passively based on the
massage the controller receives once the flow has expired.

In [14] is suggested to implement a new SDN protocol
for statistic gathering, whereas new software defined
traffic measurement architecture is proposed. The authors
implement five measurement tasks on top of an
OpenSketch enabled network in order to illustrate the
capabilities of this approach. The measurement tasks are
detection of: heavy hitters (small number of flows account
for most of the traffic), super spreader (a source that
contacts multiple destinations), traffic changes, flow size
distribution, traffic count.

A network monitoring system should be able to observe
and display up-to-date network state. It is obvious that
several monitoring solutions are already capable to do that
in one or another way. However, in order to meet the
specific challenges that ISPs face, the following design
requirements should be considered in a new monitoring
concept [1]:
 Fault detection - Whenever a link or node failure
happens, the network monitoring system should be
warned as soon as possible.
 Per-link statistics - ISPs require statistics for
every link in order to assure QoS within the boundaries
of their network, without bandwidth over-provisioning.
 Overhead - The proposed solutions should not
add too much network overhead. The overhead should
scale no matter how big the network is (as long as the
controller can handle them) or the number of active
flows at any moment. The component should be able to
obtain statistics based on the routing information, thus,
sending a query requests only to those devices that are
currently active.
 Accuracy - A big difference between the reported
network statistics and the real amount of used capacity
should be avoided.
 Granularity - The system should be able to
account for different type of services. It should be able
to make distinction between flows that have specific
needs, i.e. require special care (bandwidth, delay, etc.).
Furthermore, it should make distinction between
applications, as well as, clients.

Page 138 of 478

ICIST 2014 - Vol. 1 Regular papers

Finally, the monitoring solution should reduce the
amount of additional overhead generated in the network
and device as much as possible, without too much
degradation of the measurement accuracy.

III. MONITORING IN SOFTWARE DEFINED
NETWORKING

A. Emergence of Software Defined Networking concept
Presently, the communication networks architecture

rely on devices where the control plane and the data plane
are physically one entity, the architecture is coupled to the
infrastructure, and every node needs to be separately
programmed to follow the operator’s policies. In addition,
the companies that provide network devices have full
control over the firmware and the implementation of the
control logic. Thus, the trends in networks development
face operators with the challenges of meeting market
requirements, and ensuring interoperability and flexibility.
Generally, it could be summarized that the main
constraints limiting networks evolution include [1]:

Figure 1. Basic SDN architecture [1]

Figure 2. Scheme of OpenFlow controller [1]

TABLE I.
OPEN SOURCE OPENFLOW CONTROLLERS [1]

 complexity: The definition of many new
protocols result in difficulties for operators to configure
thousands of devices and mechanisms in order to reflect
any changes in the network topology or implement a
new policy [15].
 scalability: The exponential growth of data
demands and the not predictable change of traffic
patterns, as well as the emergence of cloud computing
and several new applications increase the demand for
bandwidth. The scalability problems emerge as
networks are no longer capable growing at the same
speed, and network providers could not endless invest
into new equipment [15].
 dependability: The dependability on equipment
vendors and the not sufficient inter-vendor operability
face network operators with several difficulties to tailor
the network to their individual environment.
Taking into account the need for a network that uses

simple, vendor-neutral and future-proof hardware [11], on
the one hand, and the ability of software to support all
present network requirements (e.g. access control, TE), on
the other, the SDN concept emerged as an option for more
centralized control system of the whole network [1].

