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Abstract- The deployment of increasing number of real-time 
services over communication networks raises essential issues 
for assurance of the quality of services, which requires a 
clear picture of the network performance. The availability 
of accurate statistics helps to estimate the traffic flows, to 
find service degradation due to congestion, as well as to 
optimize routing. Presently, for network measurement and 
monitoring are applied various methods which require 
separate infrastructure, and thus, higher expenses. Most 
methods are not capable to meet all monitoring 
requirements, some are not accurate or granular enough, 
others are adding network load or lack scalability. The 
paper provides a concept for using Software Defined 
Networking as a unified monitoring solution, by suggesting 
how to measure link utilization, packet loss and delay. 
Initially, some monitoring methods are presented, and the 
opportunity of using OpenFlow enabled topology in 
Software Defined Networking for monitoring. The paper 
proposes a monitoring concept for measuring link usage, 
packet loss and delay. 

I. INTRODUCTION 
In last decades, Internet has evolved into a huge 

structure interconnecting thousands of networks, and its 
users have grown exponentially. The network has also 
experienced deep changes in the services provided and the 
usage patterns. Present trends towards Internet of Things 
(IoT) and Factories of the Future (FoF), as well as the 
development of several new applications and services 
(such as video streaming, social networking, online 
gaming, e-banking, e-business, etc.) have raised not only 
issues of interoperability, but also have added new control 
requirements and have significantly increased the network 
complexity.  

Present-day networks are growing large and need to 
support a lot of new applications and protocols. 
Subsequently, their management complexity is increasing, 
which reflects on higher expenses due to maintenance and 
operations [2], as well as, due to human errors in network-
downtime [3]. Certain new services (i.e. voice and video 
delivery) are not capable to operate in a best effort 
environment, where resources are socially shared, 
resulting in delays and losses. On the other hand, there is 
no guarantee that any new architecture would not result in 
a similar problem a decade from now. Every time when a 
new infrastructure capable of solving past problems is 
introduced, new problems emerge. A solution that is able 
to meet future requirements when they arise is needed, 
and it is considered that Software Defined Networking 
(SDN) may play an important role [1]. 

New Internet-based services need an environment 
capable to dynamically adjust to changing demands, and 
able to provide the best point-to-point connection. As the 
performance of applications depends on the efficient 

utilization of network resources, it is expected that the 
exponential growth of users and Internet traffic could 
create problems in provision of high quality of services 
(QoS) and meeting users’ demands. Thus, accurate traffic 
measurement (TM) becomes a key aspect for network 
management, in order to reach QoS, ensure network 
security and traffic engineering (TE). Due to the large 
number of flow pairs, high volume of traffic and the lack 
of measurement infrastructure it has become extremely 
difficult to obtain direct and precise measurements in 
Internet Protocol (IP) networks [4]. Current measurement 
methods use too many additional resources or require 
changes to the infrastructure configuration, thus, bringing 
additional overhead. There is obvious a need to find a 
network management solution able to provide accurate, 
detailed and real-time picture of the network, being also 
cheap and easy to implement.  

The main problem addressed in this paper is how to 
monitor network utilization efficiently in real time. The 
aim is to use SDN as a lever to meet future networking 
demands by designing a monitoring solution capable to 
measure network utilization, delay and packet loss and to 
evaluate it by using OpenFlow (OF) Protocol. 
Subsequently, the main research questions are [1]: How 
can monitoring be achieved with Software Defined 
Networking? What kind of improvements could SDN 
bring compared to present solutions?  

This paper focuses initially on SDN specificity and the 
available network monitoring solutions. Next a conceptual 
architecture and a prototype are presented and the 
implementation of a network monitoring solution in a real 
test environment using the OF protocol. Finally, some 
monitoring concept evaluation results are presented. 

II. NETWORK MONITORING METHODS 
Measuring the traffic parameters provides a real view of 

the network properties, an in-depth understanding of the 
network performance and the undergoing processes. 
Network monitoring is crucial for QoS and assures that 
the network functions properly. The ability to obtain real 
traffic data makes possible to analyze network problems, 
generate traffic matrices, optimize the network using TE 
techniques or even upgrade it based on future predictions. 
Finally, a proper network overview allows the routing 
algorithms to take more appropriate decisions, increasing 
the resource utilization and decreasing the congested 
nodes/links [1]. 

