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Abstract— In this paper we test Extended Information Filter 
(EIF) for sequential training of Hyper Basis Function 
Neural Networks with growing and pruning ability (HBF-
GP). The HBF neuron allows different scaling of input 
dimensions to provide better generalization property when 
dealing with complex nonlinear problems in engineering 
practice. The main intuition behind HBF is in generalization 
of Gaussian type of neuron that applies Mahalanobis-like 
distance as a distance metrics between input training sample 
and prototype vector. We exploit concept of neuron’s 
significance and allow growing and pruning of HBF neurons 
during sequential learning process. From engineer’s 
perspective, EIF is attractive for training of neural networks 
because it allows a designer to have scarce initial knowledge 
of the system/problem. Extensive experimental study shows 
that HBF neural network trained with EIF achieves same 
prediction error and compactness of network topology when 
compared to EKF, but without the need to know initial state 
uncertainty, which is its main advantage over EKF. 

I. INTRODUCTION 
Radial basis function (RBF) neural networks are 

among the most used single layered neural networks [1, 
2]. They are popular choice made by many engineers for 
modeling of complex real world problems [1-7].  

In this paper, we develop and evaluate sequential 
learning algorithm based on Extended Information Filter 
(EIF) of special class of generalized RBF neural networks 
with Gaussian basis function that allows: (i) growing of 
neurons, (ii) pruning of neurons, and (iii) scaling of local 
input dimensions. Compared to the RBF, the hyper basis 
function (HBF) has different scale for each dimension of 
the input vector. Research results [1, 2] have shown that 
HBF generates neural network with same accuracy as 
RBF or even higher accuracy than RBF, but with less 
number of basis functions [2, 8-12]. Learning algorithm 
for HBF network learning algorithm is sequential and 
during sequential learning using Extended Information 
Filter (EIF) it changes number of HBF neurons according 
to predefined optimality criteria. In this paper, growing 
and pruning ability of HBF neural network is founded on 
the original contribution of the neuron’s significance, 
introduced by Huang et al. in series of papers [13, 14], 
modified by Bortman and Aladjem [15] and generalized 

in [2], with introduction of Gaussian mixture model 
(GMM) for modeling of complex input densities [16]. 

This paper is structured as follows: in the second part 
of the paper we provide basic information related to 
intuition behind HBF network; in the third part the main 
learning algorithm is presented. Experimental results are 
presented in the fourth part, while concluding remarks are 
given in the final part. 

II. HYPER BASIS FUNCTION NEURAL NETWORKS

The general mathematical form of RBF neural network 
is given as: 
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where  , ,jg     stands for the j-th basis function; 
xn

i x   is the input vector in the RBF neural network 
and xn  stands for the number of the input dimensions, 

xn
j μ  is the center of j-th basis function (also referred 

as the prototype vector); jw  is connecting weight of the j-

th basis function, and j  is the spread ( 1
j  ). Hyper 

basis function uses the Mahalanobis-like distance and it is 
given in the following form [1, 2]: 
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where 2

j


Σ
is Mahalanobis-like norm weighted with 

positive definite square matrix jΣ . Weighting matrix jΣ
makes similarity between the input vector ix  and j-th 
center vector jμ  invariant to scaling and local orientation 
of the data [8-12]. The Mahalanobis-like distance can be 
seen as a generalization of the Euclidian distance for 
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similarity measure. The general case ( jΣ  is full matrix) 
provides flexibility and bigger number of parameters to 
optimize but it results in severe over-fitting to data [2]. 
Therefore, in HBF network each HBF neuron has a 
unique diagonal weighting matrix jΣ , with varying size 
and restricted orientation, i.e. 