The SDN approach decouples the control plane from
the network equipment and places it in a logically
"centralized" network operating system (OS), referred to
as controller. One way to achieve this is by using a
protocol to interconnect the two separated planes,
providing an interface for remote access and management.
The SDN architecture (Fig. 1) varies with the
implementation and depends of the type of network (i.e.
data-centre, enterprise and wide area network) and its
actual needs. The main idea behind SDN is to abstract the
architecture and provide an environment, which would
reduce the development time for new network applications
and allow network customization based on specific needs.
The main goals behind this architecture are to ensure [1]:
 interoperability: using centralized control over
the SDN enabled devices from any vendor throughout
the whole network;
 simplicity: to eliminate complexity issues and
make the network control easier and finer grained, thus
increasing reliability and security;
 innovativeness: with the abstraction of the
network services from the network infrastructure the
entire structure becomes much more evolvable, and
network operators would easily tailor the behavior of
the network and program new services faster.
The OF protocol is one way to implement the SDN

concept and to manage interconnected switches remotely.
This protocol allows the controller to install, update and
delete rules in one or more switch flow tables, either
proactively or reactively, to interconnect the forwarding
with the data plane, and to enable part of the control
operations to run on an external controller.

Since the controller is the most important element of the
SDN architecture, it attracts a lot of efforts and a number
of new controllers have been released (Example of some
of them is presented in Table I). Its main task is to add and
remove entries from the switch flow-tables. The controller
(Fig. 2) interacts with a set of switches via OF using the
Southbound interface. It is responsible for service and
topology management, and could be enhanced with

Page 139 of 478

ICIST 2014 - Vol. 1 Regular papers

additional features or could provide information to
external applications. Currently, the Northbound
communication is not standardized. Some efforts are made
to enhance the abstraction level by designing network
programming languages on top of the controllers [16],
[17]. Via Westbound and Eastbound interfaces the
controller is able to communicate with other controllers,
several proposals for this interaction are available [18].

Despite SDN abilities to overcome some network
problems, certain scalability limitations also exist as a
result of the centralized SDN architecture, and the
bottleneck that could be formed between the infrastructure
and the controller. Some concerns are linked to a
bottleneck with the switching equipment, in terms of
forwarding capacity (table memory) and the overhead that
could be created by constant reactive invocation of the
control plane.

B. Concept for OpenFlow monitoring architecture
Using Software Defined Networking could solve some

of the current monitoring problems in IP networks. Since,
SDN is a new paradigm, some architectural aspects are
still under investigation. In order to pay more attention to
the research problems that were already outlined, the
following two architecture assumptions are made based on
study of similar concepts of scholars [1]:

 First, one “centralized” controller manages all
switches and handles all the control operations.
 Second, there are no scalability issues for the
controller and the switches.

In order to illustrate and confirm the monitoring
abilities, a prototype is implemented as a Python
application for POX [19] (a Python-based OF controller
that can be used for fast implementation of network
control applications). The OF monitoring application (Fig.
3) works as a Core component of the controller, therefore,
it has access to all the available information, including
routing decisions. It is also capable to directly interact
with each switch that supports OF. The discovery
component is responsible to build a graph representation
of the network topology (topology view). A virtual switch
instance is created for every new switch that connects to
the controller, and each instance stores switch specific
information.

Figure 3. OpenFlow prototype [1]

Figure 4. Basic diagram of the monitoring component [1]

How it works? The first thing every OF switch does,
once it is started, is to establish a connection with the
designated controller. The switch gives its state and link
information. This allows the controller to keep a global
up-to-date network view. Once a packet enters the
network and no matching rule for it exists, it is forwarded
towards the controller. The controller inspects the packet
and determines how to handle it. Normally, the controller
would install new flow entry in every switch table that
needs and then return the packet to its source node. This
means that the controller has topology view of the
network and information about the active flows (IP
source/destination, port source/destination, etc.) and the
routes they take trough the network. Each switching
device within the network contains activity counters, i.e.
for OF there are separate table, port, flow and queue
counters. The flow and route information should be used
as input parameters of the monitoring component (Fig. 4).
It is responsible to poll one or multiple network devices
per flow, which in terms should return the requested
information. Another option is to implement a passive
measurement and wait for the switches to send statistics
once the flow has expired. Every time the flow is no
longer active for some time the switches may send
message, indicating the utilization statistics for the flow.
The author considers that the monitoring component
should make use of the two statistical gathering
approaches. The final output should be data for link
utilization [1].