Traditionally, different techniques are used for 
measuring the amount and type of traffic in a particular 
network. Generally, two distinct groups of measurement 
methods are applied: passive and active. The former 
counts the network traffic without injecting additional 
traffic in the form of probe packets, while the latter is 
achieved by generating additional packets. Both are useful 

Page 137 of 478

ICIST 2014 - Vol. 1 Regular papers



for network monitoring purposes and for collecting 
statistical data. Other methods focus on measurements on 
application or network layers of the Open System 
Interconnection (OSI) model. Network layer 
measurements use infrastructure components (i.e. routers 
and switches) to get statistics, whereas Application layer 
measurements are operating on the upper layer and are 
easier to deploy as they are application specific. The latter 
are more granular and could be used also for better service 
delivery, however, this method requires access to end 
devices, which Internet Service Providers (ISP) normally 
do not have [1]. It is important to note that OF provides 
means to implement any of the methods or combine them 
if needed, while traditionally every type of measurement 
requires separate hardware or software installations. 

Today, different techniques are applied to measure link 
usage, end-to-end delay and packet loss. Some monitoring 
techniques use direct measurement approaches. For 
example, flow-based measurements such as NetFlow and 
sFlow [5] rely on packet sampling in order to ensure 
scalable real-time monitoring. This method, however, has 
some limitations linked to high overhead and unreliable 
data [6]. Deep Packet Inspection is heavily used within 
network monitoring for security reasons and also for high 
speed packet statistics. Unfortunately, few network 
devices support it, so very often additional hardware 
installations are required. Using DPI also creates a 
network bottleneck point. Another method is based on 
port counters: Simple Network Management Protocol 
counters are used to gather information about packet and 
byte counts across every individual switch interface [7]. 
Some of the limitations of this method are linked to the 
switch query frequency (limited to once every 5 minute), 
the overall resource utilization, the lack of insight into the 
flow-level statistics and hosts behavior, and thus, the lack 
of granularity of the monitoring information obtained [1].  

Today, delay and packet loss data are mainly obtained 
by application measurements and a common practice is to 
use ping. It uses the round trip time (RTT) by sending a 
number of packets from a source node to a destination 
node and measures the time it takes for it to return back. 
For example, Skitter [8] uses beacons that are situated 
throughout the network to actively send probes to a set of 
destinations. The link delay is calculated by finding the 
difference between the RTT measures obtained from the 
endpoints of the link. However, using such a strategy to 
monitor the network delay and packet losses requires 
installing additional infrastructure, because every beacon 
is limited to monitor a set of links. Using this method 
accounts additional inaccuracy and uncertainties [1]. 

Passive measurements are widely used for packet and 
delay monitoring. An example of passive monitoring is 
given in [9] and consists of capturing the header of each 
IP packet and timestamp it before letting it back on the 
wire. Packet tracers are gathered by multiple measurement 
points at the same time. The technique is very accurate 
(microseconds), but requires further processing in a 
centralized system and recurrent collecting of the traces, 
which generates additional network overhead. 
Furthermore, every device needs accurate clock 
synchronization between every node. Another similar 
approach is used to measure packet losses [10]. It tags 
uniquely each packet when it passes trough the source 
node and accounts if it was received in the end node. 

The OF protocol is capable of not only controlling the 
forwarding plane, but also to monitor the traffic within the 
network. OpenTM [11] estimates a TM, by keeping track 
of the statistics for each flow and polling directly from the 
switches situated within the network. The application 
decides which switch to query on runtime and converges 
to 3% error after 10 queries. In the paper presenting it, 
several polling algorithms are compared for a querying 
interval of 5 seconds [11]. 

In [12] an active measurement technique is suggested, 
whereas the authors use the fact that every new flow 
request has to pass through the controller. This allows 
routing the traffic towards one of multiple traffic 
monitoring systems, to record the traffic or to analyze it 
with an Intrusion Detection System.  