 2 2 2
1 21/ ,1/ ,...,1/

xj ndiag   Σ  [2].  
This parameterization provides a trade-off between 

two extremes: on one hand, we have case where local 
scaling of data is not allowed, and on the other hand, the 
case with high degree of freedom of the RBF neural 
network model. Therefore, with diagonal weighting 
matrix we are trying to capture additional information. 
Let us show how important is to have the ability of local 
scaling of the data, especially for modeling of nonlinear 
dynamical systems. Let us observe NARX model [2, 8] 
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where  tu ,  ty  and  te   represent system input, 
output and noise variables (respectively), yl  and ul  are 

maximum lags of the input and output, and  f   is some 
unknown nonlinear function. Let us form the input vector 
into neural network given by:  
 

   1 ,...,
T

lt t   z z z  ,    (4)  
 

where y ul l l   and elements of z are: 
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Now, without loss of generality, let us assume that input 
 tu and output  ty  are bounded in  ,u u , ,y y 

   and 

let us define associated ranges as  ,ur u u  and 

,yr y y    . Two common cases can be distinguished: (i) 

y ur r  ( ur  is much greater than yr ) and (ii) y ur r   ( ur  
much less than yr ). In the first case, influence of lagged 

input variables  tu  may be exaggerated while the role 

of states  ty  may be downplayed; in the second case the 

opposite is valid: the role of system variables  ty  will 

be exaggerated and the role of system inputs  tu  will be 
downplayed. This problem is commonly encountered in 
black box modeling of nonlinear dynamical systems 
when designers has no prior knowledge of the influence 
input dimensions have on the output.  

It goes without saying that RBF neuron is especially 
vulnerable to this problem. Some parts of this problem 
may be solved by normalizing the data; however, the 

major part will still be unsolved. Having this in mind, the 
HBF neuron provides natural extension of the RBF 
neuron that provides us with ability to locally scale input 
data. 

III. EXTENDED INFORMATION FILTER FOR GROWING 
AND PRUNING HBF NETWORK TRAINING – EIF-HBF-GP 

A. Extended Information Filter 
EKF is a widely established as one of the most 

successful learning algorithms for neural networks [1-3, 
13-15, 17]. Although theory behind Kalman filtering and 
filtering in information space is well known [3], to best of 
our knowledge, EIF has not been applied for machine 
learning of neural networks, which is the reason why we 
decided to test its performance. The first attempt in this 
direction is undertaken in references [3-5] for RBF neural 
networks without ability to change network topology 
while learning. In this paper, we test performance of EIF 
for HBF-GP network training.  

The attractiveness of EIF-based sequential learning 
algorithm is in parameterization of Gaussian distribution. 
Namely, instead of mean and covariance, information 
filter parametrizes Gaussian distribution with information 
vector and information matrix, which is defined as 
inverse of covariance, i.e. 

 
1Ι P    (6) 

 
Now, the covariance matrix tells us how much we do 

not know about our system; bigger P means more 
uncertainty. If all elements of P are large, than it means 
that, we have no knowledge of our system’s initial state. 
Similarly, all elements of P are small, than it means that 
we have all available information about initial state of our 
system (needless to say that we as engineers are aware 
that this ideal situation is not possible). Now, from 
computational perspective the problem arises when we 
have no initial knowledge of system’s state; the problem 
is how to “tell” the computer this information. This is 
why we perform estimation in information space; namely, 
when we invert covariance matrix it is possible to tell the 
computer that we have little or no knowledge of system’s 
initial state, which means that out lack of knowledge may 
be represented in the following symbolical mathematical 
form: 
 

  

  

P 0 Ι
P Ι 0

  (7) 

 
In the first case, all elements of covariance matrix P(i,j) 
are small numbers, and all elements of I(i,j) are large 
numbers (symbolically - ∞); in the second case, the 
opposite is true, elements of covariance matrix P(i,j) are 
large numbers, while elements of I(i,j) are small numbers. 
To summarize, when our initial knowledge of 
system/problem is scarce, we may change our estimation 
space and move to information space in which this lack 
of knowledge is easily defined with Ι 0 . This is the 
main reason of EIF deployment in this paper; we would 
like to model and test those problems in which designers 
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have little initial knowledge of the system. For additional 
EIF and EKF analysis the reader is referred to [3-5]. 

B. EIF based training of Hyper Basis Function Neural 
Networks with Growing and Pruning Ability 

In this section we briefly introduce and explain EIF 
HBF-GP training algorithm; for additional information 
and deeper understanding of advanced theoretical 
concepts the reader is referred to [2]. Firstly, we model 
the input density  p x  with GMM, which is why closed 
form analytical solution is enabled; now, we may define 
the concept of neuron significance [2]: 
 

      
11 22ˆ 2 detx

q
n T

sig k j jq
Е k q



 w Σ N A  (8) 

 
where q is the vector norm, А  denotes vector of mixing 
coefficients of GMM, i.e.  1 2, ,..., T

M  А , and M 
Gaussian distributions jN  are defined as: 
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where  , ; 1,...k kN k Mν Σ  denote k-th Gaussian 
distribution in GMM. The EIF HBF-GP sequential 
learning algorithm is given in Table I. 