C. Monitoring concept
By using SDN to implement a network monitoring

system some of the objectives given in II above are
already met. Since every device communicates with the
controller, there is real-time view on the network status,
including links, nodes, interfaces, etc. Furthermore, it
provides sufficient granularity and it is capable to monitor
the utilization of every link within a given network
without sampling any packet or adding more overhead to
any of the switches.

OpenFlow allows granular view of the network, but this
is done by generating additional network/switch load.
Obtaining flow statistics is a task that requires polling for
information for every flow separately. The following ways
for its improvement are proposed [1]:
 Aggregate flows: Generate only one query per
set of flows that share the same parameters, for example
the same source destination path instead of polling
statistics for every flow separately.
 Data collection schemes: In case that there is no
packet loss between the source-destination devices, poll
different switches, thus reducing the overhead on a

Page 140 of 478

ICIST 2014 - Vol. 1 Regular papers

single switch/link and spreading it evenly. Otherwise,
stick to query the last switch only.
 Adaptive polling: Using a recurrent timer does
not accommodate traffic changes and spikes.
Furthermore, it may miss traffic changes resulting in
inaccurate statistics. Hence, an adaptive algorithm that
adjusts its query rate could enhance the accuracy and
reduce the overhead.
According to the OF switch specifications [20],

switches have to keep counters for port, flow table/entry,
queue, group, group bucket, meter and meter band. Table
II presents the Per Flow Entry counters used. Furthermore,
in order to follow the statistics for more than one flow,
there is an option to bundle multiple flows in a group and
observe their aggregated statistics.

The monitoring concept [1] implements new packet
loss and link utilization methods, and known delay
measurements. The main processes are depicted in Fig. 5
The monitoring component released in POX registers
every "PacketIn" event and creates a unique identification
based on the flow information. Additionally, a separate ID
is used to distinguish between the network paths. Every
flow is assigned to a certain path, and the monitoring
component keeps track of every flow that enters and the
path it follows through the network. Furthermore, every
Switch object also accounts the flows that pass through it.
This information is later used to determine the link
utilization.

In order to execute a piece of code in the future or
assign a recurring event the monitoring component uses
the Timer class incorporated in POX. In case, this is the
first packet that uses this route, the monitoring component
starts a polling timer for every second. Whenever the
timer expires it fires an event. During this event a data
collection algorithm is used (Round Robin or Last
Switch). These two algorithms present a trade-of between
accuracy and overhead. Afterwards, a message
"StatusRequest" to the chosen switch is sent. This is the
query requesting statistics for all the flows that follow the
same path. Every path has a separate timer.

When a switch receives a "StatusRequest" message it
generates a response. The "StatusReply" message contains
the information obtained from the switch counters. On
flow level it gives the duration of the flow (in
nanoseconds), packet and byte count. Port statistics give
more information about the state (both transmitted and
received) such as number of dropped packets, bytes, errors
and collisions. The controller obtains information for
every flow that follows the same path. The polling timer is
also adjusted. The controller tracks the time that passed
since the last flow routed trough this path was registered,
as this time increases, the polling timer also increases. In
the implementation, the controller polls every second for
the first five seconds, then every five seconds until the 15th
second, moving to 15 seconds until the end of the first
minute and polling once per minute when there has not
been any flow activity for over a minute.

When the switch removes a flow entry from its table,
because it was deleted or expired, it also raises a
"FlowRemoved" event. Such event means that this flow is
no longer active and the monitoring component does not
need to account for it anymore. The controller receives a
massage that indicates the whole duration of the flow
together with the data statistics for this particular flow.

