
Server Selection for Search/Retrieval in
Distributed Library Systems

Miroslav Zarić*, Branko Milosavljević*, Dušan Surla**
* University of Novi Sad/Faculty of Technical Sciences, Novi Sad, Serbia

** University of Novi Sad/Faculty of Science, Novi Sad, Serbia
{miroslavzaric, mbranko, surla}@uns.ac.rs

Abstract—This paper presents one approach to solve server
selection problem during search in distributed library
systems.

Information retrieval systems are aimed at providing
infrastructure and means of finding specific documents in a
collection, such that they satisfy specific information need.
Distributed information retrieval systems aims at providing
the same capabilities, but in an environment of distributed
and heterogeneous document repositories. In such an
information retrieval system, an important step is server
selection i.e. selection of servers that will be included in a
search operation, and to whom the query will be sent.
Other problems that are specific to distributed information
retrieval systems are query formatting for different servers,
and results merging and ranking. These are special class of
problems, and are not the subject of this paper. One of the
first institutions to massively adopt information retrieval
systems were libraries. Currently, almost every library has
an online search capability. Using these search capabilities,
a client application can perform search across a network of
library servers. This paper is focused on a method for server
selection in such search scenario.

I. INTRODUCTION
Information retrieval systems are nowadays regularly

used for almost every search we perform on the Internet,
and in various business information systems. An
information retrieval system needs to provide efficient
processing of large collections of documents, an efficient
search algorithm, and result ranking. Each information
retrieval system implements some specific document
representation model and search model [1].

Distributed information systems, essentially represents
a group of computer hardware components working
together to fulfill a desired goal. In distributed information
systems, typically, no hardware resources are shared, and
each computer is managing its own resources, while
cooperation is achieved on a logical level by entangling
software components running on different computers
(nodes). Distributed information systems are meant to be
transparent for users, i.e. user should not be aware whether
his request is handled by local computer, or by distributed
system.

Distributed information retrieval systems are focused
on providing information retrieval capabilities over a vast
network of document servers – servers that holds
document collections, as well as some tools for access,
search and retrieval of documents in that collection –
practically an implementation of a standalone information
retrieval system.

But existence of large number of document servers
presents new challenges. To successfully perform search
over a network of available document servers, user should
know, at least, access URL to every relevant document
collection, and furthermore the details of its operations
(such as query language implemented). Distributed
information systems provides a new component, usually
called search broker, that is meant to work as an interface
point between users and remote document servers. This
system works as a specialized client module, receiving a
user query in one notation, transforming it into appropriate
language for each document server, and collecting results
from them, and representing it to the user.

It is evident that any distributed information retrieval
system needs to solve at least following problems:

 Document server representation and server
selection during queries

 Result retrieval, and duplicate removal
 Consolidated ranking

Each of these tasks presents a distinct research area.
More on distributed information retrievals methods can

be found in [2].
This paper concentrates on the first problem,

specifically in an environment of library servers. Libraries
have traditionally been one of the first adopters of
information retrieval systems. Although the task of search
and retrieval is similar, library information systems have
some specifics:

Instead of holding full text documents library
information systems usually contain library records, most
recently in MARC 21 [3]. These records contain all
relevant data about some library item (such as
bibliographic data, location data). Searching in library
information systems is performed over a collection of
these records. These records have well defined structure
that enables some more guided search. In modern days,
and with the advent of digital libraries, these distinctions
are blurred, since they contain library records as well as a
full-text, electronic versions of documents.

Although there are different implementations, most
library information systems use standard Z39.50 protocol
[4] for search and retrieval. But its use does not guarantee
general compatibility, the problem that will be discussed
later. In a recent period an approach to adapt this
commonly use protocol to new, internet environment have
given rise to SWR/SRU protocol, also implemented by
increasing number of libraries.

But even in such an environment, of library servers,
where good and broadly adopted standards exists, there is

Page 73 of 478

ICIST 2014 - Vol. 1 Regular papers

a need to perform the same, previously defined, steps as in
any other distributed information retrieval system,
although some problems will be less intensive (usage of
common query language and communication protocol
simplifies communication from query broker to specific
server).

