
SRU/W service for CRIS UNS system

Valentin Penca*, Siniša Nikolić *, Dragan Ivanović *
* University of Novi Sad/Faculty of Technical Sciences/Department of Computing and Automatics , Novi Sad, Serb ia

{valentin_penca,sinisa_nikolic, chenejac}@uns.ac.rs

Abstract—. This paper describes an independent, modular
software component that enables search and retrieval of
scientific research data from CRIS system in accordance to
SRU/W standard. The component is implemented as an
extension of existing CRIS UNS system of University of Novi
Sad.

I. INTRODUCTION
The development of science has been accelerated with

the appearance of information systems for managing data.
Standardization of such systems is very important. System
that contains information on publications , events, research
products, researchers and research institutions would have
to be based on generally accepted standards. An
appropriate example of such system is the Current
Research Information System (CRIS) [1] that is based on
the Common European Research Information Format
(CERIF) [2] standard. CERIF standard represents the
physical data model [3] and provides the exchange of
XML messages between communicating systems [4].
Today, any respectable scientific research institutions
should use some form of CRIS system.

CRIS can include various scientific research data from
digital libraries, institutional repositories (IR) and other
research information systems. It is evidently that CRIS
systems store diverse types of scientific data, so it is
necessary to provide an efficient search mechanism which
should be based on a standard. The standard should
provide independence of search process from scientific
research data models.

The necessity for a standardization of the search is
described in a series of papers . The most widely used
standard in the area of search of digital contents is
certainly Z39.50 [5]. One of the many examples of using
Z39.50 standard is described in [6], where it is used for
searching and connecting of the Iranian libraries.

However Z39.50 has certain drawbacks that new
generation standard SRU is trying to overcome. SRU
standard is trying to keep functionality defined with
Z39.50 and to provide its implementation using currently
available Internet technologies. One of the main
advantages of SRU compare to Z39.50 is possibility of
SRU to exchange XML messages which is not allowed by
Z39.50.

Papers such as [7] and [8] confirm the use of the
standard SRU/W. Zarić has described a client application
that has an ability to connect to remote servers by Z39.50
or SRU/W protocols and to simultaneously search data of
remote servers.

Apache OpenOffice started a new Bibliographic project
(OooBib) [9]. The bibliographic project will design and
build an easy to use and comprehensive bibliographic
facility within OpenOffice. It will be easy to use for the
casual user, but will meet all the requirements of the
professional and academic writer. The new bibliographic
facility will utilise the latest open standards and will make
the fullest use of emerging XML, XSLT and SRU/W
technologies.

SRU (Search and Retrieve via URL) 2.0 has been
approved as a standard by the Organization for the
Advancement of Structured Information Standards
(OASIS) [10].

The paper [11] states that in the CRIS systems the
search functionality is often neglected, which certainly
reduces their usefulness. CRIS systems contain a large
amount of data that can be interpreted differently in
individual CRIS systems. The problem of simultaneously
information searching in several such systems is clearly
reviled. EuroCRIS proposes an introduction of CERIF as
an uniform standard to overcome the problem of data
search. It is emphasized that the most effective method to
search CRIS system should be based on metadata.

In [12] a list of records for CRIS systems is given, for
which is necessary to implement the functionality of the
search. The CRIS systems based on the CERIF standard
should allow search of: researchers, organizational units
(institutions), projects, publications, products, patents,
equipment, events (conferences, workshops etc) and
sponsors.

II. CRIS UNS
In year 2009, at the Faculty of Sciences and the Faculty

of Technical Sciences a development of information
system for managing scientific research data from
University of Novi Sad (CRIS UNS) [13] was started. The
first phase of development of this system was modeling,
and data entry of published scientific results. Testing and
verification on the results of researcher from Faculty of
Sciences was performed. At the beginning of 2013, a total
number of records was over 73000.