Figure 5. Monitoring algorithm [1]

TABLE II. COUNTERS [20]

Counter Description

Received Packets Counts the number of packets

Received Bytes Counts the number of bytes

Duration (seconds) Indicates the time the flow has been installed on
the switch in seconds

Duration
(nanoseconds)

Counts time the flow has been alive beyond the
seconds in the above counter

Figure 6. Calculating the packet loss percentage [1]

This is used to obtain packet loss information and
undertake actions for the upcoming flows. If it is needed
the controller may actively poll for packet loss statistics
while the flow is still active. While this method generates
additional overhead it is useful for cases when it is
required to measure packet loss during the data transfer.

For measuring link packet loss a novel approach is
proposed, capable to eliminate the overhead, and based on
passive measurements. The main presumption is that
packet loss metrics can be generalized on per class basis
without loss of accuracy, and that measuring the packet
loss for every single flow would not be viable. In order to
estimate a stable and accurate link metric, that does not
fluctuate too much, a set of measurements are required,
more specifically - a metric that represents most of the
packets, without accounting for the anomalous changes or
the statistical outliers. As in an active network flows
terminate every second, thus, the obtained measurements
would still be real-time [1].

The whole process for measuring packet loss is
depicted in Fig. 6. On a new flow arrival and when the
switch does not have any rules installed, the first packet is

Page 141 of 478

ICIST 2014 - Vol. 1 Regular papers

sent towards the controller. The controller is then
responsible to decide what to do with the packet and
eventually install table rules on each switch on the path of
the flow. Once the flow has finished each switch indicates
this with another message to the controller. The flow is
installed at time t0 with a "FlowMod" message sent from
the controller towards every switch on the route of the
flow. At time t1, t2, up to tN (where N is the amount of
switches), the controller receives "FlowRemoved"
messages. Those messages indicate that the flow has
expired and give some specific statistics for the flow, such
as: the number of bytes, packets and the flow duration.
Measuring the packet-loss relies on the fact that each
switch sends this information based on its own counters.

Each switch has separate flow counters, but it counts
different amount of bytes. This is due to link losses,
congested links, etc. Receiving flow information from
every switch allows comparing counter statistics and
calculating the number of bytes that were lost. Whenever
messages that the flow has expired from the same flow are
received their recorded packet bytes are compared. This
comparison allows determining the packet losses for the
particular flow. The technique is sufficient to determine
what the current link state for this traffic class is. In case
there is a need for flow packet loss, the controller could
poll for two or more node flow counters periodically [1].

IV. EVALUATION RESULTS
The preliminary tests were done in two phases. First,

using a virtual environment Mininet 2 (a container-based
emulator able to create realistic virtual topology) [21] used
hardware consists of Intel Core i5 nodes (the controller
included) with four 2.53 GHz cores and 4 GB RAM. The
containers mechanism uses groups of processes that run
on the same kernel and yet use separate system resources,
like network interfaces and IDs. Thus, every emulated
switch or host creates its own process. Network links can
be assigned specific link properties such as bandwidth and
packet-loss. However, like most emulators, Mininet has
also some drawbacks, e.g. processes do not run in parallel,
instead they use time multiplexing, which may cause
delayed packet transmission, not suitable for time accurate
experiments.

As the results from the preliminary tests showed
promising results, the same experiments were repeated in
a real topology. The physical testbed was installed on
servers that have Intel(R) Xeon(TM) processor with four
3.00 GHz cores. Every switch uses separate physical
machine with Ubuntu 12.04.2 LTS operating system. The
testbed uses Open vSwitch [44] as OF enabled switch.
Traffic is generated by the Iperf application. This is a
network testing tool capable to create TCP and UDP
traffic between two hosts, where one is acting as client
and the other as server. It measures the end-to-end (either
uni- or bi-directional) throughput, packet loss and jitter.
NetEm [25] is used, in order to emulate link packet losses
and delay. It is an Linux kernel enhancement that uses the
queue discipline integrated from version 2.6.8 (2.4.28) and
later [1].

Different tests were carried out for measuring link
utilization, comparing direct flow and aggregate flow
statistics, adaptive and recurring polling, and for testing
the proposed packet loss measurement method. The
results for link utilization measurements show that [1]:

 using the aggregate flow query method decreases
the overhead that is generated;

 the adaptive polling gives better results in terms of
accuracy and overhead then recurrent polling.