HBF-GP sequential learning algorithm requires several 
input parameters: initial number of HBF neurons  0J , 

parameters required for growth criterion  min max,  , 
threshold for neuron significance minE , overlap of the 
hyper basis functions  , and desired learning accuracy 

mine . 
Prior to beginning of the learning process, the 

estimation of input density  p x  requires _pre historyN  data 
points.  

Algorithm continues with calculation of parameter i  
needed for growth criterion. In the same step, the 
algorithm calculates current error of the network ie  and 
nearest neuron k to the newest input sample ix . Neuron 
significance is calculated using (6). The next step of the 
HBF-GP determines whether new neuron should be 
added, i.e. step 3.4: the HBF-GP adds new neuron to the 
hidden layer only if the possible new neuron J+1 is 
sufficiently far from existing neurons, 
i.e.

k
i k i 

Σ
x μ . The second criterion is same as in 

[13, 14], and insures that significance of possible new 
neuron  ˆ 1sigE J   is greater than threshold significance 

minE . When neuron J+1 satisfies these conditions it is 
added to the HBF structure, and learning procedure goes 
back to step 3 and presents new learning pair  ,i ix y . 
Otherwise, the HBF-GP will not add new neuron J+1 to 
the HBF hidden layer. In this case, the learning procedure 
continues with update of the nearest neuron k (calculated 
at step 3.2) with EIF. The reader may notice that only 

parameters of neuron k nearest to the input sample ix  are 
updated with EIF: greater difference between input vector 

ix  and the j-th prototype vector jμ (j = 1,…,J) will result 
in smaller output/activation of the Gaussian basis 
function.  

TABLE I.   
SEQUENTIAL LEARNING ALGORITHM FOR HYPER BASIS FUNCTION 

NEURAL NETWORKS WITH GROWING AND PRUNING ABILITY  

 0 min max min min, , , , ,Ј E e  input  
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EndIf
EndIf

 

 , , , , 1,...,j j jJ j J

EndFor

output w μ Σ
 

 
The Jacobian matrix 

ˆ ( ) ( ) ( )i
k k 

         λ w μH y f f f  will have non-
zero elements only for the nearest neuron k; for other 
neurons  j k   the Jacobian will approach to zero or 
small neglecting value [13, 14]. Finally, EIF update of 
HBF-GP neuron is performed in step 3.4. After update of 
parameters of the nearest neuron k, the algorithm moves 
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on to calculate the significance of the nearest neuron 
 ˆ

sigE k  and checks if it is greater than threshold 
significance minE ; pruning of neuron occurs if its 
significance  ˆ

sigE k is smaller than minE . This learning 
procedure is sequentially applied for all training samples; 
when final sample N is processed, the learning stops and 
algorithm outputs parameters of optimized HBF network. 
Outputs of the learning algorithm are parameters of HBF 
network: total number of HBF processing units (J), 
connecting weights jw , centers jμ  and widths jΣ of 
HBFs  1,...,j J . 

IV. EXPERIMENTAL RESULTS  

A. Experimental Setup and Intuition 
To fully assess performance of EIF we setup a series of 
experiments to perform fair comparison between EIF and 
its dual EKF. Experimental evaluation is performed using 
two well-known and widely recognized problems for 
system identification of unknown nonlinear systems: (i) 
dynamical system with long input delays-in which the 
behavior of the system is to be predicted using previous 
system output and controls in HBF neural network, (ii) 
nonlinear dynamical system-the dynamical system is 
nonlinear and HBF-GP neural network is to “figure out” 
the behavior of system using previous systems states and 
previous controls. EIF HBF-GP neural network is 
compared to EKF HBF-GP neural network. We used the 
same initial parameters for both neural networks. These 
simulated engineering problems should provide fair 
comparison between two sequential learning algorithms 
of hyper basis function neural network with growing and 
pruning ability, and provide assessment of their 
performance in terms of compactness of network 
topologies and generalization. All codes for HBF-GP 
neural network and EIF-based sequential learning 
(optimization of parameters) are written and run in 
Matlab 7.12 programming environment; all experiments 
are conducted on laptop computer with Intel(R) Core™ i5-
4200U CPU @ 1.6GHz (2.3GHz) with 6GB of RAM, 
running on 64-bit Windows 7.  