For passive measurements in FlowSense [13] are used 
some features of OpenFlow in order the measurements to 
be evaluated from three prospectives: accuracy (compared 
to polling), granularity (estimate refresh) and staleness 
(how quickly can the utilization be estimated). FlowSense 
suggests gathering statistics passively based on the 
massage the controller receives once the flow has expired. 

In [14] is suggested to implement a new SDN protocol 
for statistic gathering, whereas new software defined 
traffic measurement architecture is proposed. The authors 
implement five measurement tasks on top of an 
OpenSketch enabled network in order to illustrate the 
capabilities of this approach. The measurement tasks are 
detection of: heavy hitters (small number of flows account 
for most of the traffic), super spreader (a source that 
contacts multiple destinations), traffic changes, flow size 
distribution, traffic count. 

A network monitoring system should be able to observe 
and display up-to-date network state. It is obvious that 
several monitoring solutions are already capable to do that 
in one or another way. However, in order to meet the 
specific challenges that ISPs face, the following design 
requirements should be considered in a new monitoring 
concept [1]:  
 Fault detection - Whenever a link or node failure 
happens, the network monitoring system should be 
warned as soon as possible. 
 Per-link statistics - ISPs require statistics for 
every link in order to assure QoS within the boundaries 
of their network, without bandwidth over-provisioning. 
 Overhead - The proposed solutions should not 
add too much network overhead. The overhead should 
scale no matter how big the network is (as long as the 
controller can handle them) or the number of active 
flows at any moment. The component should be able to 
obtain statistics based on the routing information, thus, 
sending a query requests only to those devices that are 
currently active. 
 Accuracy - A big difference between the reported 
network statistics and the real amount of used capacity 
should be avoided. 
 Granularity - The system should be able to 
account for different type of services. It should be able 
to make distinction between flows that have specific 
needs, i.e. require special care (bandwidth, delay, etc.). 
Furthermore, it should make distinction between 
applications, as well as, clients. 
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Finally, the monitoring solution should reduce the 
amount of additional overhead generated in the network 
and device as much as possible, without too much 
degradation of the measurement accuracy. 

III. MONITORING IN SOFTWARE DEFINED 
NETWORKING 

A. Emergence of Software Defined Networking concept 
Presently, the communication networks architecture 

rely on devices where the control plane and the data plane 
are physically one entity, the architecture is coupled to the 
infrastructure, and every node needs to be separately 
programmed to follow the operator’s policies. In addition, 
the companies that provide network devices have full 
control over the firmware and the implementation of the 
control logic. Thus, the trends in networks development 
face operators with the challenges of meeting market 
requirements, and ensuring interoperability and flexibility. 
Generally, it could be summarized that the main 
constraints limiting networks evolution include [1]: 

 
Figure 1.  Basic SDN architecture [1] 

 
Figure 2.  Scheme of OpenFlow controller [1] 

TABLE I.   
OPEN SOURCE OPENFLOW CONTROLLERS [1] 

 

 complexity: The definition of many new 
protocols result in difficulties for operators to configure 
thousands of devices and mechanisms in order to reflect 
any changes in the network topology or implement a 
new policy [15]. 
 scalability: The exponential growth of data 
demands and the not predictable change of traffic 
patterns, as well as the emergence of cloud computing 
and several new applications increase the demand for 
bandwidth. The scalability problems emerge as 
networks are no longer capable growing at the same 
speed, and network providers could not endless invest 
into new equipment [15]. 
 dependability: The dependability on  equipment 
vendors and the not sufficient inter-vendor operability 
face network operators with several difficulties to tailor 
the network to their individual environment. 
Taking into account the need for a network that uses 

simple, vendor-neutral and future-proof hardware [11], on 
the one hand, and the ability of software to support all 
present network requirements (e.g. access control, TE), on 
the other, the SDN concept emerged as an option for more 
centralized control system of the whole network [1]. 