The new method for measuring the packet loss was
tested first in Mininet environment, and then repeated in
the testbed. The results showed that the packet-loss varies
from flow to flow. The packet-loss distribution results
were promising, an average of 0.99% losses per flow and
standard deviation of ±0.34 (due to the fact that NetEm
uses normal distribution for packet loss emulation).

In order to determine exactly how accurate the method
is 18 flows were recorded (Iperf Server report) and then
compared with the measured packet loss. The first
measurement consisted of sending flows worth of 64 Kbps
for the duration of 195 seconds (average call duration).
The results obtained matched perfectly with the Iperf
Server report [1]. The second set of measurements
emulated short term Video connection using MPEG 2
with data rate of 10 Mbps, whereas 10 flows set to
continue each for 2 minutes were recorded. The results
from both measurements prove that the proposed
measurement method gives perfect accuracy.

The test results generally suggest that in order to reduce
the network overhead, a technique that aggregates all
flows that go through the same network route should be
used. In addition, for eliminating the need of trade-off
between overhead and accuracy, it is better to base the
polling decisions not on the recurrent interval, but on the
occurrence of certain event.

Finally, the new measurement method for packet losses
has proven to be really accurate, and capable to determine
the exact percentage for each link and also for any path.
While it is a passive method, it does not impose additional
network overhead, and it is not influenced by the network
characteristics like the active probing methods that
currently exist. The method is capable to provide statistics
for every different type of service that passes trough the
network.

Possible extensions to the measurements schemes
suggested in this paper could be considered. The accuracy
could be improved based on a combination of past
statistics, link characteristics or weighted measurements
results without imposing additional overhead. The
adaptive timer requires more tuning, therefore, more
research would be necessary on when more samples are
needed and when less. More experiments in a real
environment would help to fully proof the proposed
measurement approaches. For the suggested packet loss
method some questions need to be answered like: how
much data are enough to take that the reported percentage
of packet losses is not a random spike and how long
before the data are too old to be considered valid [1].

V. CONCLUSIONS
This paper explores the concept of network monitoring

implemented in SDN architectures. In terms of network
monitoring, SDN allows to build a monitoring solution
adjusted to the specific network needs. By using SDN the
monitoring system is capable to obtain a complete view of
the network that includes nodes, links and even ports.
Furthermore, the solutions are capable to obtain fine
grained and accurate statistics, for every flow that passes
trough the network.

Page 142 of 478

ICIST 2014 - Vol. 1 Regular papers

Once there are suitable monitoring systems capable to
provide the necessary performance and usage statistics,
the next phase is the network optimization phase. Major
goal of TE is to enhance the performance of an
operational network, at both traffic and resource level.
Network monitoring takes an important part in TE by
measuring the traffic performance parameters.
Additionally, today TE in service provider’s networks
works on coarse scale of several hours. This gives enough
time for offline TM estimation or it’s deduction via
regressed measurements. Unfortunately, this approach is
not always viable, current IP traffic volume changes
within seconds (or miliseconds), which could lead to
congestion and packet losses in the most crucial moment.

Since SDN is a new architecture still gaining
popularity, there are also some questions that need to be
answered in terms of routing. Obtaining an accurate and
real time view of the network could bring more benefits
and open more options. Monitoring the network is the first
step towards a SDN forwarding protocol capable to
provide sufficient QoS for all types of applications and
traffic.

Finally, it should be stressed that all present trends
towards IoT, cloud computing, FoF, etc. highly depend on
the availability of high-speed networks with certain QoS.
While researchers are heavily working on the
interoperability of applications and new Internet-based
services, if the present problems on the transportation
layer are not timely resolved, a real bottleneck for further
developments could emerge.

ACKNOWLEDGMENT
The author gratefully acknowledges the MSc Thesis

guidance provided by the Network Architectures and
Services Group of Delft University of Technology.