B. Dynamical System with Long Input Delays 
 Consider the dynamical plant represented with following 
equation [2]: 
 

       

   2

1 0.72 0.025 1 1 ...

0.01 2 0.2 3
p p py t y t y t u t

u t u t

     

  
 (10) 

 
There are two input values  py t  and  u t  fed into 

HBF-GP neural network to generate desired output value 
 1py t  . The training inputs are uniformly distributed 

in the [-2,2] interval for about half of the training time 
and a single sinusoid signal  1.05sin 45t  for the 
remaining training time. The training data has 1000 
training examples. To verify performance of the 
generated HBF-GP network and analyze identification 
results, the testing signal is adopted as: 

 

 

 

   

 

sin 25 , 0 250,
1.0, 250 500

1.0, 500 750
0.3sin 25 0.1sin 32

0.6sin 10 , 750 1000

t t
t

u t t
t t

t t



 



  


 


   
 

  

(11) 

 
The testing set consists of 1000 examples. The input into 
HBF neural network is formed by previous system state 
and the most recent control, i.e. input is given by the 

vector    
T

py t u t   x . Figure 1 shows training and 
testing sets. As stated, HBF neuron enables local scaling 
of data, which is especially important for dynamical 
systems [2, 8]. Therefore, in experiments we partitioned 
weighting matrix jΣ  into two blocks, i.e. 
 

 ,
pj y udiag Σ Σ Σ    (12) 

 
where first block 

pyΣ defines spreads of state variables 

 py t , while the second block uΣ  defines spread of 

controls  u t ; scalar 1   represents initial scale. 
Initial values of weighting matrix Σ  are adopted as: 
 

      

      

1000

1
1000

1

max min ;

max min

py p p t

u t

y t y t

u t u t





 

 

Σ

Σ
 (13) 

 
HBF parameters are set as: max 5  , min 1  , and 

0.99  , the initial state uncertainty for EKF are: 

0 0 00.9,p p  PP I , state transition uncertainty 

0 00.001,q q  QQ I , and measurement uncertainty 

0 01,r r  RR I , where PI , QI , and RI  are the identity 
matrices of appropriate dimensions (not to be confused 
with information matrix I defined and used in (8), (9) and 
Table I). On the other hand, the initial state uncertainty 
for EIF is different. Namely, we simulated situation in 
which engineer is faced with real situation in which he 
has no knowledge about the problem or its knowledge is 
scarce, but the neural model has to be developed, tested 
and implemented. Therefore, we move to information 
space.  

Figure 1 depicts training set (upper half) and testing set 
(lower half) as given by equation (11). Figure 2 shows 
performance of HBF-GP neural network trained with 
EKF (above) and EIF (below) for testing set. As it may 
be seen, both sequential learning algorithms are able to 
learn unknown relationship between long input delayes 
and output, and generate desired testing response.   

Experimental results averaged over 30 independent 
trials are presented in Table 1; Table 1 shows Root Mean 
Square Error (RMS), Mean Absolute Error (MAE), and 
number of processing units, all averaged over 30 
independent trials.  
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Figure 1.  Training and testing set for dynamical system with long 

input delays. 

 

Figure 2.  YEKF (EKF HBF – GP) and YEIF (EIF HBF – GP) versus 
testing set for dynamical system with long input delays. 