The SDN approach decouples the control plane from 
the network equipment and places it in a logically 
"centralized" network operating system (OS), referred to 
as controller. One way to achieve this is by using a 
protocol to interconnect the two separated planes, 
providing an interface for remote access and management. 
The SDN architecture (Fig. 1) varies with the 
implementation and depends of the type of network (i.e. 
data-centre, enterprise and wide area network) and its 
actual needs. The main idea behind SDN is to abstract the 
architecture and provide an environment, which would 
reduce the development time for new network applications 
and allow network customization based on specific needs. 
The main goals behind this architecture are to ensure [1]: 
 interoperability: using centralized control over 
the SDN enabled devices from any vendor throughout 
the whole network; 
 simplicity: to eliminate complexity issues and 
make the network control easier and finer grained, thus 
increasing reliability and security; 
 innovativeness: with the abstraction of the 
network services from the network infrastructure the 
entire structure becomes much more evolvable, and 
network operators would easily tailor the behavior of 
the network and program new services faster. 
The OF protocol is one way to implement the SDN 

concept and to manage interconnected switches remotely. 
This protocol allows the controller to install, update and 
delete rules in one or more switch flow tables, either 
proactively or reactively, to interconnect the forwarding 
with the data plane, and to enable part of the control 
operations to run on an external controller.  

Since the controller is the most important element of the 
SDN architecture, it attracts a lot of efforts and a number 
of new controllers have been released (Example of some 
of them is presented in Table I). Its main task is to add and 
remove entries from the switch flow-tables. The controller 
(Fig. 2) interacts with a set of switches via OF using the 
Southbound interface. It is responsible for service and 
topology management, and could be enhanced with 
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additional features or could provide information to 
external applications. Currently, the Northbound 
communication is not standardized. Some efforts are made 
to enhance the abstraction level by designing network 
programming languages on top of the controllers [16], 
[17]. Via Westbound and Eastbound interfaces the 
controller is able to communicate with other controllers, 
several proposals for this interaction are available [18]. 

Despite SDN abilities to overcome some network 
problems, certain scalability limitations also exist as a 
result of the centralized SDN architecture, and the 
bottleneck that could be formed between the infrastructure 
and the controller. Some concerns are linked to a 
bottleneck with the switching equipment, in terms of 
forwarding capacity (table memory) and the overhead that 
could be created by constant reactive invocation of the 
control plane.  

B. Concept for OpenFlow monitoring architecture 
Using Software Defined Networking could solve some 

of the current monitoring problems in IP networks. Since, 
SDN is a new paradigm, some architectural aspects are 
still under investigation. In order to pay more attention to 
the research problems that were already outlined, the 
following two architecture assumptions are made based on 
study of similar concepts of scholars [1]: 

 First, one “centralized” controller manages all 
switches and handles all the control operations.  
 Second, there are no scalability issues for the 
controller and the switches.  

In order to illustrate and confirm the monitoring 
abilities, a prototype is implemented as a Python 
application for POX [19] (a Python-based OF controller 
that can be used for fast implementation of network 
control applications). The OF monitoring application (Fig. 
3) works as a Core component of the controller, therefore, 
it has access to all the available information, including 
routing decisions. It is also capable to directly interact 
with each switch that supports OF. The discovery 
component is responsible to build a graph representation 
of the network topology (topology view). A virtual switch 
instance is created for every new switch that connects to 
the controller, and each instance stores switch specific 
information.  

 
Figure 3.  OpenFlow prototype [1] 

 
Figure 4.  Basic diagram of the monitoring component [1] 

How it works? The first thing every OF switch does, 
once it is started, is to establish a connection with the 
designated controller. The switch gives its state and link 
information. This allows the controller to keep a global 
up-to-date network view. Once a packet enters the 
network and no matching rule for it exists, it is forwarded 
towards the controller. The controller inspects the packet 
and determines how to handle it. Normally, the controller 
would install new flow entry in every switch table that 
needs and then return the packet to its source node. This 
means that the controller has topology view of the 
network and information about the active flows (IP 
source/destination, port source/destination, etc.) and the 
routes they take trough the network. Each switching 
device within the network contains activity counters, i.e. 
for OF there are separate table, port, flow and queue 
counters. The flow and route information should be used 
as input parameters of the monitoring component (Fig. 4). 
It is responsible to poll one or multiple network devices 
per flow, which in terms should return the requested 
information. Another option is to implement a passive 
measurement and wait for the switches to send statistics 
once the flow has expired. Every time the flow is no 
longer active for some time the switches may send 
message, indicating the utilization statistics for the flow. 
The author considers that the monitoring component 
should make use of the two statistical gathering 
approaches. The final output should be data for link 
utilization [1]. 