The system for search of scientific research data is
integrated within the existing system for management of
scientific research data. Integration of these systems is
achieved by modifying the existing and adding new
components. The motivation for this research was to:

 provide public access and search for data from
institutions/organizations, researchers and
published scientific results within the
University of Novi Sad.

Page 108 of 478

ICIST 2014 - Vol. 1 Regular papers

http://www.loc.gov/standards/sru/
https://www.oasis-open.org/

 use common search standards to make
precondition for interoperability with similar

systems that contain scientific research data.
Figure 1 shows the architecture of the system using the

UML deployment diagram. Yellow color is used to show
the modified components, while the green colored
components are those added for the purpose of the search
system

Client SRU/SRW - SRU/W Interface : Client-side
application is an external application (usually part of
another system) which implements the client side of the
SRU/W protocol version 2.0. Support of context sets CQL
version 1.2 [14] and the DC version 1.1 [15] is the
minimum requirement for client side applications. Search
of the all available records of the system is poss ible if the
client side application supports CRIS profile [16]. The
communication between client applications and server-
side applications is done via HTTP or SOAP.

SRU/W Server Side: This component executes the
server side of SRU/W protocol version 2.0. The
Search/Retrieve, Scan and Explain services are
implemented. Server side of SRU/W accepts e.g.
Search/Retrieve queries via SOAP. Afterwards, SRU/W
Server Side component invokes Search Mediator
component, which will process the CQL query. SRU/W
server side forwards the search results provided by the
Search Mediator to the appropriate SRU/W client.

Search Мediator : This component allows to search the
system by using the CQL query language. XML
description of the context sets and specification of the
CQL language are used for verification of the CQL query
(correct syntax and semantics of a query). The system
uses XML representation and JAXB (Java Architecture
for XML Binding) [18] library to make object form from
the context sets. CQL query is transformed into a query
language of Text Server component and then the
transformed query is executed in Text Server. Search
Mediator component accepts and process user's CQL
query from SRU/W Server Side and Interface
components. Afterwards, search results are converted in
accordance with the component which has initiated the
call of Search Mediator component. Search Mediator
component use converters that are defined in DTO &
MARC21 components.

Text server : Text Server is a component based on
Apache Lucene [19] library for text searching and
indexing of scientific research data. Component defines
searchable indexes for scientific research data from
Database.

DTO & MARC 21: DTO & MARC 21 is a component
which provides conversions between DTO objects and

object representations of a MARC 21 [17] record. DTO
(Data Transfer Object) are objects that are used to
transport data between the application components.
During the search, the Mediator component uses
component DTO & MARC 21 for conversion of results
from MARC 21 object representations in correspondent
DTO objects or XML representations (MARC XML [20],
Dublin Core Extended XML [21]). If the search is
initiated by the Interface or SRU/W client, component
DTO & MARC 21 will not start loading content of DTO
objects from the database, yet it will only take their
existing textual representations from Apache Lucene.
Therefore, performance of the system is improved by
avoiding a completely loading of records stored in the
database.

III. SRU/W STANDARD
SRU/W search is based on indexes that describe

different search resources. Unambiguous of search
semantics and syntax, the search query is defined by CQL
(Contextual Query Language) [22] and with context sets
that are organized in SRU/W profiles. CQL is a common
query language for searching resources where the context
sets are concepts which define allowed entities in a CQL
query.

SRU standard has two different implementations in
which the first one can search and retrieve data by sending
messages via HTTP GET and POST methods (SRU) and
the other one is using the SOAP protocol (SRW) for the
exchange of messages. Basic difference between SRU and
SRW version is in a manner of sending messages [23].
SRW version of the protocol packaged messages in a
SOAP Envelope element, while the SRU protocol version
defines the message in the principle of parameter/value
pairs where the parameter/value are included in URL
address. Another difference between the two versions is
that the SRU protocol is using only the HTTP protocol for
transmission of messages, while SRW besides the HTTP
protocol can use the SSH (Secure Shell) and the SMTP
(Simple Mail Transfer Protocol) protocol.

