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Abstract— High performance tire design calls for multi-
objective optimization of tire design parameters. This paper
discusses the application of artificial neural networks
(ANNs5) for determination of optimal tire design parameters
for simultaneous minimization of strain energy density at
belt edge and chafer. Based on finite element (FE)
simulation experimental trials, conducted according to full
factorial design where three tire design parameters were
arranged (belt angle, belt cord spacing and elasticity of
tread compound), two ANN models of the same topology
were developed. The set of optimal tire design parameter
values was obtained by graphical optimization method. The
quality of multi-objective optimization solutions was
validated by performing additional FE experimental trials.

L INTRODUCTION

Although at the first glance it may not be evident,
pneumatic tire represents a complex structure, comprising
of various rubber components and rubber based
composites. Designed for tough exploitation conditions, it
must perform well considering a number of mutually
opposing performance characteristics such as dry/wet
handling and traction, endurance, wear resistance, ride
comfort, rolling resistance, aquaplaning, weight, noise and
vibration etc. [1, 2]. In order to design a high performance
tire that meets, to the greatest extent, desired performance
characteristics, selection of suitable tire design parameter
values is of prime importance. The main difficulty with
which design engineers are faced is the fact that optimal
combination of tire design parameter values for one
performance characteristic may not even be near optimal
for another performance characteristic. From these
reasons, for the considered performance characteristics,
one needs to formulate and solve tire design multi-
objective optimization problem so as to determine suitable
combination of tire design parameters.

For tire design optimization different methods and
approaches were previously proposed and applied
including artificial neural networks (ANNs) [Nakajima et
al., 1999], conventional satisficing trade-off method
(STOM) [3], multi-objective genetic algorithm (MOGA)
and self-organizing map (SOM) [2], utility function
approach [Serafinska et al., 2013] and regression analysis
(RA) and GA [4]. In most cases, tire design optimization
is performed as a two-stage approach: mathematical
modeling and optimization. Although the use of RA
speeds up and simplifies mathematical modeling process,
the use of RA may be of limited applicability and
reliability in cases where there exist complex non-linear

relationships between dependent and independent
variables. As a consequence, the optimization results may
not be satisfactory, i.e. there may exist big deviations
between experimental and RA model predictions,
particularity in the case of multi-objective optimization. In
such situations RA polynomial models can be replaced
with  ANNs, which are based on matrix-vector
multiplications combined with nonlinear (activation)
functions. Actually, the advantage of the applications of
ANNSs for empirical modeling of complex non-linearities
and interactions in tire design is well documented [2, 5, 6].

Motivated by the lack of studies regarding multi-
objective optimization of tire design this paper aims at
determination of tire design parameters for multi-objective
optimization of strain energy density at belt edge and
chafer by the application of ANNs. Determination of the
optimal tire design parameter values was performed by
graphical optimization method.

II.  EXPERIMENTAL PLAN AND FE ANALYSES

As described in detail in [4], objective functions and
tire design parameters that were involved in optimization
were selected based on two criteria. Those were the
significance considering tire design and simple change of
tire design parameters inside finite element (FE) model
(Fig. 1) used to perform the experiments. Detailed
description of the methodology used in finite element
modeling and analysis of tires may be found in [7-9].
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Figure 1. Axisymmetric FE model of an existing tire used to perform
the experiments in optimization studies. Structural components of the
tire may clearly be distinguished
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Three tire design parameters, namely belt angle (A),
belt cord spacing (B) and elasticity of tread compound (C)
were considered. It should be noted that all tire design
parameters are continual variables, i.e. they can take any
value within the specified ranges. The tire design
parameter ranges were selected based on preliminary FE
experimental trials as well as by considering some
technically manageable ranges and guidelines from
literature. The selected parameters are known to have a
significant influence on tire performance, such as
maneuverability, durability or rolling resistance. FE
experimentation was conducted as per 3° full factorial
experimental plan upon which each tire design parameter
was changed at low, middle and high level. Tire design
parameters and their levels within the FE experimentation
are given in Table 1.

TABLE L.
TIRE DESIGN PARAMETER RANGES AND THEIR LEVELS
Tire design parameter Unit i Lc;d 3
Belt angle (A) ° 18 22 26
Belt cord spacing (B) mm 0.65 1.05 1.45
Elasticity of tread
compound (C) 0.6 ! 1.4

The configuration of the initial tire design is defined as
A =22° B =1.05 mm and C = 1. Tread compound was
modeled using hyperelastic Yeoh material model. The
value of C = 1 corresponds to nominal values of Yeoh
coefficients: C1o=1.0236 N/mm?, Cpp= -0.4272 N/mm’ and
C30=0.1732 N/mm>. Values of Yeoh coefficients used in
various FE models were obtained by multiplication of all
the coefficients with the value of elasticity of tread
compound (C). Therefore, elasticity of tread compound
(C) is dimensionless.