II. SERVER SELECTION IN DISTRIBUTED INFORMATION
RETRIEVAL SYSTEMS

Most server selection methods operate as methods for
ranking information gathered about the servers. Usually
distributed systems adopt one of the methodologies for
document ranking, and adopt it to ranking servers. There
is, obviously, a need to define how information about the
servers is represented, and to adopt chosen document
ranking model to that representation.

In an analogy to document ranking, here we perform
server ranking for every performed query. After an initial
ranking is established, further searches, based on the query
criteria are routed only to those servers that are expected
to return valuable result for the query. Usually, the search
query is passed to n best ranked servers in the list. This
approach can greatly improve performance of overall
system, lower the network traffic, as well as other
resource requirements, while producing the same or
equivalent amount of relevant results.

Best known algorithms for server selections are CORI
[5], CVV [6], bGlOSS, vGlOSS [7], and weak sampling
techniques [8].

CORI system was one of the first systems to introduce
server selection. The server selection is based on
adaptation of well known tf-idf norm for ranking
documents. In this case a document frequency df and
inverse collection frequency icf are used to rank the
collections.

bGlOSS, and vGlOSS were introduced as models for
ranking servers implementing Boolean and vector based
retrieval model, respectively. Document frequency and
collection size are used as a basis for calculating server
ranking. Since the exact collection size is usually
unavailable, some estimation methods are used to evaluate
the size of collection.

CVV (Cue Validity Variance) evaluates query terms, in
such a manner that terms that are better discriminatory
values for servers gain a higher weight. Therefore, using
weight of such term the importance of the server is
pondered for query containing the term.

With weak sampling method, for any complex query, a
short two-term sample query is sent to the server. Results
of this sample queries are used to calculate server rank.
This method assumes that server will provide additional
data, alongside result, to allow for runtime rank
calculation.

Server ranking can be enacted in:
a) cooperative environment (when each queried

server response contains not only relevant
documents, but also additional information, such as
document ranking, total number of hits –
information that can be readily use for server
ranking)

b) non-cooperative environment, when only
information available at run time is list of results
obtained from a specific server.

There are also some server selection methods that are
based on query clustering or relevant document
distribution model. These methods are trying not to rank
the servers itself, but to predict the number of relevant
documents on each server.

Server selection problem is not only inherent to
information retrieval system, but exists in other commonly
used distributed systems, such as P2P networks, IPTV
networks etc.

III. PERFORMING SEARCH IN
DISTRIBUTED LIBRARY SYSTEMS

Search is a feature most commonly used in library
information systems. Most of the library information
systems provide an online access point through which the
search of its catalogue can be performed. Library systems
traditionally contain only library records used to describe
and locate holdings in the library. In a classic library, user
will perform search and get information whether some
item exists or not in a chosen library. Some library
systems are enhanced to support item reservations through
some online tools. Digital libraries allow users not only to
gather information about specific item, but in some cases
to download electronic version of document.

Generally there are two distinct types of users using
library information system search capabilities. Ordinary
users, using the search to locate if an item exist and
whether it is available. Library staffs use the search
capabilities to perform various catalogue-maintenance
related tasks. One of these tasks is very important for
overall performance of library information system –
cataloguing task. It is important since it affects search
capabilities for other users.

As the main intentions of these users are different, so
are the query they perform. While an ordinary user,
searching for a book, may be well served by searching the
local catalogue (after all, the user will primarily be
interested to find an item in a local library), librarian,
performing cataloguing duty, will not be served well at all
if the search is confined to local catalogue only. During
the cataloguing process, librarian already has a copy of an
item (a book for example) and knows that it is a new entry
to the catalogue – that needs to be properly described by
an associated MARC record. In order to reduce amount of
time needed to populate MARC records, it is highly
beneficial if the librarian can get a hold of an existing
MARC record describing the same item, presumably from
another library system. In this case local search will yield
no relevant result, and search over a network of library
catalogues should be performed. Such an operation – of
using existing library record to amend it and incorporate
in local catalogue is called copy-cataloguing. Apart from
time saving, this approach has additional benefit of
increasing the overall completeness of records. The
quality of the MARC records is a debatable issue,
discussed in many papers, and also part of the research
conducted in [9].