C. Monitoring concept 
By using SDN to implement a network monitoring 

system some of the objectives given in II above are 
already met. Since every device communicates with the 
controller, there is real-time view on the network status, 
including links, nodes, interfaces, etc. Furthermore, it 
provides sufficient granularity and it is capable to monitor 
the utilization of every link within a given network 
without sampling any packet or adding more overhead to 
any of the switches. 

OpenFlow allows granular view of the network, but this 
is done by generating additional network/switch load. 
Obtaining flow statistics is a task that requires polling for 
information for every flow separately. The following ways 
for its improvement are proposed [1]: 
 Aggregate flows: Generate only one query per 
set of flows that share the same parameters, for example 
the same source destination path instead of polling 
statistics for every flow separately. 
 Data collection schemes: In case that there is no 
packet loss between the source-destination devices, poll 
different switches, thus reducing the overhead on a 
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single switch/link and spreading it evenly. Otherwise, 
stick to query the last switch only. 
 Adaptive polling: Using a recurrent timer does 
not accommodate traffic changes and spikes. 
Furthermore, it may miss traffic changes resulting in 
inaccurate statistics. Hence, an adaptive algorithm that 
adjusts its query rate could enhance the accuracy and 
reduce the overhead. 
According to the OF switch specifications [20], 

switches have to keep counters for port, flow table/entry, 
queue, group, group bucket, meter and meter band. Table 
II presents the Per Flow Entry counters used. Furthermore, 
in order to follow the statistics for more than one flow, 
there is an option to bundle multiple flows in a group and 
observe their aggregated statistics. 

The monitoring concept [1] implements new packet 
loss and link utilization methods, and known delay 
measurements. The main processes are depicted in Fig. 5 
The monitoring component released in POX registers 
every "PacketIn" event and creates a unique identification 
based on the flow information. Additionally, a separate ID 
is used to distinguish between the network paths. Every 
flow is assigned to a certain path, and the monitoring 
component keeps track of every flow that enters and the 
path it follows through the network. Furthermore, every 
Switch object also accounts the flows that pass through it. 
This information is later used to determine the link 
utilization. 

In order to execute a piece of code in the future or 
assign a recurring event the monitoring component uses 
the Timer class incorporated in POX. In case, this is the 
first packet that uses this route, the monitoring component 
starts a polling timer for every second. Whenever the 
timer expires it fires an event. During this event a data 
collection algorithm is used (Round Robin or Last 
Switch). These two algorithms present a trade-of between 
accuracy and overhead. Afterwards, a message 
"StatusRequest" to the chosen switch is sent. This is the 
query requesting statistics for all the flows that follow the 
same path. Every path has a separate timer. 

When a switch receives a "StatusRequest" message it 
generates a response. The "StatusReply" message contains 
the information obtained from the switch counters. On 
flow level it gives the duration of the flow (in 
nanoseconds), packet and byte count. Port statistics give 
more information about the state (both transmitted and 
received) such as number of dropped packets, bytes, errors 
and collisions. The controller obtains information for 
every flow that follows the same path. The polling timer is 
also adjusted. The controller tracks the time that passed 
since the last flow routed trough this path was registered, 
as this time increases, the polling timer also increases. In 
the implementation, the controller polls every second for 
the first five seconds, then every five seconds until the 15th 
second, moving to 15 seconds until the end of the first 
minute and polling once per minute when there has not 
been any flow activity for over a minute. 

When the switch removes a flow entry from its table, 
because it was deleted or expired, it also raises a 
"FlowRemoved" event. Such event means that this flow is 
no longer active and the monitoring component does not 
need to account for it anymore. The controller receives a 
massage that indicates the whole duration of the flow 
together with the data statistics for this particular flow.  