After conducting 27 FE experimental trials with
different combinations of tire design parameter values,
values of strain energy density at belt edge (f;) and chafer
(f,) were recorded and used for development of ANN
models. As explained in [4], strain energy density is seen
to be a good indicator of complex stress-strain state at a
given location inside the tire, taking into account material
nonlinearities. Belt edge and bead area are known to be
critical zones in tire structure, as abrupt stiffness changes
and cyclic flexion lead to stress concentration and fatigue,
which in turn cause structural failures.

III.  ARTIFICIAL NEURAL NETWORK MODELS

A. ANN Basics

ANNs are one of the most powerful artificial
intelligence (Al) tools for mathematical modeling of the
relationships between a number of inputs and outputs.
Universal function approximation capability, resistance to
noisy or missing data, good generalization capability,
adaptive nature and other useful features of ANNs made
them a preferable choice for modeling complex
relationships which are difficult to describe using
analytical models.

From many developed types of ANNS, the feed-forward
ANNs are among the most used ones, because of their
simplicity and ease of implementation. Feed-forward
ANNs are composed of a number of simple and highly
interconnected processors, i.e. neurons, which are grouped

into input, hidden and output layer. Establishment of
mathematical relationships between input and outputs is
based on input to hidden and hidden to output weights,
biases of the hidden and output neurons and the use of
transfer (activation) functions in hidden and output layer,
which enable non-linear data processing.

B.  ANN Models for Optimization of Tire Design

In this study ANN models are aimed at establishing
mathematical relationships between inputs, i.e. tire design
parameters (belt angle, belt cord spacing and elasticity of
tread compound) and outputs, i.e. strain energy density at
belt edge (f}) and strain energy density at chafer (f;).

FE experimental data, obtained from the full factorial
experimental design, were used for development of ANN
predictive models. FE experimental data were randomly
divided into a data subset for ANN training (22 data) and
data subset for testing the prediction accuracy of the
developed ANN models (5 data). Given that the number
of hidden neurons is dependent on the number of data
available for training, two ANN models with four neurons
in the hidden layer were designed for the purpose of strain
energy density prediction. Since it was assumed that there
exist some non-linear relationships between tire design
parameters and strain energy density, linear and
hyperbolic tangent sigmoid activation functions were used
in the output and hidden layer, respectively.

In order to determine near optimal combination of input
to hidden and hidden to output weights values and weights
of biases of the hidden and output neurons, ANN training
resembles a necessary step, which has the predominant
influence on the prediction accuracy of developed models.
For the purpose of ANN training, Levenberg-Marquardt
algorithm was applied due to its fast convergence rate and
stability. The ANN training process was monitored via the
mean squared error. Fig. 2 shows the variation of mean
squared error as a function of the number of iterations.

Mean squared error

0 5 10 15 20 25 30 35 40 45 50
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Figure 2. ANN training process

After the ANN training is finished one needs to test the
prediction accuracy of the developed models. It is of
particular interest to investigate generalization, i.e. ability
of ANNs to make accurate predictions when data, which
were not used in the training process, are introduced. For
the ANN model which related tire design parameters and
strain energy density at belt edge (f}), the mean absolute
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percentage errors were found to be 0.03 % and 0.12 %
considering training and testing data, respectively.
Similarly, for the ANN model which related tire design
parameters and strain energy density at chafer (f3), the
mean absolute percentage errors were found to be 0.014 %
and 0.034 % considering training and testing data,
respectively, which is better then RA modeling as reported
in [4]. These statistical results irrefutably confirm
excellent agreement between FE experimental data and
ANNs predictions as well as high robustness of the
developed ANN models. Therefore, these models can be
used for the analysis of the effects of tire design
parameters on strain energy density as well as to serve as
fitness functions for the purpose of tire design
optimization.

IV. ANALYSIS AND DISCUSSION

The interaction effects of the tire design parameters on
the strain energy density at belt edge and chafer are given
in Fig. 3. 3-D response surfaces for strain energy density
were generated by changing belt angle (A) and elasticity
of tread compound (C) at a time, while belt cord spacing
(B) was held at low, center and high level.

From Fig. 3 it can be seen that the increase in belt angle
(A) results in increase of the strain energy density at belt
edge and at chafer. This is probably due to the fact that
with increasing belt angle the angle between carcass and
belt cord spacing becomes smaller and thus the stiftness
change at belt edges becomes larger [4]. It can be also
observed that increase in elasticity of tread compound (C)
produces a nonlinear increase in strain energy density at
belt edge. On the other hand, elasticity of tread compound
(C) has negligible influence on the strain energy density at
chafer.
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Figure 3. 3-D response surfaces for strain energy density a) at belt
edge, b) at chafer

Finally, one can observe that there exists a small
decrease in strain energy density at belt edge with increase
of belt cord spacing (B). However, regarding the strain
energy density at chafer, small decrease in strain energy
density comes with decrease of belt cord spacing (B).

From Fig. 3 it is obvious that belt angle (A) has the
maximum influence on the strain energy density and that
the minimal strain energy density at belt edge and at
chafer are obtained when belt angle (A) has minimal
value, i.e. A=18°.