 Since there are many library servers available,
librarians will tend to use those server that are providing
the most complete records, and most librarians will in

Page 74 of 478

ICIST 2014 - Vol. 1 Regular papers

time develop their preferred list of target servers from
which to retrieve records. However, initially, and later in
some occasions when rare or new book is catalogued,
there is a need to perform search over larger number of
library servers in order to obtain some records.

 Z39.50 protocol is used as a standard for
communication between library information systems. It
provides facilities to initialize communication link,
perform search, and for presenting results to the client.
The protocol allows for use of different query languages,
with query language Type 1 as mandatory. As an
alternative, newer systems also support use of SRU
protocol [10] which uses CQL as a query language. This
protocol is also standardized under the guidance of
Library of Congress.

The system presented in this paper is part of continuous
development of BISIS library system. As an integral part
of the system, a client application for search and retrieval
has been developed [11]. It allowed users to perform
search to one remote library system at a time using
Z39.50. In later upgrading, described in this client
application was enhanced to allow simultaneous use of
both Z39.50 and SRU protocols, and to allow parallel
querying of multiple servers. This change required for
query adaptation from Type1 query for Z39.50 compatible
servers to CQL for SRU servers. This module is described
in details in [12].

IV. SERVER REPRESENTATION AND RANKING
Introduction of support for simultaneous queries to

different servers has introduced several problems that,
although foreseen, need to be addressed. One of the most
important is different level of support from different
servers regarding different attributes (for example, some
servers may support query by ISBN or ISSN, others do
not). We will concentrate on Z39.50 servers since they
represent a vast majority of servers available for querying.
If we do not know which use attribute is available on
which server, sending the same, complex query containing
different attributes, to multiple servers usually produce
large quantity of erroneous connections, i.e. the response
from server was an error message stating that server is not
capable of processing request on some attributes. In order
to obtain information which server is supporting which
attribute we have several choices:

- Incremental gathering of server description data.
Initially we send all simple (one attribute) queries

indiscriminately to all servers. If the server
responded without an error – that attribute is
supported on the server.

- Using Explain service of Z39.50 as long as servers
are implementing it.

- Use an existing Z39.50 target directory, to get
information about server capabilities.

First option is simple enough, but requires large number
of queries to multiple servers before we can produce
knowledge base for further selection.

Second option allows for automatic reconfiguration of
client application to fit with capabilities of target server.
That would enable that some attributes are automatically
disabled if target server is incapable of processing it.
Although Explain service of Z39.50 is exclusively
intended to transmit information about server capabilities
to the client side, the downside is that it is not required.
So, a number of servers simply does not implement
Explain service. Table 1 gives an example of support for
Explain feature among 2052 servers listed in The Z39.50
Target Directory (http://irspy.indexdata.com/)

Third option – existing directory of available Z39.50
targets, is good starting point since they represent an
aggregated list of server descriptions, with different level
of details. There are several public directories of library
servers available, such as:
• The Z39.50 Target Directory

http://irspy.indexdata.com/
• LOC – Gateway to Library Catalogs

http://www.loc.gov/z3950/
• MUN Libraries Library Z39.50 destinations - Queen

Elizabeth II Library Memorial University of
Newfoundland
http://staff.library.mun.ca/staff/toolbox/z3950hosts.htm

• Directory of Z39.50 Targets in Australia
http://www.nla.gov.au/apps/libraries?action=ListTargets

• Z39.50 Hosts Available for Testing
http://www.loc.gov/z3950/agency/resources/testport.html

For the development of the system presented in this

paper, the first directory has been used, since it provided
an XML format for server descriptions (the same format
that would be provided by Explain facility), and has more
than 2000 servers listed. The list is regularly updated.
Additionally, alongside basic server description data, this
directory also has a host connection reliability measure.
This measure is calculated as a percentage of successful
connections to target servers in last three months.

Previous search sessions can be a source of valuable
data about each server performance. Even erroneous
connections provide valuable input that can be used to
calculate usability of the server for future searches. Paper
[13] takes into account network parameters for accessing
each server.