C. Nonlinear Dynamical System 
Consider nonlinear dynamical system given as: 
 

 

            

   2 2

1

1 2 1 2 1
1 2 1

y t

y t y t y t u t y t u t
y t y t

 

     


   

  (14) 

 
where  u t  is the control variable (identically 

independently distributed) in uniform range  2,2 . 800 

data points is generated for training of the model. On the 
other hand, testing set is defined with following dynamics 
of the control input  u t : 
 

 

 

 

 

sin 3 / 250 , 500

0.25sin 2 / 250

0.2sin 3 / 50 , 500

t t

u t t

t t










 




 (15) 

 
800 data points is used for testing of the model. Figure 

3 show training and testing sets. Input vector into HBF 
neuron is given as 

         , 1 , 2 , , 1y t y t y t u t u t     x , whereas 

output is given as scalar  1py y t    . The initial 
covariance is initiated using (12) and (13); similarly, we 
set 0 0 00.9,p p  PP I  for EKF while 0I  for  EIF. 30 
independent repetitions of HBF-GP learning are 
conducted. Figure 4 shows how HBF-GP neural network 
trained with EKF and EIF is able to learn unknown 
relationship between input vector and output, given 
training set (14). Experimental results are given in Table 
II. Furthermore, Figure 5 shows the evolution of total 
number of HBF neurons during learning process of HBF-
GP. Results shown in Figure 5 are averaged over 30 
independent trials; as it may be seen, both EKF and EIF 
converged to approx. three HBF neurons.  

  
Figure 3.  Training and testing set for nonlinear dynamical system. 

TABLE I.   
EXPERIMENTAL RESULTS FOR HBF-GP NEURAL NETWORK TRAINED WITH EKF AND EIF  

 Initial scale 
of 

weighting 
matrix jΣ  

Learning 
algorithm  

RMS  MAE  Number of Units 

test train test train 

Dynamical 
system with 
long input 

delays 

0.5   EKF 0.1025±0.0059 0.0542±0.0069 0.00691±0.0055 0.0388±0.0059 2.9±0.3051 
EIF 0.1141±0.0108 0.0694±0.0112 0.0785±0.0111 0.0524±0.0110 3±0 

1   EKF 0.1141±0.0053 0.0630±0.0061 0.0749±0.0046 0.0447±0.0033 2.0667±0.2537 
EIF 0.1258±0.0079 0.0818±0.0067 0.0855±0.0046 0.0587±0.0052 2±0 

Nonlinear 
dynamical 

system 

0.5   EKF 0.0524±0.0082 0.1134±0.0182 0.0427±0.0056 0.0554±0.0042 2.9333±0.5833 
EIF 0.0587±0.0174 0.1367±0.0252 0.0477±0.0133 0.0736±0.0131 3.1333±0.6814 

1   EKF 0.0717±0.0374 0.1396±0.0213 0.0607±0.0349 0.0705±0.0199 2.6333±0.6149 
EIF 0.0591±0.0377 0.1779±0.020 0.0492±0.0354 0.0836±0.0207 2.1667±0.379 
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Figure 4.  YEKF (EKF HBF – GP) and YEIF (EIF HBF – GP) versus 

testing set for nonlinear dynamical system. 

 
Figure 5.  Evolution of number of units during learning for EKF and 

EIF. 

V. DISCUSSION AND CONCLUSION 
In this paper, we developed and tested Extended 

Information Filter (EIF)-based sequential learning 
algorithm for Hyper Basis Function (HBF) neural 
network. Unlike a conventional approach, in our research 
we developed algorithm that enables on line growing and 
pruning of HBF neural network according to the 
developed concept of neuron significance [2]. From 
engineering perspective, EIF has attractive properties 
when it comes to modeling of complex real world 
engineering problems with neural networks [3]. Namely, 
unlike its dual, the extended Kalman Filter (EKF), EIF 
enables one to set (almost) infinitely large initial 
covariance matrix; this is important because when faced 
with hard problems, designer is still able to develop neural 
network based model/solution although initial knowledge 
of the problem may be scarce. Furthermore, in our model, 
we enabled growing and pruning of HBF network 
topology; the HBF network learns with EIF and 
simultaneously modifies number of neurons.  

EIF is directly compared to its dual (sibling) EKF. As 
experimental results effectively demonstrate (Figure 1, 
Figure 4, Figure 5, Table II) EIF-HBF-GP neural network 
is able to learn complex relations between 
multidimensional input and output and generate desired 
response for previously unseen data.  

Both of these features are important for engineers 
working in real world, because real world problems 
impose mechanisms of how to handle scarce initial 
knowledge of the problem and how to generate compact 
network structures. In this paper, we provided a solution 
for these two problems. 
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