 
Figure 5.  Monitoring algorithm [1] 

TABLE II.  COUNTERS [20] 

Counter Description 

Received Packets Counts the number of packets 

Received Bytes Counts the number of bytes 

Duration (seconds) Indicates the time the flow has been installed on 
the switch in seconds 

Duration 
(nanoseconds) 

Counts time the flow has been alive beyond the 
seconds in the above counter 

 

 
Figure 6.  Calculating the packet loss percentage [1] 

This is used to obtain packet loss information and 
undertake actions for the upcoming flows. If it is needed 
the controller may actively poll for packet loss statistics 
while the flow is still active. While this method generates 
additional overhead it is useful for cases when it is 
required to measure packet loss during the data transfer. 

For measuring link packet loss a novel approach is 
proposed, capable to eliminate the overhead, and based on 
passive measurements. The main presumption is that 
packet loss metrics can be generalized on per class basis 
without loss of accuracy, and that measuring the packet 
loss for every single flow would not be viable. In order to 
estimate a stable and accurate link metric, that does not 
fluctuate too much, a set of measurements are required, 
more specifically - a metric that represents most of the 
packets, without accounting for the anomalous changes or 
the statistical outliers. As in an active network flows 
terminate every second, thus, the obtained measurements 
would still be real-time [1].  

The whole process for measuring packet loss is 
depicted in Fig. 6. On a new flow arrival and when the 
switch does not have any rules installed, the first packet is 
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sent towards the controller. The controller is then 
responsible to decide what to do with the packet and 
eventually install table rules on each switch on the path of 
the flow. Once the flow has finished each switch indicates 
this with another message to the controller. The flow is 
installed at time t0 with a "FlowMod" message sent from 
the controller towards every switch on the route of the 
flow. At time t1, t2, up to tN (where N is the amount of 
switches), the controller receives "FlowRemoved" 
messages. Those messages indicate that the flow has 
expired and give some specific statistics for the flow, such 
as: the number of bytes, packets and the flow duration. 
Measuring the packet-loss relies on the fact that each 
switch sends this information based on its own counters. 

Each switch has separate flow counters, but it counts 
different amount of bytes. This is due to link losses, 
congested links, etc. Receiving flow information from 
every switch allows comparing counter statistics and 
calculating the number of bytes that were lost. Whenever 
messages that the flow has expired from the same flow are 
received their recorded packet bytes are compared. This 
comparison allows determining the packet losses for the 
particular flow. The technique is sufficient to determine 
what the current link state for this traffic class is. In case 
there is a need for flow packet loss, the controller could 
poll for two or more node flow counters periodically [1]. 

IV. EVALUATION RESULTS 
The preliminary tests were done in two phases. First, 

using a virtual environment Mininet 2 (a container-based 
emulator able to create realistic virtual topology) [21] used 
hardware consists of Intel Core i5 nodes (the controller 
included) with four 2.53 GHz cores and 4 GB RAM. The 
containers mechanism uses groups of processes that run 
on the same kernel and yet use separate system resources, 
like network interfaces and IDs. Thus, every emulated 
switch or host creates its own process. Network links can 
be assigned specific link properties such as bandwidth and 
packet-loss. However, like most emulators, Mininet has 
also some drawbacks, e.g. processes do not run in parallel, 
instead they use time multiplexing, which may cause 
delayed packet transmission, not suitable for time accurate 
experiments.  

As the results from the preliminary tests showed 
promising results, the same experiments were repeated in 
a real topology. The physical testbed was installed on 
servers that have Intel(R) Xeon(TM) processor with four 
3.00 GHz cores. Every switch uses separate physical 
machine with Ubuntu 12.04.2 LTS operating system. The 
testbed uses Open vSwitch [44] as OF enabled switch. 
Traffic is generated by the Iperf application. This is a 
network testing tool capable to create TCP and UDP 
traffic between two hosts, where one is acting as client 
and the other as server. It measures the end-to-end (either 
uni- or bi-directional) throughput, packet loss and jitter. 
NetEm [25] is used, in order to emulate link packet losses 
and delay. It is an Linux kernel enhancement that uses the 
queue discipline integrated from version 2.6.8 (2.4.28) and 
later [1]. 