Analysis of previous search sessions can provide
following data:

• Total number of queries in which server
connection was invoked

• Total count of successful connections
• Total number of errors
• Mean query response time of the server

 Explain Category #Targets supporting
1. TargetInfo 173 (8.43%)
2. DatabaseInfo 173 (8.43%)
3. CategoryList 172 (8.38%)
4. AttributeDetails 169 (8.23%)
5. AttributeSetInfo 134 (6.53%)
6. RecordSyntaxInfo 120 (5.84%)
7. SchemaInfo 34 (1.65%)
8. TagSetInfo 34 (1.65%)
9. Processing 26 (1.26%)

10. TermListInfo 2 (0.09%)
Table 1. Support for Explain facility

Page 75 of 478

ICIST 2014 - Vol. 1 Regular papers

• Total number of results returned
• Total number of results from server that has been

selected for further usage by the user
We can assume that N queries have been submitted in
total, and that M servers are available.

For each server i one can record the total number of
invoked communication sessions ni. Initially, without
prior knowledge, we can assume that all queries will be
sent to all servers. As number of search queries grows,
librarian will tend to restrict server list to those server that
provided valuable information in prior sessions. Hence,
the total number of requested communications can be used
as an indirect measure of importance one user gives to
specified server, regarding his common queries. Even if
server is automatically excluded from some search
sessions, due to unsupported attributes, this notion of
importance still holds its place, since selected query
attributes also represent user’s habits or preferences when
forming the query. We can create a measure of importance
given to this server by specific user impi=ni / N.

Using the number of requested communications ni and
number of erroneous responses ei from any server i the
measure of overall relative reliability can be calculated as
reli=1-ei /ni. As a starting reliability measure for servers,
the one obtained from server directory list is used.

Since, without prior knowledge, we can not estimate the
size of each collection, we can create an indirect relative
measure based on total count of results returned from an
ith server (ri), and cumulative total count of results from all
servers R. Calculated value rset,i=ri / R represents relative
contribution of given server to total result set.

If we want to take into account a response time of the
server, we can measure total time tuk,i it took the server i to
complete ni search queries. Mean response time of the
server in that case can be calculated as tsr,i=tuk,i/ni. To put
this measure into relation with other servers, we can
compare it to cumulative mean response time calculated

as 𝑇𝑠𝑟 =
 𝑡𝑢𝑘 ,𝑖
𝑀
𝑖=1

 𝑛𝑖
𝑀
𝑖=1

.

Relative response time of a server (server speed),
compared to group of servers, can now be computed as
trel,i=tsr,i / Tsr. We can further normalize this value to bring
it to the range [0,1]. For this purpose, a sigmoid function
can be used.

Finally we can take into account the information about
number of records that has been copied into local system
(retrieved records for copy cataloguing). If the total
number of retrieved records is Rr, and number of records
retrieved from server i is rr,i than relative contribution of
server i to total set of retrieved records is rret,i=rr,i/Rr. This
measure is also an indirect measure of “quality” of records
from that server, from a user point of view (user will tend
to pick those records that are similar to its cataloguing
needs).

Based on these measures each server i can be
represented with a performance vector

si={impi, reli, rset,i,trel,i,rset,i}.
We can create a vector of “maximum performing”

server, and compare all other servers to it. Standard
measure of cosine similarity can be used, or any other
method used in vector based models. As more and more
search queries is performed, best performing servers will
be ranked better.

V. IMPLEMENTATION AND TESTING
The proposed system is implemented in a client part of

BISIS application. An XML configuration file is used to
form the list of available servers. This XML file contains
all relevant server data, such as server name, URL, port,
supported access points (attributes that can be used for
query terms matching). This XML file also contains data
representing all information gathered about the server
from all previous search/retrieve sessions. Table 2
displays servers support for use of different attributes in
search queries. Since server list provides information
about supported attributes, the client module has been
altered so that servers are now automatically excluded
from available server list if a not supported attribute has
been selected for the given query. This feature represents a
server list filtering based on a query formulation.