The optimal selection of tire design parameters should
increase tire durability to some extent by minimizing
strain energy density at belt edge and chaffer [4].
Therefore, in the context of multi-objective optimization,
the goal is to determine suitable combination of tire design
parameters so as to minimize strain energy density at belt
edge and chaffer simultaneously. The common approach
for multi-objective optimization is based on the use of
optimization algorithms. However, based on the
conducted analyses multi-objective  tire  design
optimization can be reduced to multi-objective problem
having only two independent variables, i.e. belt cord
spacing (B) and elasticity of tread compound (C), hence
the simplest way for performing multi-objective tire
design optimization is graphical optimization method. To
this aim, two 3-D response surfaces for strain energy
density at belt edge and at chafer are given on the same
plot (Fig. 4). Fig. 4 was generated by changing belt cord
spacing (B) and elasticity of tread compound (C) at a time,
while belt angle (A) was kept constant at A=18°.

From Fig. 4, it is obvious that response surface for
strain energy density at chafer is flat, which means that
changing belt cord spacing (B) and elasticity of tread
compound (C), when belt angle is A=18°, has negligible
influence on strain energy density at chafer. Therefore,
since the change in strain energy density at chafer is very
small, multi-objective tire design parameter optimization
problems can be reduced to single objective optimization
problem where to goal is to identify tire design parameter
values so as to minimize strain energy density at belt edge.
The analysis of Fig. 4 reveals that there are different
combinations of belt cord spacing (B) and elasticity of
tread compound (C) that yield acceptable solutions
regarding strain energy density at belt edge. For example,
belt cord spacing of B=0.65 mm, elasticity of tread
compound C=1.4 produces minimal strain energy density
at belt edge of f;= 0.0299 N/mm?’.

Figure 4. Strain energy density at belt edge and chafer for belt angle
A=18°
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TABLE IL

COMPARISON OF ANN PREDICTIONS AND FE SIMULATION EXPERIMENTAL VALUES FOR STRAIN ENERGY DENSITY

Optimization AE) B (mm) c AI\£N predictions i F]:: simulation i
solution fi (N/mm”) £, (N/mm”) fi (N/mm”) £, (N/mm”)

1 18 0.65 1.4 0.0299 0.0366 0.02997 0.03662

2 18 0.97 1.4 0.0301 0.0367 0.03015 0.03671

3 18 0.73 1.4 0.03 0.0366 0.03002 0.03664

4 18 0.83 1.4 0.03 0.0367 0.03008 0.03667

5 18 0.75 1.4 0.03 0.0366 0.03003 0.03665

6 18 0.65 1.23 0.0306 0.0366 0.03093 0.03664

7 18 0.65 1.36 0.0301 0.0366 0.03021 0.03663

Thus, from the point of view of the performed
optimization, any pair (B, C) that yield minimal value of
strain energy density at belt edge can be selected as
optimal one. In practice, other constructive parameters and
goal functions would be taken into account, as well as
production limitations and standards, and the choice of
parameter values would certainly not be so wide.

In order to check the quality of determined optimization
solutions, one needs to compare ANN model predictions
and FE simulation experimental values for strain energy
density at belt edge and chafer. Thus, several FE
simulation experimental trials with the combinations of
tire design parameters as given in Table 2 were conducted.

As could be observed from Table 2, there exist a perfect
match between values of strain energy density at belt edge
and chafer predicted by ANN models and obtained by FE
simulation. It can be shown that mean absolute percentage
errors regarding strain energy density at belt edge (f}) and
chafer (f;) are less than 0.5%. These results indicate that
ANNs can be efficiently used for multi-objective
optimization of tire design parameters.

Regarding initial tire design (A=22 °, B=1.05 mm and
C=1) each optimization solution from Table 2
significantly minimizes strain energy density at belt edge
(approximately 42.5%) and strain energy density at chafer
(approximately 5 %).

V.  CONCLUSION

This paper aimed at application of ANNs for
determination of tire design parameter values (belt angle,
belt cord spacing and elasticity of tread compound) for
multi-objective optimization of strain energy density at
belt edge and chafer, which are known to influence tire
durability. FE simulation based experimental trials,
conducted according to full factorial design, provided a set
of data for ANNs model development. The conclusions
drawn can be summarized by the following points:

o Statistical results indicate excellent agreement between
FEM based experimental results and the ANN
predictions, which confirms the validity on the use of
ANNES for tire design modeling and optimization.

e Quite basic ANN model architecture, trained with
Levenberg-Marquardt algorithm using relatively small
training data set, outperformed RA based modeling
and optimization considering prediction accuracy and
generalization capability.

e Belt angle has the most dominant effect on the strain
energy density at belt edge and chafer, followed by the
elasticity of tread compound and belt cord spacing that
have a much smaller influence.

Because of dimension reduction, the optimal tire design
parameter values were obtained by graphical optimization
method and corresponding strain energy density values
were very close to experimentally obtained ones. The
determined combinations of tire design parameter values
significantly improved initial tire design by simultaneous
minimization of strain energy density at belt edge and
chafer.
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