Different tests were carried out for measuring link 
utilization, comparing direct flow and aggregate flow 
statistics, adaptive and recurring polling, and for testing 
the proposed packet loss measurement method. The 
results for link utilization measurements show that [1]:  

 using the aggregate flow query method decreases 
the overhead that is generated; 

 the adaptive polling gives better results in terms of 
accuracy and overhead then recurrent polling. 

The new method for measuring the packet loss was 
tested first in Mininet environment, and then repeated in 
the testbed. The results showed that the packet-loss varies 
from flow to flow. The packet-loss distribution results 
were promising, an average of 0.99% losses per flow and 
standard deviation of ±0.34 (due to the fact that NetEm 
uses normal distribution for packet loss emulation). 

In order to determine exactly how accurate the method 
is 18 flows were recorded (Iperf Server report) and then 
compared with the measured packet loss. The first 
measurement consisted of sending flows worth of 64 Kbps 
for the duration of 195 seconds (average call duration). 
The results obtained matched perfectly with the Iperf 
Server report [1]. The second set of measurements 
emulated short term Video connection using MPEG 2 
with data rate of 10 Mbps, whereas 10 flows set to 
continue each for 2 minutes were recorded. The results 
from both measurements prove that the proposed 
measurement method gives perfect accuracy. 

The test results generally suggest that in order to reduce 
the network overhead, a technique that aggregates all 
flows that go through the same network route should be 
used. In addition, for eliminating the need of trade-off 
between overhead and accuracy, it is better to base the 
polling decisions not on the recurrent interval, but on the 
occurrence of certain event.  

Finally, the new measurement method for packet losses 
has proven to be really accurate, and capable to determine 
the exact percentage for each link and also for any path. 
While it is a passive method, it does not impose additional 
network overhead, and it is not influenced by the network 
characteristics like the active probing methods that 
currently exist. The method is capable to provide statistics 
for every different type of service that passes trough the 
network. 

Possible extensions to the measurements schemes 
suggested in this paper could be considered. The accuracy 
could be improved based on a combination of past 
statistics, link characteristics or weighted measurements 
results without imposing additional overhead. The 
adaptive timer requires more tuning, therefore, more 
research would be necessary on when more samples are 
needed and when less. More experiments in a real 
environment would help to fully proof the proposed 
measurement approaches. For the suggested packet loss 
method some questions need to be answered like: how 
much data are enough to take that the reported percentage 
of packet losses is not a random spike and how long 
before the data are too old to be considered valid [1]. 

V. CONCLUSIONS 
This paper explores the concept of network monitoring 

implemented in SDN architectures. In terms of network 
monitoring, SDN allows to build a monitoring solution 
adjusted to the specific network needs. By using SDN the 
monitoring system is capable to obtain a complete view of 
the network that includes nodes, links and even ports. 
Furthermore, the solutions are capable to obtain fine 
grained and accurate statistics, for every flow that passes 
trough the network. 
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Once there are suitable monitoring systems capable to 
provide the necessary performance and usage statistics, 
the next phase is the network optimization phase. Major 
goal of TE is to enhance the performance of an 
operational network, at both traffic and resource level. 
Network monitoring takes an important part in TE by 
measuring the traffic performance parameters. 
Additionally, today TE in service provider’s networks 
works on coarse scale of several hours. This gives enough 
time for offline TM estimation or it’s deduction via 
regressed measurements. Unfortunately, this approach is 
not always viable, current IP traffic volume changes 
within seconds (or miliseconds), which could lead to 
congestion and packet losses in the most crucial moment. 

Since SDN is a new architecture still gaining 
popularity, there are also some questions that need to be 
answered in terms of routing. Obtaining an accurate and 
real time view of the network could bring more benefits 
and open more options. Monitoring the network is the first 
step towards a SDN forwarding protocol capable to 
provide sufficient QoS for all types of applications and 
traffic. 

Finally, it should be stressed that all present trends 
towards IoT, cloud computing, FoF, etc. highly depend on 
the availability of high-speed networks with certain QoS. 
While researchers are heavily working on the 
interoperability of applications and new Internet-based 
services, if the present problems on the transportation 
layer are not timely resolved, a real bottleneck for further 
developments could emerge. 
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