To test the effect of server filtering, series of 50 queries
on different attributes (and combinations) has been run,
without server filtering and with server filtering. The list
of 120 servers has been compiled from a full list of 2000+
available servers. The same servers were used in both run.
The results are given in Table 3. Although server
capabilities are taken into account, it did not completely
removed errors. The actual cause of errors may be
different, and not restricted to supported attributes. It may
be that server is temporarily unavailable, or that given
address is no longer accessible. However since the main
goal of the server filtering (and ranking based on proposed
criteria) is to compile a list of best performing servers, for
future use, the actual cause of remaining errors were not
further investigated, but existence of these errors were
taken into account when calculating each server
performance vector.

Additionally, a low level change in communication
module has been introduced. Original version of the
communication module fires simultaneous connections to
multiple servers. In altered version, new configurable
property maxActiveConnections has been introduced.

Attribute Name # Targets
1 4 Title 1523 (73.18%)
2 21 Subject heading 1494 (71.79%)
3 1003 Author 1487 (71.45%)
4 7 ISBN 1316 (63.23%)
5 8 ISSN 1261 (60.59%)
6 5 Title series 1245 (59.82%)
7 1016 Any 1227 (58.96%)
8 1 Personal name 1196 (57.47%)
9 12 Local number 1175 (56.46%)

10 13 Dewey
classification

1088 (52.28%)

11 2 Corporate name 1074 (51.6%)
12 31 Date of publication 1067 (51.27%)
13 3 Conference name 1048 (50.36%)
14 54 Code--language 994 (47.76%)
15 6 Title uniform 952 (45.74%)
16 1007 Identifier--standard 926 (44.49%)
17 33 Title key 922 (44.3%)
18 16 LC call number 896 (43.05%)
19 1004 Author-name

personal
892 (42.86%)

20 9 LC card number 853 (40.98%)
Table 2. Server support for different access points

(search by specific attribute)

Page 76 of 478

ICIST 2014 - Vol. 1 Regular papers

In case when all 120 servers have been included in the

search, the original version would consume following
resources:

- Total number of threads: 131
- Peak memory utilization: 66132 KB
- Mean memory utilization: 58544 KB
The altered version, with maxActiveConnections set to

10 consumes following resources:
- Total number of threads: 26
- Peak memory utilization: 51896 KB
- Mean memory utilization: 51004 KB

The total time required to perform search and present a

result to the user has not been noticeably changed. With
this optimization in place a minor reduction in number of
errors has been registered. On average there were 3 errors
less. This suggests that minor number of errors were
produced by too many communication threads running
simultaneously.

After initial sets of 50 queries on given attributes have
been run, the server statistic is already formed so ranking
of servers could be taken into account. To test if ranking is
presenting relevant servers at top of the list additional
queries were run.

Different queries have been run. Most of the queries
used ISBN attribute (since it is the most common query
attribute used for searching the records during the copy-
cataloguing). On average, if the query is run only on
servers that have ranked as 100% relevant, we could get
about 55% of all results returned by a full, non-filtered set
of servers.

However if servers ranking as 80% relevant or higher
are selected (in our case it was a total number of 39 out of
120 servers) we got, on average 92% of all results
returned by non-restricted search). With servers ranked as
70% relevant or higher were used the same result set is
returned as with non restricted search.

These results are promising but further analysis, on data
gathered in real life usage scenarios, should be performed.

However these results show that number of
communications may be significantly reduced if only best
qualifying servers are used to submit the search, while
result set will remain relevant to the query.

This notion was further strengthen by introducing the
“quality” measurement of record. There is no prescription
how to judge the record quality. Surely the completeness
of the record must be taken into account, as well as its
syntax correctness, but from a copy-cataloguing viewpoint
the best record would be the one that requires minimal

effort to bring it in concordance with local cataloguing
practice. Therefore, not only overall completeness does
matter, but also existence of certain fields and even the
style used to enter some data. This problem has been
further addressed in [9].