Unlike the Z39.50 standard which defines 11 different
services, the SRU standard defines three services
(operations), since it was observed and concluded that
only a certain number of services defined by the Z39.50
standard were actually used in practice. Services e defined
by SRU standards are:

Application/Search Server

Apache Tomcat Interface

Text server

Database

Search mediatorSRU/W Server
Side

DTO & MARC21

Client SRU/SRW

SRU/SRW Interface

Client

Web browser

Database

MySQL DMBS

<<HTTP>>

<<SOAP>>

<<HTTP>>

<<JDBC>>

Figure 1 - CRIS UNS Architecture

Page 109 of 478

ICIST 2014 - Vol. 1 Regular papers

 SearchRetrieve. - service that is responsible for
search and retrieval of data, where client sends
SearchRetrieveRequest and gets
SearchRetrieveResponse message as an
answer from Server.

 Scan - service that allows the client to get all
values from particular index. Also if
supportable by the server, one more optional
feature is possible. For each value of the index
the number of hits obtained during the search
of that index can be given. Messages that are
used in communication are the scanRequest
and scanResponse.

 Explain - service that allows client to send
explainReqest in a manner to find out
information about standard details which are
supported by the server in a form of
scanResponse message.

In CRIS UNS, only transport mechanism that involves
use of SOAP Protocol is implemented.

IV. JAXWS
Java API for XML Web Services (JAX-WS) [24] is one

of the sets of Java technologies used to develop Web
services. JAX-WS is a new programming model that
simplifies application development through support of a
standard, annotation-based model to develop Web Service
applications and clients. JAX-WS belongs to what Sun
Microsystems calls the "core Web services" group. Like
most of the core groups, JAX-WS is typically used in
conjunction with other technologies. Those other
technologies may also come from the core Web services
group (JAXB, for example). JAX-WS represents remote
procedure calls or messages using XML-based protocols
such as SOAP, but hides SOAP's innate complexity
behind a Java-based API. Developers use this API to
define methods, then code one or more classes to
implement those methods and leave the communication
details to the underlying JAX-WS API.

JAX-WS technology has been selected for the
development of web services in the CRIS UNS for the
following reasons:

 JAX-WS is one of the leading technologies for
development of web services based on the
Java programming language

 To follow a good practice in the development of
CRIS UNS on open source technologies based
on the Java programming language

There are two approaches for developing web services
by using JAX-WS technology:

 Developing a JAX-WS Web service from a
JavaBean (bottom-up development). When
developing a JAX-WS Web service starting
from JavaBeans, a bean that already exists can
used to enable the implementation for JAX-
WS Web services. The use of annotations
simplifies the enabling of a bean for Web
services. It is not required to develop a WSDL
file because the use of annotations can provide
all WSDL information necessary to configure
the service endpoint or the client.

 Another approach is to create a JAX-WS Web
service, but now with an existing WSDL file

using JavaBeans (top-down development).
This WSDL document could be obtained from
another developer, a system architect, a UDDI
registry, or you could write it yourself.

In this paper, top-down development is chosen for
creating JAX-WS web service. WSDL is a XML
document that is used for describing web service
elements, operations and structures that are used in
communication. WSDL document is consisted of seven
elements: types, message, operation, portType,
binding, port, service.

Element types defined in WSDL specification is used
to describe data types or structures that are used in
message exchange process. Since, the document/literal
wrapped pattern of the message is selected, each message
is represented by the corresponding XML element
specified within the correspondent XML schema. Schema
defines six elements, for every SRU/W service (operation)
two elements respectively, one for request message and
another for response message. Therefore, the following
messages are defined:

 searchRetrieveRequest
 searchRetrieveResponse,
 scanRequest
 scanResponse
 explainRequest
 explainResponse .