REFERENCES
[1] V. Gourov, Network Monitoring with Software Defined

Networking, Masters Thesis, TU Delft, Netherlands, August 2013.
[2] M. H. Behringer, “Classifying network complexity” in ReArch

’09, New York, USA, 2009, pp. 13–18.
[3] Z Kerravala, Configuration management delivers business

resiliency, Technical report, The Yankee Group, 2002.
[4] Q. Zhao, Z. Ge, J. Wang, J. Xu, “Robust traffic matrix estimation

with imperfect information: making use of multiple data sources”,
SIGMETRICS Perform. Eval. Rev., 34(1), 2006, pp. 133–144.

[5] sFlow. Traffic Monitoring using sFlow, URL:
http://www.sflow.org/sFlowOverview.pdf. Online, July 2013.

[6] P. L. C. Filsfils, A. Maghbouleh, Best Practices in Network
Planning and Traffic Engineering, Technical report, CISCO
Systems, 2011.

[7] W. Stallings. “SNMP and SNMPv2: the infrastructure for network
management”, Comm. Mag., 36(3), 1998, pp. 37–43.

[8] B. Huffaker, D. Plummer, D. Moore, K. Claffy, “Topology
discovery by active probing”, in SAINT, Nara, Japan, 2002, pp.
90–96.

[9] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.
Rockell, T. Seely, C. Diot, “Packet-Level Traffic Measurements
from the Sprint IP Backbone”, IEEE Network, 17, 2003, pp. 6–16.

[10] Silver Peak Systems, “How to Accurately Detect and Correct
Packet Loss”, URL: http://www.silver-peak.com/info-center/how-
accurately-detect-and-correct-packet-loss. Online, July 2013.

[11] A. Tootoonchian, M. Ghobadi, Y. Ganjali, “OpenTM: traffic
matrix estimator for OpenFlow networks”, in PAM’10, Berlin,
Heidelberg, Springer-Verlag, 2010, pp. 201–210.

[12] J. R. Ballard, I. Rae, A. Akella, “Extensible and scalable network
monitoring using OpenSAFE”, in INM/WREN’10, Berkeley, USA,
2010, pp. 8.

[13] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, H. V.
Madhyastha, “FlowSense: monitoring network utilization with
zero measurement cost”, in PAM’13, Berlin, Heidelberg, Springer-
Verlag, 2013, pp. 31–41=

[14] M. Yu, L. Jose, R. Miao, “Software defined traffic measurement
with OpenSketch”, in NSDI’13, Berkeley, USA, 2013, pp. 29–42.

[15] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-ford,
A. Story, D. Walker, “Frenetic: a network programming
language”, SIG-PLAN Not., 46(9), 2011, pp. 279–291.

[16] ONF, Software-defined Networking: The New Norm for Networks,
White Paper, April 2012.

[17] A. Voellmy, H. Kim, N. Feamster, “Procera: a language for high-
level reactive network control”, in HotSDN’12, New York, USA,
2012, pp. 43–48.

[18] A. Tootoonchian, Y. Ganjali, “HyperFlow: a distributed control
plane for OpenFlow”, in INM/WREN’10, Berkeley, USA, 2010,
pp. 3.

[19] Murphy McCauley, About POX, URL:
http://www.noxrepo.org/pox/about-pox/. Online, 2013.

[20] The Open Networking Foundation, OpenFlow Switch
Specification v1.3.1, URL:
https://www.opennetworking.org/images/stories/downloads/specif
ication/openflow-spec-v1.3.1.pdf. Online, September 2012.

[21] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKe-own,
“Reproducible network experiments using container-based
emulation”, in CoNEXT ’12, New York, USA, 2012, pp. 253–264.

Page 143 of 478

ICIST 2014 - Vol. 1 Regular papers

	Vol.1
	Internet of Things
	2. SDN-based concept for Network Monitoring