CONCLUSION
This paper presents one approach to solving server

selection problem, a common step in performing search in
any distributed information retrieval system. In this case it
is implemented on client application for Z39.50 and SRU
protocols, commonly used in library information systems.
Tracking of different performance measures, and ranking
based on these measures are proposed. Data gathered
about the server capabilities and its performance during
the previous search sessions are used to estimate its
relevance for future searches, based on the attribute set
used in the query. This approach indirectly gives an
opportunity to tailor the server selection according to
individual users preferences, since some of the measures
are directly affected by the choices user has made on
returned results. This enables the client application to be
personalized to reflect the user’s preferences.

Taking into account server capabilities, taken from
server directory list, a filtering of the available servers can
be performed, thus reducing the number of
communication links that will certainly result in errors.
Additionally, ability to set the number of active
connections can reduce the resource usage. Server ranking
can be used to limit the number of servers that needs to be
queried, but still to be able to get result most relevant to
the user. Furthermore, delayed start of communication
threads gives an opportunity to stop the search if some
predefined numbers of records are already retrieved from
best ranking servers. This server ranking system is further
strengthened when used in combination with record
ranking algorithm.

REFERENCES
[1] Manning, Christopher D. and Raghavan, Prabhakar and Schtze,

Hinrich, Introduction to Information Retrieval (New York, NY,
USA: Cambridge University Press, 2008).

[2] Nicholas Eric Craswell, "Methods for Distributed Information
Retrieval" (2000).

[3] Gordana Rudic and Dusan Surla, "Conversion of bibliographic
records to MARC 21 format", The Electronic Library 27, 6
(2009), pp. 950-967.

[4] ANSI/NISO, "Information Retrieval (Z39.50): Application
Service Definition and Protocol Specification", Library of
Congress.

[5] Callan, James P. and Lu, Zhihong and Croft, W. Bruce,
"Searching distributed collections with inference networks", in
Proceedings of the 18th annual international ACM SIGIR
conference on Research and development in information retrieval
(New York, NY, USA: ACM, 1995), pp. 21--28.

[6] Gravano, Luis and García-Molina, Héctor and Tomasic, Anthony,
"GlOSS: text-source discovery over the Internet", ACM Trans.
Database Syst. 24 (1999), pp. 229--264.

[7] Budi Yuwono and Dik Lun Lee, "Server Ranking for Distributed
Text Retrieval Systems on the Internet", in Rodney W. Topor and
Katsumi Tanaka, ed., DASFAA vol. 6, (World Scientific, 1997),
pp. 41-50.

[8] David Hawking and Paul B. Thistlewaite, "Methods for
Information Server Selection", ACM Trans. Inf. Syst. 17, 1 (1999),
pp. 40-76.

use attribute
Errors
(server

filtering off)

Errors
(server

filtering on)
ISBN 46% 35%

Personal name 40% 24%
Title 33% 24%

Author 34% 21%
Subject heading 30% 20%

Author+Title 45% 30%
Table 3. Effect of a server filtering on number of

erroneous server responses

Page 77 of 478

ICIST 2014 - Vol. 1 Regular papers

[9] Zarić, M. “Model za distribuirano i rangirano pretraživanje u
bibliotečkim informacionim sistemima”, doctoral thesis,
University of Novi Sad, Faculty of Technical Sciences, 2013
(serbian).

[10] Search Retrieval over URL, Standard, Library of Congress,
available at: http://www.loc.gov/standards/sru/index.html

[11] Boberić, D., "System for retrieval of bibliographic records"
(2010).

[12] Miroslav Zaric, Danijela Boberic Krsticev, Dušan Surla,
"Multitarget/multiprotocol client application for search and
retrieval of bibliographic records", Electronic Library, The Vol.
30 Iss: 3 (2012), pp. 351-366.

[13] Carter, Robert L. and Crovella, Mark E., "Server Selection Using
Dynamic Path Characterization in Wide-Area Networks", in
Proceedings of the INFOCOM '97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Driving the Information Revolution (Washington, DC, USA: IEEE
Computer Society, 1997), pp. 1014.

Page 78 of 478

ICIST 2014 - Vol. 1 Regular papers

http://www.loc.gov/standards/sru/index.html

	Vol.1
	E-Society and e-Learning
	1. Server Selection for Search-Retrieval in Distributed Library Systems