Element binding is used to define a protocol that will
be used for message exchanging and for defining format
and message encoding. For
searchRetrieveOperation operation, whose binding
element is shown in Listing 1, the HTTP protocol was
selected to transport the SOAP messages.
<binding name="SRW-SoapBinding"type="SRWPort">

<soap:binding style="document"

transport="http://schemas.xmlsoap/soap/http"/>

<operation name="SearchRetrieveOperation">

<soap:operationsoapAction=""style="document"/>

<input> <soap:body use="literal"/> </input>

<output> <soap:body use="literal"/> </output>

</operation>

...

</binding>

Listing 1 - SearchRetrieveOperation binding
Element portType is consistsed from set of operations

that are represented with an element operation,
whereby for each operation are defined the input and the
output parameters. On Listing 2 is presented a part of
XML document that describes operation supported by
SRU/W standard.
<portType name="SRWPort">

<operation name="SearchRetrieveOperation">

<inputmessage="SearchRetrieveRequestMessage"/>

<outputmessage="SearchRetrieveResponseMessage"

/> </operation> <operation

name="ScanOperation"> <input

message="ScanRequestMessage"/> <output

message="ScanResponseMessage"/> </operation>

<operation name="ExplainOperation"> <input

message="ExplainRequestMessage"/> <output

message="ExplainResponseMessage"/>

</operation>

Listing 2 - portType operation

Page 110 of 478

ICIST 2014 - Vol. 1 Regular papers

http://searchsoa.techtarget.com/definition/Java

Element service defines the physical location of the
web service. On Listing 3 is shown an example of the web
service definition that is installed on the local computer.
<?xml version="1.0" encoding="UTF-8"?>

<definitionsname="SRW"> ...

<service name="SRWSampleService">

<port name="SRW" binding="SRW-SoapBinding">

<soap:addresslocation="http://localhost:8080/"

/> </port> <port name="ExplainSOAP"

binding="Explain-SoapBinding">

<soap:addresslocation="http://localhost:8080/"

/> </port> </service> </definitions>

Listing 3 - Service location
Apache CXF [25] is chosen for implementation of a

web service from WSDL. After creating a WSDL file,
with CXF library developing process of a JAX-WS
service is divided into three steps:

1. Generate starting point code.
2. Implement the service's operations.
3. Publish the implemented service.

Generate starting point code. JAX-WS specifies a
detailed mapping from a service defined in WSDL to the
Java classes that will implement that service. The logical
interface, defined by the wsdl:portType element, is
mapped to a Service Endpoint Interface (SEI). Any
complex types defined in the WSDL are mapped into Java
classes following the mapping defined by the Java
Architecture for XML Binding (JAXB) specification. The
endpoint defined by the wsdl:service element is also
generated into a Java class that is used by consumers to

access endpoints implementing the service.

The wsdl2java command automates the generation of this
code. It also provides options for generating starting point
code for our implementation and an ant based makefile to
build the application. The wsdl2java provides a number
of arguments for controlling the generated code. In Table
1 are presented the classes which are commonly generated
based on the information from the WSDL.

File Description

portTypeName.java

The SEI class. This file
contains the java interface
that service implements.
This file should not be
edited.

serviceName.java

The endpoint class. This
file contains the Java class

which clients will use to
make requests on the

service.

portTypeNameImpl.ja
va

The skeleton
implementation class. This
class needs to be modified

with concrete
implementation of service

Table 1 - WSDL generated classes

0..11..1

0..1
0..*

SRW Port

+
+
+

searchRetrieveOperation (SearchRetrieveRequestType body)
scanOperation (scanRequest body)
explainOperation (ExplainRequestType body)

: SearchRetrieveResponseType
: ScanResponseType
: ExplainResponseType

SRWPortImpl

+
+
+

<<Implement>>
<<Implement>>
<<Implement>>

searchRetrieveOperation (SearchRetrieveRequestType body)
scanOperation (scanRequest body)
explainOperation (ExplainRequestType body)

: SearchRetrieveResponseType
: ScanResponseType
: ExplainResponseType

SRWValidator

+ validateSRWRequest (Object request) : int

SRW Exception

+ generateExeception (int exceptionCode) : String

Figure 2 - SRU/W Server Side

Page 111 of 478

ICIST 2014 - Vol. 1 Regular papers

Implementation and publishing of web services are the
steps that a developer should do by changing previously
generated classes.

V. SRU/W SERVICE
Class diagram of SRU/W server-side is given on the
Figure 2.Generated classes are part of the SRU/W Server
Side architecture. Class SRW Port is a Java interface
which contains only declaration (prototype) of a web
service functions. Implementation of service business
logic is located in class SRW Port Implementation,
where particular SRU/W service (searchRetrive, scan,
explain) is as aimplemented separate function. Whether
the requirements of clients are in accordance with the
SRU/W standard, is checked by the class SRWValidator.
Depending on the request type and disagreement with the
SRU/W standard, SRWException class generates an
appropriate message.

Communication between clients and web service in CRIS
UNS system is done by exchanging SOAP messages . One
of the most common scenarios is where the client sends a
valid CQL query inserted as a parameter of
searchRetrieveRequest element as shown in Listing
4.CQL query defines a request for records which a word
―service‖ is contained in record titles. In SOAP request
message a version of SRU/W protocol (2.0) is also
specified. Parameter <maximumRecords> is maximum
number of records which client can get in a response.
Elements startRecord defines starting point in record
result set (for example, if the value of the element is 3, the
client wants to obtain the records , starting with the third
record from the set of results). It is obviously a limit
where startRecord must be less than or equal to the
value maximumRecords (startRecord <=
maximumRecords).

<?xml version="1.0" ?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap

/envelope/">

<searchRetrieveRequest

xmlns="http://www.loc.gov/zing/srw/"

xmlns:ns2="http://www.loc.gov/zing/cql/xcql/"

xmlns:ns3="http://www.loc.gov/zing/srw/diagnos

tic/">

<query>dc.title="service"</query>

<version>2.0</version>

<startRecord>1</startRecord>

<maximumRecords>5</maximumRecords>

<recordPacking>xml</recordPacking>

</searchRetrieveRequest>

</soapenv:Body>

</soapenv:Envelope>

</operation>

Listing 4 - SRU/W SOAP request
Listing 5 outlines a response SOAP message. As it is
expected, the complete response is located in separated
<searchRetrieveResponse> element. As a part of the
response, protocol version (2.0) on the server and the total
number of records (<numberOfRecords>78</
numberOfRecords>) for a processed query are set. Main
part of the response is records element which represents
all records in accordance with the query. Also within the

record there is a special element (record) that represents
a particular record. Every single record has <recordData>
where their sub-element in accordance with CRIS profile
[16]. Sub-elements are related to the concrete data from
records. For example, the title of the records is located in
the element <dc:tit le> from Dublin Core context set which
is a part of the CRIS profile. There is a xml schema for
records within the <recordSchema> element (e.g.
<recordSchema>info:srw/schema/1/dc-
v1.1</recordSchema>). SRU/W request and response are
both located in the SOAP Envelope section of the SOAP
message.

<?xml version="1.0" ?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap

/envelope/">

<searchRetrieveResponse>

<version>2.0</version>

<numberOfRecords>78</numberOfRecords>

<records>

 <record>

 <recordSchema>info:srw/schema/1/dc-

v1.1</recordSchema>

 <recordData>

<dc:title>Student Service Software System,

version 2.0</dc:title>

<dc:creator>Racković Miloon;</dc:creator>

Rackovic Milos

<dc:creator>Škrbić

Srđan</dc:creator>
 Škrbić Srđan

<dc:creator>Pupovac

Biljana</dc:creator>
Pupovac Biljana

<dc:creator>Bodroon;ki

Žarko</dc:creator>
 <

dc:publisher>, Novi Sad, Serbia</dc:publisher>

<dc:date>2007</dc:date>

<dc:type>Text</dc:type>

<dc:identifier>http://www.cris.uns.ac.rs/recor

d.jsf?recordId=6535</dc:identifier>

<dc:language>English</dc:language>

 <recordData>

 </record>

 <record>

<recordSchema>http://srw.cris.uns.ac.rs/contex

tSets/CRIS/1.0</recordSchema>

 <recordPacking>xml</recordPacking>

 <recordData>

 <srw_dc:dc>

 <dc:title>CRIS service for journals

and journal articles evaluation</dc:title>

 <dc:date>2011</dc:date>

 </srw_dc>

 <srw_cris:cris>

<cris:type>JournalArticle</cris:type>

<cris:firstAuthor>Sinisa Nikolic

</cris:firstAuthor>

<cris:abstract>This paper...</cris:abstract>

 ...

 </srw_cris:cris>

 </recordData>

 </record>

</records>

</searchRetrieveResponse>

</soapenv:Body>

</soapenv:Envelope>

</operation>

Listing 5 - SRU/W SOAP response

Page 112 of 478

ICIST 2014 - Vol. 1 Regular papers

VI. CONCLUSION
In this article is presented a service for information

retrieval for data from scientific research domain based on
SRU/W standard.

The implementation continues the good practice of the
CRIS UNS [26] by using only open source technology.
SRU/W search service is modular and allows that
particular components can be used and implemented in
different ways, therefore it is possible to:

 Develop the external applications for search,
which would be based on the SRU/W Library
standard.

 Simple change of the text server, which would
not affect the component SRU/W server side.

 Simultaneous search of more Text Servers,
whose implementation and the physical
location can be arbitrary. In this case, it is only
necessary to define the appropriate mapping of
CQL language into language of a Text Server.

 Make potential interoperability with various
library systems since the SRU/W is de facto
standard in these systems.

In the future, it is planned to enable search of scientific
research data, using RESTful web service [27]
standards.

ACKNOWLEDGMENT
Results presented in this paper are part of the research

conducted within the Grant No. III-47003, Ministry of
Science and Technological Development of the Republic
of Serbia.

REFERENCES
[1] euroCRIS | Current Research Information Systems| CRIS,‖

euroCRIS. [Online]. Available: http://www.eurocris.org.
[Accessed: 18-Jan-2014].

[2] ―Common European Research Information Format | CERIF.‖
[Online]. Available:
http://www.eurocris.org/Index.php?page=CERIFintroduction&t=1
. [Accessed: 18-Jan-2014].

[3] B. Jörg, K. Jeffery, J. Dvorak, N. Houssos, A. Asserson, G. van
Grootel, R. Gartner, M. Cox, H. Rasmussen, T . Vestdam, L.
Strijbosch, V. Brasse, D. Zendulkova, T. Höllrigl, L. Valkovic, A.
Engfer, M. Jägerhorn, M. Mahey, N. Brennan, M. A. Sicilia, I.
Ruiz-Rube, D. Baker, K. Evans, A. Price, and M. Zielinski,
CERIF 1.3 Full Data Model (FDM) Introduction and
Specification. 2012.

[4] J. Dvořák and B. Jörg, ―CERIF 1.5 XML - Data Exchange Format
Specification,‖ 2013, p. 16.

[5] A. N. S. I. National Information Standards Organization (U.S.),
Information retrieval (Z39.50): application service definition and
protocol specification : an American national standard. Bethesda,
Md.: NISO Press, 2003.

[6] M. A. Hafezi, ―Interoperability between library software: a
solution for Iranian libraries,‖ Electron. Libr., vol. 26, no. 5, pp.
726–734, 2008.

[7] K. T. Anuradha, R. Sivakaminathan, and P. A. Kumar, ―Open-
source tools for enhancing full-text searching of OPACs: Use of

Koha, Greenstone and Fedora,‖ Program Electron. Libr. Inf. Syst.,
vol. 45, no. 2, pp. 231–239, 2011.

[8] M. Zaric, D. B. Krsticev, and D. Surla, ―Multitarget/multiprotocol
client application for search and retrieval of bibliographic
records,‖ Electron. Libr., vol. 30, no. 3, pp. 351–366, 2012.

[9] ―Open Office Bibliographic project.‖ [Online]. Available:
http://www.openoffice.org/bibliographic/srw.html. [Accessed: 18-
Jan-2014].

[10] ―OASIS | Advancing open standards for the information society.‖
[Online]. Available: https://www.oasis-open.org/. [Accessed: 18-
Jan-2014].

[11] W. Sander-Beuermann, M. Nebel, and W. Adamczak, ―Searching
the CRISses,‖ Maribor, Slovenia, 2008.

[12] K. G. Jeffery, ―CRIS Architectures For Int eroperation,‖ Viena,
Nov. 2007.

[13] ―Current Research Information System of University of Novi
Sad.‖ [Online]. Available: http://www.cris.uns.ac.rs/. [Accessed:
18-Jan-2014].

[14] ―CQL Context Set, version 1.2 - SRU Version 1.2 Specifications
(SRU: Search/Retrieval via URL -- SRU, CQL and ZeeRex,
Standards, Library of Congress).‖ [Online]. Available:
http://www.loc.gov/standards/sruBob/resources/cql-context-set-
v1-2.html. [Accessed: 18-Jan-2014].

[15] "Dublin Core Context Set Version 1.1 (SRU: Search/Retrieval via
URL -- SRU, CQL and ZeeRex, Standards, Library of Congress).‖
[Online]. Available:
http://www.loc.gov/standards/sru/cql/contextSets/dc-context-
set.html. [Accessed: 18-Jan-2014].

[16] V. Penca, S. Nikolić, D. Ivanović, Z. Konjović, and D. Surla,
―SRU/W Based CRIS Systems Search Profile,‖ Program Electron.
Libr. Inf. Syst., 2014 in press.

[17] ―MARC 21 Standard.‖ [Online]. Available: www.loc.gov/marc/.
[Accessed: 18-Jan-2014].

[18] ―JAXB Reference Implementation — Project Kenai.‖ [Online].
Available: https://jaxb.java.net/. [Accessed: 18-Jan-2014].

[19] ―Apache Lucene.‖ [Online]. Available: http://lucene.apache.org/.
[Accessed: 18-Jan-2014].

[20] ―MARCXML: The MARC 21 XML Schema.‖ [Online].
Available:
http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd.
[Accessed: 18-Jan-2014].

[21] ―Dublic Core Extended XML.‖ [Online]. Available:
http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd.
[Accessed: 18-Jan-2014].

[22] ―CQL: the Contextual Query Language: Specifications (SRU:
Search/Retrieval via URL, Standards, Library of Congress).‖
[Online]. Available: http://www.loc.gov/standards/sru/cql/.
[Accessed: 18-Jan-2014].

[23] E. L. Morgan, ―An Introduction to the Search/Retrieve URL
Service (SRU),‖ Ariadne, no. 40, 2004.

[24] ―JAX-WS Reference Implementation — Project Kenai.‖ [Online].
Available: https://jax-ws.java.net/. [Accessed: 18-Jan-2014].

[25] ―Apache CXF: An Open-Source Services Framework.‖ [Online].
Available: http://cxf.apache.org/. [Accessed: 18-Jan-2014].

[26] D. Ivanovic, G. Milosavljevic, B. Milosavljevic, and D. Surla, ―A
CERIF-compatible research management system based on the
MARC 21 format,‖ Program Electron. Libr. Inf. Syst., vol. 44, no.
3, pp. 229–251, 2010.

[27] L. Richardson, RESTful web services. Farnham: O’Reilly, 2007.

.

Page 113 of 478

ICIST 2014 - Vol. 1 Regular papers

	Vol.1
	E-Society and e-Learning
	3. SRU-W service for CRIS UNS system

